用户名: 密码: 验证码:
泡沫Fe-Ni电磁屏蔽材料的设计与屏蔽机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用电沉积方法制备了泡沫Fe-Ni材料,并利用光学显微镜(OM),扫描电子显微镜(SEM)、透射电镜(TEM)、物理性能测量系统(PPMS)、同轴测试装置、点聚焦透镜天线、电子拉伸机等多种手段对其微观组织、力学性能、电磁屏蔽性能进行了系统的研究,并探讨了多孔材料的微观结构与性能的相关性。
     论文综合考虑了金属网状材料以及坡莫合金在电磁屏蔽应用中的优缺点,提出以磁性材料Fe-Ni系合金为骨架,以透气性的三维网状材料为结构,制备具有软磁特性的泡沫Fe-Ni材料,并研究其在恒磁场以及交变电磁场屏蔽中的电磁屏蔽效能。
     泡沫Fe-Ni材料的密度为0.2g/cm~3~1.2g/cm~3,致密度为2.3%~12%。在空间中近似认为由正十四面体紧密堆积而成,泡沫Fe-Ni材料的骨架中空,骨架壁厚由两端到中间逐渐减薄,骨架截面积近似于圆形。
     热处理后,泡沫Fe-Ni与传统的1J50坡莫合金的主要成分相同,但其杂质含量较1J50多。骨架上Fe、Ni两种元素没有完全扩散之前,骨架上元素的分布为连续的梯度分布状态,主要的结构为与1J50相同的γ-(Fe,Ni)相。
     利用积分叠加方法建立了泡沫Fe-Ni磁导率与元素扩散的相关性。热处理工艺不同对材料宏观磁导率的影响主要来源于泡沫骨架上Fe、Ni两种元素分布的不同,且遵从的关系。结果表明,当Fe、Ni元素呈现一定的梯度分布时,材料的磁导率出现极大值。而不同孔径材料达到最佳磁性能的保温时间因为泡沫骨架半径的不同而不同。90ppi,厚度为3mm,致密度为12%的泡沫Fe-Ni热处理后,骨架表面γ-(Fe,Ni)的晶粒大小约在5μm ~ 30μm范围内,晶粒内部的磁畴多以条带状分布,不同晶粒之间的磁畴取向呈现一定的角度。材料的磁导率在外磁场强度为H=6Oe时达到最大,在静磁场和工频磁场下的屏蔽效能分别为8dB和21dB。
     使用Maxwell 2D软件模拟了多孔泡沫材料的磁场屏蔽效能与泡沫材料宏观结构参数之间的关系。结果表明,泡沫材料的磁屏蔽效能随着致密度的增加而增大,且当泡沫材料的致密度达到75%时,其磁场屏蔽效能与对应致密材料相差无几。选择适当的泡沫材料与致密材料组成双层方形屏蔽体时,其屏蔽效能与相应的致密材料相当,此时屏蔽体重量降低21.5%;若增大双层屏蔽体之间的空隙到8mm,磁场屏蔽效能增加24%,与圆形致密材料相差无几。
     利用积分叠加方法计算了热处理后Fe、Ni元素分布对泡沫Fe-Ni电导率的影响规律,结果表明:材料的电导率随着热处理温度的升高和保温时间的延长逐渐降低,导致泡沫Fe-Ni在30kHz ~1.5GHz范围内的屏蔽效能有2dB~4dB的降低。采用目前常用的几种理论模型分析了泡沫Fe-Ni材料的电导率随致密度的变化关系,结果表明,泡沫Fe-Ni的导电性能也随着材料致密度的增加而增加。
     电磁屏蔽效能测试表明,在30kHz~1.5GHz范围内,泡沫Fe-Ni的电磁屏蔽效能均大于60dB,且随着频率的增加逐渐降低;在2.6GHz~40GHz范围内,多孔Fe-Ni合金的电磁屏蔽随着频率的增加逐渐升高,且当f >26.5GHz时,其平均电磁屏蔽效能高于90dB。在频率200     泡沫Fe-Ni的压缩曲线呈现比较典型的弹塑性形变行为,试样的变形主要分为三个阶段:弹性变形段,屈服平台阶段以及致密化阶段。应用Gibson经验公式并根据本试验材料的结构参数进行调整,得到泡沫Fe-Ni的表观屈服强度随着泡沫骨架长径比的增加而增加。
In this paper, we designed open-cell iron-nickel foam, and systematically investigated the microsructure, mechanical properties, electromagnetic shielding effectiveness of the material by using optical microscope (OM), scanning electron microscope (SEM), transmission electron microscope (TEM), physical properties measurement system (PPMS), coaxial cable method and Focusing lens antenna, and discussed the relations between properties and microstructure.
     In the thesis, the adventige and disadventiges of metal mesh and permalloy in electromagnetic shielding are summarized and the factors influencing shielding effectiveness are analyzed. Accordingly, open-cell Fe-Ni foam with magnetic material Fe-Ni alloy frame in application in magnetic field and electromagnetic shielding are proposed.
     The density of open-cell Fe-Ni foam is in the range 0.2g/cm~3~1.2g/cm~3 and the relative density is 2.3%~12%. The open-cell foam is considered stacking by tetrakaidecahedron cell in the space and SEM observations indicate that the metal mass is clustered more toward the nodes along ligaments, and the cross-section of ligament is approximate as circle.
     Based on the analysis of X-ray fluorescence spectrometry and X-ray diffraction, a similar chemical composition and structure ofγ-(Fe, Ni) is found in open-cell Fe-Ni foam to solid permalloy 1J50 after heat treatment. Moreovere, the Fe and Ni is gradient distributied in the diffusion layer before they are uniform on a ligament.
     The relations between distribution of elements and magnetic permeability and electrical conductivity are established by integral method. It indicates the maximum magnetic permability is observed for a certain distribution of Fe and Ni before they are uniform distributed in the layer. The analysis of energy diffraction spectrometry indicates that holding time of heat treatment is different with different ligament to reach the maxium magnetic permability.
     As for the open-cell Fe-Ni foam of 90 ppi (poles per inch) with 3mm in depth and 12% relative density, the shielding effecitivness (SE) is 8dB and 26.5dB in magnetic field and magnetic field of 50Hz, respectively when it is heat treated for 3 hours at 1100℃. Moreover, the grain size ofγ-(Fe, Ni) increases with the holding time of heat treatment, and generally in the range 5μm ~ 30μm. The Magnetic Force Microscopy (MFM) shows that the magnetic domain is banded distribution in grain and there is certain orientation of magnetic domain between different grains.
     The SE value of open-cell Fe-Ni foam is simulated by Ansoft Maxwell 2D. In this method, the SE value is confirmed to increase with increasing relative density. And the SE is similar to that of solid permalloy when the relative density is 75%. All the results also show that the weight reduce 21.5 percentages when the solid shield with 3mm in depth is substitued by a two-layers shield of solid permalloy with 2mm in depth and foam with 3mm in depth of 81% porosity. Moreover, there is 24 percentages increase in SE value when the distance of two layer is 8mm.
     Furthermore, the electrical conductivity of open-cell Fe-Ni foams is also calculated by integral method. It shows the electrical conductivity decreses with the increase of temperature and the holding time and hence lead to 2dB ~ 4dB decrease in SE value in frequency range 30kHz~ 1.5GHz. The electrical conductivity also increases with the increasing relative density.
     The measurement of electromagnetic shielding effectiveness (EMSE) show that the SE value of open-cell Fe-Ni foam is more than 60 dB in the frequency range 30kHz~1.5GHz, and more than 90 dB when the frequency surpasses 26.5GHz. This SE value is similar to that of aluminum in the frequency range 200MHz~400MHz and 2GHz~15GHz, while a little 5dB lower than that of Al in 400MHz~1.5GHz.
     Compared to traditional materials like copper, iron and steel mesh, it shows better electromagnetic shielding application in wide frenquency band. Study on the mechanism of EMSE indicates he electromagnetic shielding of open-cell Fe-Ni foam is the common effect of reflection and multiple reflections in the whole frequency range investigated, and the SE value can be enhanced by the way either for the increase of electrical conductivity or the surfaces and interfaces of multiple reflections.
     Compressive stress-strain curve of open-cell Fe-Ni foam include three regions: elastic region, plateau region and densification region. The yield strenghth of open-cell Fe-Ni foam increase with the increasing aspect ratio of ligament
引文
1.张晓宁. Fe-Ni软磁合金吸波材料的设计与制备.北京工业大学工学博士论文. 2003:1-4
    2.张书东.通讯汽车电磁辐射的测试与研究.汽车电器. 1996,(6):5-9
    3.韩放.计算机信息电磁泄漏与防护.科学出版社,1993:3-187
    4.石长生,李国定.信息设备信息电磁发射机理与模型.中国计算机报. 1994,(11):12-14
    5.冯桂山.计算机泄密机理及其防护措施介绍.宇航计测技术. 1994,13(1):27-32
    6.冯桂山.计算机泄密机理评述. 1995,(12):34-38
    7.冯林,刘新权.电磁辐射对生物体的影响与环境污染.交流资料
    8.王定华,赵家升.电磁兼容原理与设计.电子科技大学出版社,1995:142-150
    9.路宏敏,薛梦麟,傅君眉.无限长磁性材料圆柱腔的静磁屏蔽效能. Journal of XiDian University. 1999,26:80-83
    10.汝强,胡社军,胡显奇等.电磁屏蔽理论及屏蔽材料的制备.包装工程. 2004,25:21-23
    11.陆兴翔,赵红,刁超. TEMPEST设计中的硬布线和电缆的重要性. 1993,7(2):56-70
    12.荒木庸夫.电子设备的屏蔽设计—干扰的产生及其克服方法.赵清译.国防工业出版社,1975:107-108,121-126
    13.陈国钧,李茂昌,周元龙.金属软磁材料及其热处理.机械工业出版社,1986:31-110,173-174
    14.高风云. 1J22软磁材料的真空退火.金属热处理. 2001,(2):32-33
    15.黄伟嘉,李智彪,李晨隽,陈远星,张红阳,王德润.软磁合金系列新产品的开发.冶金丛刊. 2002,141(6):43-45
    16. Jai-Sung Lee and Yun-Sung Kang. Process of bulk nanostructured Ni-Fe materials. Scripta Materialia. 2001,44:1591-1594
    17. Li XG,A. Chiba,S.Takahashi,Preparation and magnetic properties of ultrafine particles of Fe-Ni alloys. J. Magnetism and Magnetic Mater.. 1997,170:339-345
    18. J?rg F. L?ffler and Werner Wagner. Random and exchange anisotropy in consolidated nanostructured Fe and Ni: Role of grain size and trace oxides on the magnetic properties. Physical Review B. 1998,57(5):2915-2924
    19. Y. K. Kim and T. J. Silva. Magnetostriction characteristics of ultrathin permalloy films. Appl. Phys. Lett.. 1996,68(20):2885-2886
    20.何正明,许士跃,张正明,董传华. Fe100-xNix系合金超细粉末的结构和磁性研究.上海大学学报(自然科学版)1999,5(3):257-261
    21. R. Hamzaoui,O. Elkedim,N. Fenineche,E. Gaffet,J. Craven. Structure and magnetic properties of mechanically aolloyed Fe-10%Ni and Fe-20%Ni alloys. Materials Science and Engineering A. 2003,360:299-305
    22. R. Hamzaoui,O. Elkedim,E. Gaffet,J. M. Greneche. Structure, magnetic and Mossbauer studies of mechanically aolloyed Fe-20 wt.% Ni powders. Journal of Alloys and Compounds. 2006,417:32-38
    23. M. P?kala,D. Oleszak,E. Jartych,J.K. ?urawicz. Structural and magnetic study of mechanically alloyed Fe-Ni. Nanostructured. Materials. 1999,11(6):789-796
    24.刘天佐,曹静,夏天东,赵文军.热处理工艺对Fe-79%Ni软磁合金磁性能的影响. J Magn Mater Devices. 2005,37(1):26~28
    25. J. S. Lee,T. H. Kim,J. H. Yu,S. W. Chung. In-situ alloying on synthesis of nanosized Ni-Fe powder. Nanostruct. Mater.. 1997,9(1-8):153-156
    26. J. S. Lee,J. G. Nam,P. Knorr. Synthesis and consolidation of gamma-Ni-Fe nanoalloy powder. Metals Mater.. 1999,5:115-120
    27. X. Y. Qin,J. S. Lee,J. G. Kim. Magnetic properties of nanostructruedγ-Ni-46Fe alloy synthesized by a mechanochemical process. J. Appl. Phys.. 1999,4(86):2146-2154
    28. Lin Y,Sun F Q,Yuan X Y. Sol-gel electrophoretic deposition and optical properties of Fe2O3 nanowire arrays. Applied Physics A-Material Science & Processing. 2004,78 (8):1197-1199
    29.王玲玲,赵立华,黄桂芳,袁晓俭.类金属元素对化学沉积坡莫合金成分、结构及耐蚀性的影响.材料保护. 2001,34(1):12-14
    30.郭占成,刘宇星等.电沉积Fe、Ni基合金箔的组织形貌与磁性能.中国有色金属学报. 2004,14(2):273-279
    31. CHEN Wen-ge,GU Chen-qing,Ding Bing-jun. Formation and sintering behavior of nanocrystalline Fe-Ni powder by mechanical alloying. Journal of Iron and Steel Reseach. 2003,1(10):75-78
    32. R. Hamzaoui,O. Elkedim,E. Gaffet. Milling conditions effect on structure and magnetic properties of mechanically alloyed Fe-10%Ni and Fe-20%Ni alloys. Materials Science and Engineering A. 2004,381:363-371
    33. C. Kuhrt and L. Schultz,Formation and magnetic properties of nanocrystalline mechanically alloyed Fe-Co and Fe-Ni, J. Appl. Phys. 1993,73(10):6588-6590
    34. J Eckert,J. C. Hoolzer,W.L.Johnson. Thermal stability and grain growth behavior of mechanically alloyed nanocrystalline Fe-Cu alloys. J. Appl. Phys.. 1993,73(1):131~141
    35. S.V. Divinski,F. Hisker,Y.S. Kang,J.S. Lee,C. Herzig. Ag diffusion and interface segregation in nanocrystallineγ-FeNi alloy with a two-scale microstructure. Acta Materialia.. 2004,52:631-645
    36. L. B. Hong,B. Fultz. Two-phase coexistence in Fe-Ni alloys synthesized by ball milling. J. Appl. Phys.. 1996,79(8):3946-3955
    37. Y.A. Abdu , T. Ericsson , H. Annersten. Coexistion antiferromagnetism and ferromagnetisim in mechanically alloyed Fe-rich Fe-Ni alloys: implications regarding the Fe-Ni phase diagram below 400℃. J. Magn. Magn. Maters. 2004,280:395-403
    38. Enio Lima Jr,Valderes Drago,Jo?o Cardoso De Lima. Nanocrystalline FexNi1-x(x≤0.65) alloys formed by chemical synthesis. Journal of Alloys and Compounds. 2005,396:10-17
    39. Enio Lima Jr,Valderes Drago,Ramon Bolsoni,Paulo F.P. Fichtner. Nanostructured Fe50Ni50 alloy formed by chemical synthesis. Solid State Communications. 2003,125:265-270
    40. E. Jartych,J.K. Zurawicz,D. Oleszak,M. Pekala. X-ray diffraction, magnetization and Moessbauer studies of nanocrystalline Fe-Ni alloys prepared by low- and high-energy ball milling. J. Magn. Magn. Mater.. 2000,208 (3);221–230
    41. Yu.V. Baldokhin,V.V. Tcherdyntsev,S.D. Kaloshkin,G.A. Kochetov,Yu.A. Pustov. Transformations and fine magnetic structure of mechanically alloyed Fe-Ni alloys. J. Magn. Magn. Mater.. 1999,203:313–315
    42. V.V. Tcherdyntsev,S.D. Kaloshkin,I.A. Tomilin,E.V. Shelekhov,Yu. V. Baldokhin. Formation of iron-nickel nanocrystalline alloy by mechanical alloying. Nanostruct. Mater.. 1999,12:139–142
    43. L. Aymard,B. Dumont,G. Viau. Production of Co-Ni alloys by mechanical-alloying. J. Alloys Compd.. 1996,242:108–113
    44. J. Ding,Y. Shi,L.F. Chen,C.R. Deng,S.H. Fuh,Y. Li. A structural, magnetic and microwave study on mechanically milled Fe-based alloy powders. J. Magn. Magn. Mater.. 2002,247 (3):249–256.
    45. E. Gaffet,F. Bernard,J.C. Niepce,F. Charlot,C. Gras,G. Le Caer,J.L. Guichard,P. Delcroix,A. Mocellin,O. Tillement. Some recent developments in mechanical activation and mechanosynthesis. J. Mater. Chem.. 1999,9:305–314
    46. C. Suryanarayana. Structure and properties of nanocrystalline materials. Bull. Mater. Sci.., 1994,17(4):307–346.
    47. R. Hamzaoui,O. Elkedim,J.M. Greneche,E. Gaffet. X-ray diffraction and Mossbauer studies of mechanically alloyed Fe-Ni nanostructured powders. J. Magn. Magn. Mater.. 2005,294(2):145–149
    48. R.V. Hays,R. Marchand,G. Saindrenan,E. Gaffet. Nanocrystalline Fe-Ni solutions prepared by mechanical alloys. Nanostruct. Mater.. 1996,7(4):411-420
    49. X.Y. Qin,J.G. Kin,J. S. Lee. Synthesis and magnetic properties of nanostructuredγ-Ni-Fe alloys. Nanostructured Materials. 1999,11(2):259-270
    50. F. D. Ge,L. M. Chen,W. J. Ku,J. Zhu. Structural and magnetic properties of carbonyl Fe-Ni nanometer particles. Nanostructure Mater..1997,8(6):703-709
    51. S. Eroglu,S. C. Zhang,G. L. Messing. Synthesis of nanocrystalline Ni-Fe alloy powders by spray pyrolysis. J. Mater. Res.. 1996,11(9):2131-2134
    52. K. Sumiyama,M. Kadono,Y. Nakamura. Metastable bcc phase in sputtered Fe-Ni alloys, Trans. Jpn. Inst. Met.. 1983,24(4):190-194
    53. Y. H. Zhou,M. Harmelin,J. Bigot. Sintering behaviour of ultra-fine Fe, Ni and Fe-25wt%Ni powders. Scripta Metallurgica. 1989,23:1391-1396
    54. C. Cheung,F. Djuanda,U. Erb,G. Palumbo. Electrodeposition of nanocrystalline Ni-Fe alloys. Nanostruct. Mater.. 1995,5(5):513-523
    55.刘献明,付绍云,黄传军.电磁波屏蔽复合材料的研究现状.材料导报. 2005,19:17-20
    56.管登高.镍基电磁波屏蔽复合涂料的研究及其在EMC的工程应用.四川大学硕士学位论文. 2001:21-22
    57.毛倩瑾,于彩霞,周美玲,Cu/Ag复合电磁屏蔽涂料的研究,涂料工业,2004,34:8-10
    58.汪荣华,部嘉谦.电磁兼容设计中金属屏蔽镀(涂)层的选用.宇航材料与工艺. 1997,6:11-15
    59.黄鹏波,杜仕国,闫军,施冬梅.纳米粉体在涂料中的应用现状.塑料科技. 2004,5:61-64
    60.吴行,陈家钊,涂铭旌.电磁屏蔽涂料镍填料的表面偶联处理研究.功能材料. 2000,31(3):262-264
    61.施冬梅,杜仕国.电磁屏蔽铜系复合导电涂料试验研究.军械工程学院学报. 2001,13(4):71-73
    62.何益艳,杜仕国.吸收雷达波包装材料的研究进展.包装工程. 2002,23(2):92-98
    63.王晓丽,杜仕国.铜粉处理对涂料导电性能的影响.表面技术. 2003,32(1):49-54
    64.毛倩瑾,于彩霞.空心微珠表面金属化及其电磁防护性能研究.北京工业大学学报. 2003,29(1):108-111
    65. ZHANG Jiu-Xing. ZHOU Mei-ling. Thermionic properties of Mo-La2O3 cathode wires. Trans. Nonferrous Met. Soc.China. 2002,12(1):43-45
    66.葛凯勇,王群.空心微珠表面改性及其吸波特性.功能材料与器件学报. 2003,9(1):67-70
    67.朱正吼.碳纤维复合材料电磁特性研究.机械工程材料. 2001,25(11):14-16
    68.朱正吼,王开坤.纳米填料对碳纤维复合材料电磁特性的影响.兵器材料科学与工程. 2002,25(2):11-14
    69.杜仕国.电磁屏蔽材料的现状与发展.化工新型材料. 1995,(4):12-16
    70. L. Benedicte,S. Clement. Sol-gel derived hybrid inorganic-organic nanocomposites for optics. Current Opinion in Solid State &Materials Science. 1999,4(1):11-23
    71. Komarneni S,Abothu IR,Rao AVP. Sol-gel prosessing of some electroceramic powders. J. Sol- gel Science Technol. 1999,15:263-270
    72.薛如君.电磁屏蔽材料及导电填料的研究进展.涂料技术与文摘. 2004,25(3):3-6
    73.王锦成.电磁屏蔽材料的屏蔽原理及研究现状.化工新型材料. 2002,30:16-19
    74.黄福祥,金吉琰,范嗣元,何光辉.电磁屏蔽材料.材料导报. 1997,11:18-21
    75.赵福辰,电磁屏蔽材料的发展现状,材料开发与应用,2001,16:29-33
    76.邓毅.导电炭黑在塑料中的应用.中国塑料. 2001,15(4):6-9
    77.王宏军.国外粉末导电填料/聚合物导电复合材料近期研究开发的特点.化工进展. 1990,(6):36
    78.陈立军,方宏锋,张欣宇,杨建,李荣先.碳系填充型导电塑料的研究进展.合成树脂及塑料. 2007,24(2):78-81
    79.潘玉珣,于中振,欧玉春,冯宇鹏.尼龙6/石墨纳米导电复合材料的制备与性能.高分子学报. 2001,(1):42-47
    80.何益艳,杜仕国,姜志博.电磁屏蔽导电塑料的研究进展.材料导报. 2003,17(2):49-51
    81.梁琦,严正文,贾润礼.导电纤维在屏蔽塑料中应用的研究进展.塑料制造. 2007,(4):88-92
    82.曾祥云,李家俊,师春生.碳纤维在电磁功能复合材料中的应用.材料导报. 1998,12(2):64-67
    83.杜仕国,高欣宝.电磁屏蔽导电复合材料.兵器材料科学与工程. 1999,22(6):61-67
    84.谭松庭,章明秋,曾汉民.屏蔽EMI用导电性高分子复合材料,材料工程. 1998,(5):6-9
    85.奚正平,周廉,李建.金属纤维的发展现状和应用前景.稀有金属材料与工程. 1998,27(6):317-321
    86.高强.聚丙烯充填黄铜纤维导电性复合材料屏蔽性能的研究.塑料工业. 1999,27(1):30-32
    87.岩井建,毕鸿章.在纤维表面形成金属被覆膜的金属纤维“METAX”.高科技纤维与应用. 1999,24(2):36-38
    88.施冬梅,邓辉,杜仕国.新型电磁屏蔽材料研究动态.化工新型材料. 2001,29(10):20-22
    89. Yoshiki Chujo. Organic-inorganic hybrid materials. Current Opinion in Solid State & Materials Science. 1996,1(6):806-811
    90.杨君友,张同俊,李星国,胡镇华,崔崑.非晶态合金研究进展.材料导报. 1995,(6):31-34
    91.光明译.电磁屏蔽用的非晶态材料.金属功能材料. 1997,(6):280-281
    92.李宏建,彭景翠,陈小华.填充碳纳米管/石墨的复合型电磁波屏蔽膜.化学物理学报. 2001,14:211-215
    93. Gaohui Wu,Xiaoli Huang,Zuoyong Dou,Su Chen,Longtao Jiang. Electromagnetic interfering shielding of aluminum alloy-cenospheres composite. J Mater. Sci.. 2007,42:2633-2636
    94.凤仪,郑海务,朱震刚,陶宁.闭孔泡沫铝的电磁屏蔽效能.中国有色金属学报. 2004,14:33-36
    95.黄福祥,金吉琰,范嗣元,何光辉.发泡金属的电磁屏蔽性能研究.功能材料. 1996,27:147-149
    96.曹立宏,马颖.多孔泡沫金属材料的性能及其应用.甘肃科技. 2006,22(6):117
    97. J. Banhart. Manufacture, Characterization and application of cellular metals and metal foams. Progress in Materials Science. 2001,46:559-632
    98.李保山,牛玉舒,翟秀静.发泡金属的开发、性质及应用(Ⅰ).中国有色金属学报. 1998,8:18-22
    99.郑海务.泡沫铝的熔体发泡法制备及其性能研究.合肥工业大学硕士学位论文.2003:3-5
    100.Fedorchenko J. M.,Pugin V. S.,Kornienko P. A.,Tkalenko D. A.,Voloshina, L. G. Applications of extruded porous materials from sintered nickel powder as fuel cell electrodes. Sov Powder Metall Met Ceram.. 1979,18:174-175
    101.Burns L,Schnuchel G.. US3378635. 1968
    102.何细华,左正忠,扬汉西.电沉积泡沫铜.材料保护. 1996,29(11):12-14
    103.Kelley P.. US Patent. 5266099. 1992.
    104.陈祥,李言祥.金属泡沫材料的研究进展.材料导报. 2003,17:5-9
    105.Y. Yamada,K. Shimojima,Y. Sakaguchi,M. Mabuchi,M. Nakamura. Compressive properties of open-cellular SG91A Al and AZ91 Mg. Materials Science and Engineering A. 1999,272:455–458
    106.Mohamed Shehata Aly. Behavior of closed cell aluminium foams upon compressive testing at elevated temperatures. Materials Letters. 2007,61:3138-3141
    107.E. Andrews,W. Sanders,L.J. Gibson. Compressive and tensile behaviour of aluminum foams. Materials Science and Engineering A. 1999,270:113–124
    108.刘顺华,郭辉进.电磁屏蔽与吸波材料.功能材料与器件学报. 2002,8:213-217
    109.袁岩兴.低频磁屏蔽材料的制备与研究.北京工业大学硕士论文. 2005:22-33
    110.武高辉,黄晓莉,张强.一种磁屏蔽材料及其制造方法.申请号:200710080527.X
    111.陈翔. Fe-Ni梯度合金板的制备与电磁屏蔽性能研究.哈尔滨工业大学本科论文. 2007:21-32
    112.B. Million, J. R??i?ková, J. Velisek and J. Vrestal. Diffusion process in Fe-Ni system. Mater. Sci.Eng.. 1981, 50: 43-52
    113.田民波.磁性材料.清华大学出版社,2001:11-16。
    114.M. P?kala,D. Oleszak,E. Jartych,J.K. ?urawicz. Structural and magnetic study of crystalline Fe80Ni20 alloys with nanometer-sized grains. J. Non-Crystalline Solids. 1999,250-252:757-761
    115.Lorna J. Gibson and Michael F. Ashby.多孔固体结构与性能.刘培生译.清华大学出版社. 2003: 13-37, 160-180, 224-227
    116.Lixin Gong,Stelios Kyriakides,W.-Y.Jang. Compressive response of open-cell foams PartⅠ: Morphology and elastic properties. International Journal of Solids and Structures. 2005,42:1355-1379
    117.Lixin Gong,Stelios Kyriakides. Compressive response of open-cell foams PartⅡ: Morphology and elastic properties. International Journal of Solids and Structures. 2005,42:1381-1399
    118.Lixin Gong,Stelios Kyriakides. On the crushing stress of open cell foams. Journal of Applied Mechanics. 2006,73:807-814
    119.孟文哲.规则孔型泡沫金属的结构设计与制造方法研究.山东理工大学硕士学位论文,2006:28-32
    120.郭占城,刘宇星,刘美凤,卢维昌.电沉积Fe、Ni基合金箔的组织形貌及次性能.中国有色金属学报. 2004,14:273-279
    121.T.B. Massalsky. Binary Alloy Phase Diagrams. ASM International. Ohio, 1990
    122.Chun-Ming Li,Hiroshi Yada,Hiroshi Yamagata. In situ obseration ofγ→αtransformation during hot deformation in an Fe-Ni alloy by an X-ray diffraction method. Scripta Materialia. 1998,39(7):963-967
    123.赵天明.低碳钢无电镀镍热处理之研究.逢甲大学硕士毕业论文.民国92年:1-21,42-90,98-100
    124.Vaidehi Ganesan , V. Seetharaman , V.S. Rachunathan. Interdiffusion in the nickel-iron system. Mater. Letts.. 1984,2(4A):257-262
    125.E. Wals?e De Reca,G. Pampillo. Self-diffusion of Ni in Ni-Fe alloys. Acta Metallurgica. 1987,15:1263-1268
    126.Th.heumann,R. Imm. Self-diffusion and isotope effect inγ-iron. J. Phys. Chem. Solids. 1968,29:1613-1621
    127.Shu Xiaolin,Wang chongyu. Self-diffusion of Fe and diffusion of Ni in Fe calculated wity MAEAM theory. Physica B. 2004,344:413-422
    128.Heather C. Watson,E Bruce Watson. Siderophile trace element diffusion in Fe-Ni alloys. Physics of the Earth and Planetary Interiors. 2003,139:65-75
    129.Yunker ML,Van Orman JA. Interdiffusion of solid iron and nickel at high pressure. Earth and Planetary Science Letters. 2007,254(1-2):203-213
    130.G. O. Mallory,J. B. Hajdu. The fundamental aspects of electroless nickel plating. Electroless Plating: Fundamentals and Applications. AESF, 1990:3
    131.师昌绪,李恒德,周廉.材料科学与工程手册(上卷).化学工业出版社,2004:27-97
    132.Scott M. Oppenheimer,David C. Dunand. Finite element modeling of creep deformation in cellular metals. Acta Mater.. 2007,55:3825-3834
    133.廖明顺.多孔材料力学性能的数值模拟.昆明理工大学硕士学位论文. 2006年:1-22
    134.罗清.有耗蜂窝结构的散射计算.电子科技大学硕士学位论文. 2003:6-18
    135.刘国强,赵凌志,蒋继娅. Ansoft工程电磁场有限元分析.电子工业出版社,2005:1-14
    136.余兴泉,何德坪.泡沫金属机械阻尼性能研究.机械工程材料. 1994,18(2):26-28
    137.韩福生,朱震刚,石纯义,王月.泡沫Al阻尼性能研究.物理学报. 1998,47(7):1161-1169
    138.K.P. Dharmasena,H. N. G. Wadley. Electrical conductivity of open-cell metal foams. J. Mater. Rer.. 2002,17:625-631
    139.刘培国,侯冬云.电磁兼容基础.电子工业出版社,2008:96-115
    140.程丽丽,江玲.黄铜和不锈钢丝网电磁屏蔽效能的研究.电子质量. 2006,9:72-74
    141.彭俊芳.填充磁性颗粒的石墨基复合材料的电磁性能研究.清华大学硕士学位论文. 2003:9-15
    142.罗权,王真智,王真智,古冠南,钟庆明. NR/石墨粉微波屏蔽材料的研究.橡胶工业. 1998,45:348-352
    143.孙晓刚,碳纳米管/聚合物复合吸波材料性能研究,塑料,2004,33:66-69
    144.Premamoy Ghosh, Amit Chakrabarti, Conducting carbon black filled EPDM vulcanizates: assessment of dependence of physical and mechanical properties and conducting character on variation of filler loading, European Polymer Journal, 2000, 36: 1043-1054
    145.H. Rahman, J. D owling, P.K. Sala, Application of frequency sensitive surfaces in electromagnetic shielding, J. Mater. Pro. Tech., 1995,54:21-28
    146.江建军,何红宇,邓联文,何华辉,稀土元素对赐损耗性CoFeZrRE合金微波特性的作用,中国稀土学报,2004,22:627-631
    147.刑丽英,刘俊能.隐身复合材料的研究与发展.航空制造工程. 1995,12:3-8
    148.唐耿平,程海峰,赵建峰,楚增勇,周永江.空心微珠表面改性及其吸波特性.材料工程. 2005,6:11-13
    149.D. G. Rancourt,K. Lagarec,A. Densmore,R. A. Dunlap. Experimental proof ofdistinct electronic structure of a new meteoritic Fe-Ni alloy phase. J. Magn. Magn. Mater.. 1999,191:L255-260
    150.G.H. Wu,Z.Y. Dou,D.L. Sun,L.T. Jiang,B.S. Ding . Compression behaviors of cenosphere-pure aluminum syntactic foams. Scripta Mater.. 2007,56:221-224
    151.T.J. Lu,C. Chen. Thermal transport and fire retardance properties of cellular aluminum alloys. Acta Mater.. 1999,47:1469-1485
    152.A.G. Leach. Thermal conductivity of foams. I. Models for heat conduction. J. Phys. D: Appl. Phys.. 1993,26:733-739
    153.R. Goodall,W. Ludger,M. Andreas. The electrical conductivity of microcellular metals. J. Appl. Phys.. 2006,100:044912-1-7
    154.J. Kovácik. Electrical conductivity of two-phase composite material. Scripta Mater.. 1998,39(2):153-157
    155.D. Nihad,Q.R. Pablo D,C.R. Edmundo,V.R. Miguel,S. Elaine P. One-dimensional heat transfer analysis in open-cell 10-ppi metal foam. Int. J. Heat Mass Transfer.. 2005,48 (25-26):5112-5120
    156.J. Kovácik,F. Simancik. Aluminium foam - modulus of elasticity and electrical conductivity according to percolation theory. Scripta Mater.. 1998,39 (2):239-246
    157.P.S. Liu,K.M. Liang. Evaluating electrical resistivity for high porosity metals. Mater. Sci. Technol.. 2000,16:341-343
    158.P.S. Liu,T.F. Li,C. Fu. Relationship between electrical resistivity and porosity for porous metals. Mater. Sci. Eng.A. 1999,268 (1-2):208–215
    159.P.S. Liu,T.F.Li,C.Fu,M.Lü. Evaluation of electrical resistivity of metal foams. Rare Mater. Eng. 1999,28:260-263
    160.P.S. Liu , H. Chen , K. M. Liang. Relationship between apparent electrical-conductivity and preparation conditions for nickel foam. J. Appl. Electrochem.. 2000,30:1183-1186
    161.刘培生,付超,李铁藩.高孔率金属材料表观电阻率的计算公式.中国科学E. 1999,29(3):193-199
    162.黄培云.粉末冶金原理.冶金工业出版社, 1997:390-392
    163.Yi Feng,Haiwu Zheng,Zhengang Zhu,Fangqiou Zu. The microstructure and electrical conductivity of aluminum alloy foams. Mater.Chem. Phys. 2003,78:196-201
    164.刘顺华,刘军民,董星龙.电磁波屏蔽及吸波材料.化学工业出版社,2007:86-98
    165.H.P. Degischer, B. Kriszt.多孔泡沫金属.左孝青,周芸译.化学工业出版社. 2005:150–270
    166.Wang ZH,Ma HW,Zhao LM,Yang GT. Studies on the dynamic compressive properties of open-cell foams. Scripta Mater.. 2006,54:83-87
    167.窦作勇.空心球/Al多孔材料阻尼与冲击系能行为及其机理研究.哈尔滨工业大学博士学位论文. 2008:96-100
    168.S. Barta. Effective Young's modulus and Poisson's ratio for the particulate composite. J.Appl.Phys.. 1994,75 (7):3258-3263
    169.Jean-Francois Despois , Randoald Mueller , Andreas Mortensen. Uniaxialdeformation of microcellular metals. Acta Mater.. 2006,54 (16):4129-4142
    170.Enis Tuncer,Michael Wegener. Elastic properties of highly anisotropic thin poly(propylene) foams. Materials Letters. 2004,58:2815-2818
    171.B. Vamsi Krishna,Susmita Bose. Strength of open-cell 6101 aluminum foams under free and constrained compression. Mater. Sci. Eng. A. 2007,452-453:178-188
    172.A. Paul,U.Ramamurty. Strain rate sensitivity of a closed-cell aluminum foam. Mate. Sci. Eng. A. 2000,281(1):1-7
    173.X.L. Huang,G.H.Wu,Q. Zhang,Z.Y. Dou,S. Chen. Compressive properties of open-cell Fe–Ni foams. Mater. Sci. Eng. A. 2008,497:231-234
    174.康颖安,张俊彦,谭加才.相对密度对泡沫铝力学性能和能量吸收性能的影响.功能材料. 2006,37:247-254
    175.T.G. Nieh,K. Higashi,J. Wadsworth. Effect of cell morphology on the compressive properties of open-cell aluminum foams. Mater. Sci. Eng. A. 2000,283:105-110
    176.K.Y.G. Mccullough,N.A. Fleck,M.F. Ashiby. Uniaxial stress-strain behaviour of aluminum alloy foams. Acta Mater.. 1999,47:2323-2330
    177.J.R. Li,H.F. Cheng,J.L. Yu,F.S. Han. Effect of dual-size cell mix on the stiffness and strength of open-cell aluminum foams. Mater. Sci. Eng. A. 2003,362 (1-2):240-248
    178.A.E. Markaki,T. W. Clyne. The effect of cell wall microstructure on the deformation and fracture of aluminium-based foams. Acta Mater.. 2001,49:1677-1686
    179.C. Park,S.R. Nutt. Strain rate sensitivity and defects in steel foam. Mater. Sci. Eng. A. 2002,323:358–366
    180.T. Mukai,T. Miyoshi,S. Nakano,H. Somekawa,K. Higashi. Compressive response of a closed-cell aluminum foam at high strain rate. Scripta Mater.. 2006,54:533-537
    181.Y. Feng,,N.Tao,Z.G.Zhu,S.S.Hu,Y. Pan. Effect of aging treatment on the quasi-static and dynamic compressive properties of aluminum alloy foams. Mater. Lett.. 2003,57:4058-4063
    182.D.Ruan,G. Lu,FL.Chen,E.Siores. compressive behaviour of aluminium foams at low and medium strain rates. Composite Structures. 2002,57:331-336
    183.T. Mukai a,T. Miyoshi,S. Nakano,H. Somekawa,K. Higashi. Compressive response of a closed-cell aluminum foam at high strain rate. Scripta Materialia. 2006,54:533-537
    184.C. Motz,R. Pippan. Deformation behaviour of closed-cell aluminum foams in tension. Acta mater.. 2001,49:2463–2470
    185.K.A.Issen,T.P.Casey,K.M. Dixon,M.C. Richards,J.P.Ingraham. Characterization and modeling of localized compaction in aluminum foam. Scripta Mater.. 2005,52:911-915
    186.J.Zhou,W.O.Soboyejo. Compression-compression fatigue of open cell aluminum foams: macro-/micro-mechanisms and the effects of heat treatment. Mater. Sci. Eng. A. 2004,369:23-35

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700