用户名: 密码: 验证码:
反应烧结碳化硅基底致密层制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
应烧结碳化硅是一种综合性能优良的反射镜材料,它由两种硬度不同的材料组成,普通的机械加工方式不能或很难使其表面光洁度达到很高的水平。本研究采用在其表面沉积致密层的方法来提高表面光洁度。
     为降低实验成本,提高研究针对性,在进行致密层沉积之前,首先使用计算机模拟的方法对致密层沉积参数对其性能的影响进行了分析(包括使用蒙特卡罗法模拟致密层的沉积过程、分子动力学方法计算致密层与衬底之间的相互作用能、有限元分析方法分析致密层-衬底系统的应力状态),然后根据模拟分析结果进行了致密层的沉积,并对其性能进行了研究。
     根据沉积过程模拟结果可知,在高温下沉积所得致密层与衬底之间的结合状况及其致密度得以改善。另外,分子动力学的计算结果显示:随着沉积温度的升高,致密层与衬底之间的相互作用能也随之升高。然而,有限元分析结果显示,致密层-衬底系统中热应力随沉积温度升高而升高,且与温度差成正比-这将对系统的稳定性产生不利影响。同时,在对不同温度下制备的致密层进行致密层-衬底的断面进行观察时发现,沉积温度对磁控溅射法制备的硅致密层与衬底之间的结合情况影响并不明显。据此,本研究最终选择硅致密层的沉积温度为200℃,尽可能降低了致密层-衬底系统中的应力水平。
     另外,从沉积过程模拟结果来看,随着衬底表面粗糙度的升高,衬底与致密层之间的结合情况、致密层的致密度变差。因此在沉积致密层之前,需要将衬底表面粗糙度降低到所能达到的最低程度。不同表面粗糙度的衬底上制备的致密层的研究显示:在粗糙衬底表面上制备的致密层具有较高的应力水平,部分致密层在自然放置的条件下便出现自然脱落的现象。根据理论分析结果,在本文中选用在低粗糙度的衬底上制备硅致密层。
     本文还研究了致密层厚度对致密层-衬底系统中应力属性的影响。根据有限元的分析结果可知,随着致密层厚度的增加,致密层中应力水平随之降低,但降低的速率随着厚度的增加而减小。分析结果与文献结果相符。实验结果也表明,在各种测试中,厚度为12μm的致密层都表现出较高的综合性能。
     致密层的结构对其加工后得到的表面粗糙度有一定影响。非晶硅含量越高,所得致密层抛光后表面粗糙度越低。通过分子动力学研究发现,在200℃时沉积的硅致密层具有最高的非晶硅含量,而其他试验温度下制备的硅致密层中非晶硅的含量均低于此值。对致密层表面进行抛光后发现,200℃下制备的硅致密层的表面粗糙度值最低。
     本文还对由电子束物理气相沉积法、离子束增强化学气相沉积法制备的硅致密层和化学气相沉积法制备的碳化硅致密层的性能进行了测试,并与由磁控溅射法制备的硅致密层的性能进行比较。结果发现,在本文所使用的四种方法中,磁控溅射法是制备反应烧结碳化硅致密层最适宜的方法。
The reaction-bonded silicon carbide (RB-SiC) is a kind of mirror material withexcellent comprehensive properties. RB-SiC is composed of two kinds of materi-als with different hardness, and it is hard or impossible to obtain very high surfacesmoothness for normal machining. The deposition of tectum was used to improvethe surface smoothness of RB-SiC in present research. In order to reduce cost andimprove the pertinence of experiments, the computer simulations were used to get theoptimized parameter of deposition. The simulation methods include the Monte Carlofor deposition process, the Molecular dynamics simulation for interaction energy andthe Finite Element Analysis method for simulation of stress state. The deposition ofthe tectum is prepared by magnetron sputtering based on the optimized parameters,and then, the properties of the tectum were studied. It could be known that the adhe-sion of the tectum to substrate and the density of the tectum were all improved whenthe deposition temperature increased. Besides which, the results of molecular dynam-ics simulation indicated that the interactive energy between the tectum and substrateincreased with the increasing deposition temperature. However, the results of FEAshowed that the higher deposition temperature led to higher stress, which is in directproportion with the difference between the deposition and room temperature, in thetectum-substrate system. And the higher stress will do harm to the stability of thetectum-substrate system. At the same time, the effect of the deposition temperatureon the adhesion of the tectum to substrate is weak, as indicated by the morphology ofintercross section. Therefore, the deposition temperature was set as 200℃in orderto reduce the stress in the tectum-substrate system.
     Furthermore, the higher surface roughens of substrate could result in lower adhe-sion of the tectum to substrate and the weaker density of the tectum as indicated by thedeposition simulation of the tectum. Therefore, the surface roughness of the substrateshould be reduced as low as possible before the deposition process. Besides which,the study on the tectum on substrates with different surface roughness shown that thestress level increased with the increasing surface roughness of substrate, and the de-lamination will appear when the specimen were put in air at room temperature. As a result of which, the tectum should be deposited on the substrate with lower surfaceroughness.
     The effects of the tectum thickness on the properties, such as the value and dis-tribution, of the stress in the tectum-substrate system were studied. As indicted bythe FEA results, the stress in the tectum decreased at a rate slowing down with theincreasing tectum thickness. And the conclusion agrees well with the results providedby literatures, and the results of our experiments shown that the tectum with thicknessequal to 12μm had a excellent comprehensive properties.
     The crystal structure could affect the surface roughness of polished tectum, andthe surface roughness of tectum prepared at 200 ?C could reach a higher level if thecontent of a-Si is higher. It could be found that content of a-Si is the highest amongthe specimen prepared at different temperature. The surface roughness of the polishedtectum prepared at 200?C was the lowest among that prepared at other temperatures.
     The properties of the silicon tectum prepared by electron beam physical vapordeposition, plasma enhanced chemical vapor deposition and the silicon carbide tectumprepared by chemical vapor deposition were studied. And the comparison betweenthose methods and magnetron sputtering has been made, and the result of comparisonindicated that the magnetron sputtering is most suitable method among four methods.
引文
1佚名.侦察卫星. http://www.hudong.com/wiki/
    2 T. W. Hobbs, M. J. Edwards, R. R. VanBrocklin. Cornings Fabrication Tech-niques for ULE and Fused Silica Lightweight Mirrors. SPIE. 2003, 5179:1–11
    3 W. C. Lewis. Space Telescope Mirror Substrate. SPIE. 1979, 183:114–117
    4 R. R. VanBrocklin, M. J. Edwards, T. W. Hobbs. Corning Lightweight CoreFabrication Technologies. SPIE. 2003, 5197:323–329
    5 M. J. Edwards. Total Quality Manufacturing: The Success of Corning’s 8-meterMirrorblank Programs. SPIE. 1998, 3352:182–193
    6 R. E. Hardesty, T. A. Decker. The Design and Producibility of Precision Beryl-lium Structures for Spacecraft Applications. SPIE. 1995, 2543:104–126
    7 W. Caithness. Some Fundamentals of Metal Optics. SPIE. 1975, 65:8–11
    8 M. T. Jacoby, E. E. M. IV, A. J. Fortini, et al. Design, Fabrication, and Testingof Light Weight Silicon Mirrors. SPIE. 1999, 3786:460–467
    9 A. J. Fortini. Open-cell Silicon Foam for Ultralightweight Mirrors. SPIE. 1999,3786:440–446
    10 T. B. Parsonage. Selecting Mirror Materials for High-performance Optical Sys-tem. SPIE. 2005, 1335:119–126
    11 R. A. Paquin. Materials for Mirror Systems: An Overview. SPIE. 1995, 2543:2–
    1112 X. Jiang, D. G. Laurin, D. Levesque, et al. Design and Fabrication of aLightweight Laser Scanning Mirror from Metal-Matrix Composites. SPIE.2001, 4444:1–8
    13 D. Vukobratovich, T. M. Valente, G. Ma. Design and Construction of a MetalMatrix Composite Ultra-lightweight Optical System. SPIE. 1995, 2542:51–59
    14 W. Kowbel, W. Champion, J. C. Withers. Ultralightweight C-SiC CompositeMirrors. SPIE. 2001, 4444:51–59
    15 M. B. Magida, R. A. Paquin, J. J. Richmond. Dimensional Stability of Bare andCoated Reaction Bonded Silicon Carbide. SPIE Dimensional Stability. 1990,1335:60–68
    16 J. Robichaud, J. J. Guregian, M. Schwalm. SiC Optics for Earth ObservingApplications. SPIE. 2003, 5151:53–62
    17 R. A. Paguin. Materials for Mirror Systems: An Overview. SPIE. 1995,2543:2–11
    18 M. A. Ealey. Fully Active Telescope. SPIE. 2004, 5166:19–26
    19 L. R. Joseph, J. J. Guregian, M. Schwalm. SiC Optics for Earth ObservingApplications. SPIE. 2003, 5151:53–62
    20 M. T. Jacoby, E. E. M. IV, A. J. Fortini, et al. Design, Fabrication and Testingof Lightweight Silicon Mirrors. SPIE. 1999, 3786:460–467
    21 S. Robert, Breidenthal, R. Galat-Skey, et al. Optical Surfacing of One-meter-class Reaction Bonded Silicon Carbide. SPIE. 1995, 2543:248–253
    22 D. B. Leviton, T. T. Saha, L. D. Gardner. Far-ultraviolet and Visible LightScatter Measurements for CVD SiC Mirrors for SOHO. SPIE. 1998, 3443:19–3023 G. T. Petrovsky, M. N. Tolstoy, S. V. Ljubarsky, et al. A 2.7-meter-diameter Sil-icon Carbide Primary Mirror for the SOFIA Telescope. SPIE. 1994, 2199:263–27024 P. N. Robb, L. W. Huff, P. B. Forney. Interferometric Measurements of SiliconCarbide Mirrors at Liquid Helium Temperature. SPIE. 1995, 2543:196–200
    25 P. N. Robb, R. R. Charpentier. Three-mirror Anastigmatic Telescope with a60-cm Aperture Diameter and Mirrors Made of Silicon Carbide. SPIE. 1995,2543:185–189
    26 M. Fruit, P. Antoine, J. Varin. Development of the SOFIA Silicon CarbideSecondary Mirror. SPIE. 2003, 4857:247–285
    27 S. Sato, A. lijima andS.Takeda, M. Yanagihara, et al. SiC Mirror Develop-ment at the Photon Factory (invited). Review of Scientific Instruments. 1989,60(7):1479–1485
    28 H. Maezawa, S. Sato, A. Lijima. Experimental Evaluation of Thermal Deforma-tion Effects of SiC Mirror Surfaces Irradiated by Undulator Radiation. Reviewof Scientific Instruments. 1989, 60(7-IIA):1979–1982
    29 H. Murakami. Japanese Infrared Survey Mission IRIS (ASTRO-F). SPIE. 1998,3356:471–477
    30 H. Kaneda, T. Onaka, R. Yamashiro, et al. Optical Performance of the ASTRO-F Telescope at Cryogenic Temperatures. SPIE. 2003, 4850:230–240
    31 E. Gomez, J. Echeberria, Iturriza, et al. Liquid Phase Sintering of SiC withAdditions of Y2O3, Al2O3 and SiO2. Journal of the American Ceramics Society.1992, 75:2586
    32 D. Jiang, J. She, S. Tan. Strengthening of Silicon Carbide Ceramics by SurfaceNitridation During Hot Isostatic Pressing. Journal of the American CeramicsSociety. 1992, 75:2586
    33 M. H. Chen, L. Cao, J. H. Zhou, et al. Application of Reaction Sintering to theManufacturing of a Spacecraft Combustion Chamber of SiC Ceramics. Journalof Materilas Processing Technology. 2002, 129:408–411
    34 Y. Zhang, J. Zhang, J. Han, et al. Large-scale Fabrication of Lightweight Si/SiCCeramic Composite Optical Mirror. Materials Letters. 2004, 58:1204–1208
    35 Y. Ma, Q. Ma, J. Suo, et al. Low-temperature Fabrication and Characterizationof Porous SiC Ceramics Usin Siliocne Resin as Binder. Ceramics International.2008, 34:253–255
    36 S. Liu, Y. Zeng, D. Jiang. Fabrication and Characterization of Cordierite-bonded Porous SiC Ceramic. Ceramics International. 2008:doi :10.1016/j.ceramint.2008.01.025
    37张颖,吕广宏,邓胜华,等. Al晶界的第一性原理拉伸试验.物理学报.2006, 55(6):2901–2908
    38侯永改,张书森.影响低温烧成碳化硅磨具硬度因素的探讨.郑州工业高等专科学校学报. 2001, 17(2):14–16
    39黎明,温诗铸,孟永钢.硅的微观硬度测试研究.机械科学与技术. 2001,20(6):886–887,896
    40邓朝晖,张璧,孙宗禹.陶瓷磨削材料去除机理的研究进展.中国机械工程. 2002, 2(128):47–50
    41张剑寒.空间用碳化硅反射镜反应烧结工艺与机理的研究.哈尔滨工业大学博士学位论文. 2007:67–71
    42 P. J. Kelly, R. D. Arnell, W. Ahmed, et al. Novel Engineering Coatings Pro-duced by Closed-field Unbalanced Magnetron Sputtering. Materials and De-sign. 1997, 17(4):215–219
    43 I. V. Svadkovski, D. A. Golosov, S. M. Zavatskiy. Characterisation Parametersfor Unbalanced Magnetron Sputtering Systems. Vacuum. 2003, 68:283–290
    44孟广耀.化学气相淀积与无机新材料.科学出版社, 1984
    45郭洪波,徐惠彬,宫声凯,等.表面强化对EB-PVD热障涂层的高温氧化性能及结合强度的影响.稀有金属材料与工程. 2001, 30(4):315–318
    46刘福顺,宫声凯,徐惠彬.大功率EB-PVD陶瓷热障涂层的研究与应用.航空学报. 2000, 21(增刊):30–34
    47郭洪波,徐惠彬,宫声凯,等.基板温度对EB-PVD梯度热障涂层的微观结构和性能的影响.金属学报. 2001, 37(9):997–1001
    48 A. Peichl, T. Beck, O. Vohringer. Behaviour of an EB-PVD Thermal BarrierCoating System under Thermal-mechanical Fatigue Loading. Surface and Coat-ings Technology. 2003, 162:113–118
    49 J. S. Bernier, G. Levan, M. Maniruzzaman, et al. Crystallographic Texture ofEB-PVD TBCs Deposited on Stationary Flat Surfaces in a Multiple Ingot Coat-ing Chamber as a Function of Chamber Position. Surface and Coatings Tech-nology. 2003, 163-164:95–99
    50 M. Movchan, Y. Rudoy. Gradient Protective Coatings of Different ApplicationProduced by EB-PVD. Surface and Coatings Technology. 1998, 100-101:309–31551 B. A. Movchan, K. Yakovchuk. Graded Thermal Barrier Coatings, Depositedby EB-PVD. Surface and Coating Technology. 2004, 188-189:85–92
    52 B. Movchan, G. S. Marinski. Gradient Protective Coatings of Different Appli-cation Produced by EB-PVD. Surface and Coatings Technology. 1998, 100-101:309–315
    53徐惠彬,宫声凯,陶冶,等.电子束物理气相沉积热障涂层的研究.航空制造工程. 1995, (11):23–25
    54赫晓东,关春龙,李垚,等. EB-PVD制备的Ni-Cr-Al-Y高温合金箔力学性能.中国有色金属学报. 2004, 14(S1):255–258
    55 J. Cho, S. G. Terry, R. Lesar, et al. A Kinetic Monte Carlo Simulation of FilmGrowth by Physical Vapor Deposition on Rotating Substrates. Materials Sci-ence and Engineering. 2005, A 391:390–401
    56 U. Schulz, S. G. Terry, C. G. Levi. Microstructure and Texture of EB-PVDTBCs Grown under Different Rotation Modes. Materials Science and Engi-neering. 2003, A360:319–329
    57 M. Yoshiya, K. Wada, B. K. Jang, et al. Computer Simulation of Nano-poreFormation in EB-PVD Thermal Barrier Coatings. Surface and Coatings Tech-nology. 2004, 187:399–407
    58关春龙,李垚,赫晓东.电子束物理气相沉积技术及其应用现状.航空制备技术. 2003, (11):35–37
    59宗婉华,马振昌,王立侠.磁控溅射二氧化硅薄膜的制备工艺.半导体情报. 1994, 31(6):314–317
    60 Y. Zhang, Y. Zhou, J. Han, et al. Preparation of Silicon Coating on Sic Mirrorby EB-PVD. SPIE. 2006, 6149:6149C–1–6149C–5
    61周玉锋,张宇民,韩杰才.硅膜制备.材料导报. 2005, 19(12):84–86
    62 Anonymous. author. http://bk.baidu.com/view/1301516.htm
    63 H. Duan, X. Chen, W. L. Y. Huang. First-principles Study of Arsenic Impu-rity Clusters in Molecular Beam Epitaxy (mbe) Grown HgCdTe. Solid StateCommunications. 2007, 143:471–475
    64 M. D. Johnson, C. Orme, A. W. Hunt, et al. Stable and Unstable Growth inMolecular Beam Epitaxy. Phys. Rev. Lett. 1994, 72(1):116–119
    65 K. J. Weber, A. W. Blakers, K. R. Catchpole. The Epilift Technique for Si Solar.Applied Physics. 1999, 69:195–199
    66 K. J. Weber, A. W. Blakers. Prevention of Oxide Formation Dur-ing Liquid Phase Epitaxy of Silicon. Applied Physics Letters. 1995,1243:DOI:10.1063/1.113250
    67 K. J. Weber, K. Catchpole, A. W. Blakers. Epitaxial Lateral Overgrowth of Sion (100) Si Substrate. Journal of Crystal Growth. 1998, 186:369–374
    68梁宗存,沈辉,许宁生.晶体硅薄膜电池制备技术及研究现状.材料科学与工程. 2003, 21(4):577–581
    69黄创君,林璇英,余云鹏,等. SiCl4-H2为气源低温制备多晶硅薄膜.功能材料. 2002, 33(6):650–652
    70 A. H. Mahan, Y. Xu, D. L. Williamson, et al. Structure Properties of Hot Wirea?Si:H Films Deposited at Rates in Excess of 100 A?/S. J. Appl. Phys. 2001,90(10):5038–5047
    71 A. H. Mahan, J. Carapella, B. P. Nelson, et al. Deposition of Device Quality,Low H Content Amorphous Silicon. J. Appl. Phys. 1991, 69(9):6728–6730
    72 C. E. Richardson, M. S. Mason, H. A. Atwater. Hot-wire CVD-grown EpitaxialSi Films on Si (100) Substrates and a Model of Epitaxial Breakdown. ThinSolid films. 2005, 1-2:doi:10.1016/j.tsf.2005.07.213
    73 A. H. Mahan. Solar Cell Reserach and Development Using the Hot Wire CVDProcess. Solar Energy. 2004, 77:931–938
    74李建国,刘实,李依依,等.热丝法气相沉积金刚石薄膜的影响因素.金刚石与磨料磨具工程. 2004, (总139,第1期):41–44
    75刘丰珍,朱美芳,冯勇,等.等离子体-热丝CVD技术制备多晶硅薄膜.半导体学报. 2003, 24(5):499–503
    76彭英才.光化学气相沉积薄膜的生长机理及其研究进展.真空科学与技术. 1994, 14(4):294–298
    77曾晓燕,吴懿平.表面工程学.北京:机械工业出版社, 2001
    78吴自勤,王兵著.薄膜生长.北京:科学出版社, 2001:47–48
    79顾培夫著.薄膜技术.杭州:浙江大学出版社, 1991:11
    80吴锋民,施建青,吴自勤.高温下金属薄膜生长初期的模拟研究.物理学报. 2001, 50(8):1555
    81杨宁.薄膜生长的理论模型和蒙特卡罗模拟.北京:北京工业大学出版社, 2000
    82宋殿友.薄膜生长的Monte Carlo二维模拟.河北工业大学硕士学位论文.2006:44
    83 R. G. Wellman, J. R. Nicholls. A Monte Carlo Model for Predicting the ErosionRate of EB-PVD TBCs. Wear. 2004, 256:889–899
    84 Anonymous. author. http://www.mypmo.net/PMACTION/PMIT/IT02/200706/20070629070349.html
    85刘祖黎,张雪锋,姚凯伦,等.溅射沉积Cu膜生长的Monte Carlo模拟.真空科学与技术学报. 2005, 25(2):83–88
    86叶健松,胡晓君.超薄膜外延生长的Monte Carlo模拟. ACTA PHYSICASINICA. 2002, 51(5):1108–1112
    87张佩峰,郑小平,贺德衍.薄膜生长过程的Monte Carlo模拟.中国科学(G辑). 2003, 33(4):340–347
    88 D. Diao, A. Kandori. Finite Element Analysis of the Effect of Interfacial Rough-ness and Adhesion Strength on the Local Delamination of Hard Coating underSliding Contact. Tribology International. 2006, 39:849–855
    89 M. J. fagan, S. J. Park, L. Wang. Finite Element Analysis of the Contact Stressesin Diamond Coatings Subjected to a Uniform Normal Load. Diamond andRelated Materials. 2000, 9:26–36
    90 H. W. Ng, Z. Gan. A Finite Element Analysis Technique for Predicting As-sprayed Residual Stresses Generated by the Plasma Spray Coating Process. Fi-nite Elements in Analysis and Design. 2005, 41:1235–1254
    91 C. Y. Chung, Y. C. Chung. Molecular Dynamics Simulation of Nano-scale Fe-Al Thin Film Growth. Materials Letters. 2006, 60:1063–1067
    92 H. Chen, A. K. Tieu, Q. Liu, et al. Molecular Dynamics Simulation aboutPorous Thin-film Growth in Secondary Deposition. Applied Surface Science.2007, 253:7471–7477
    93和庆娣,周兰英.薄膜成核过程的分子动力学模拟.机械. 2005, 32(增刊):18–20
    94刘娟芳,曾丹苓,刘朝,等.分数布朗函数在分子动力学模拟中的应用.工程热物理学报. 2004, 25(2):205–207
    95孙贺明,白照印,宋海洋,等. Cu表面生长Ag薄膜过程的分子动力学模拟.北京理工大学学报. 2005, 25(9):831–834
    96汤伟,朱定一, L. Seung-Hyeob. SiC陶瓷材料分子动力学模拟概述.山东陶瓷. 2003, 26(6):11–13
    97 S. J. Kim, M. H. Cho, J. HyukYoon, et al. Molecular Dynamics Simulationof Strain Relaxation in Cu Thin Films on Ni(001). Scripta Materialia. 2005,52:1105–1109
    98 N. Fenineche, M. Cherigui, H. Feraoun, et al. FeNb and FeSi Thermal SprayingCoatings: Microstructure and First Principle Calculations. Materials Scienceand Engineering. 2004, B107:27–32
    99刘慧英,蔡娜丽,朱梓忠.基于第一原理的Li嵌入路径的计算机模拟.吉林大学学报(信息科学版). 2005, 23(6):664–669
    100 Z. H. Zhu, X. H. Yan, Z. H. Guo, et al. First-principles Study ofMgB2 Film on the MgO (111) Polar Surface. Physics Letters A.2007:doi:10.1016/j.physleta.2007.10.040
    101 H. Weiss. Adhesion of Advanced Overlay Coatings: Coatings Mechanisms andQuantitative Assessment. Surface and Coatings Technology. 1995, 71:201–207
    102华敏奇,袁振海.划痕试验法对特殊薄膜系结合力的检测与评价.分析测试技术与仪器. 2002, 8(4):218–225
    103 K. L. Mittal. Adhension Measurement of Films and Coatings. IEEE Interna-tional Workshop on Intelligent Motion Control. Istenbul, 1990
    104 P. Richard, J. Thomas, D. Landolt, et al. Combination of Scrathc-test andAcoustic Microscopy Imaging for the Study of Coating Adhesion. Surface andCoatings Technology. 1997, 91(1-2):83–90
    105 M. B. Tkaya, M. Zidi, S. Mezlini, et al. In?uence of the Attack Angle on theScratch Testing of an Aluminium Alloy by Cones: Experimental and Numneri-cal Studies. Materials and Design. 2008, 29(1):98–104
    106 S. Park, H. Park, K. Yoo, et al. Scratch Test for Immobilization of PhotocatalyticZnO Nanopowders Synthesized by Solution Combustion Method. Journal ofPhysics and Chemistry of Solid(2007):doi:10:1016/j.jpcs.2007.10.133
    107 F. Attar, T. Johannesson. Adhesion Evaluation of Thin Ceramic Coatings onTools Steel Using the Scractch Testing Technique. Surface and Coatings Tech-nology. 1996, 78:87–102
    108 Q. H. Fan, A. Fernandes, E. Pereira, et al. Evaluation of Adherence of DiamondCoating by Indentation Method. Vacuum. 1999, 52:163–167
    109 C. de Oliveira Modesto, A. M. Bernardin. Determination of Clay Plasticity:Indentation Method Versus Pfefferkorn Method. Applied Catalysis Science.doi:10.1016/j.clay.2007.07.007
    110 A. O. Olofinjana, J. M. Bell, A. K. Jamting. Evaluation of the MechanicalProperties of Sol-Gel-deposited Titania Films Using Ultra-micro-indentationMethod. Wear. 2000, 241:174–179
    111 H. Zhang, D. Y. Li. Determination of Interfacial Bonding Strength Using aCantilever Bending Method with in Situ Monitoring Acoustic Emission. Sur-face and Coatings Technology. 2002, 155:190–194
    112 F. Podczeck. The Determination of Fracture Mechanics Properties of Pharma-ceutical Materials in Mode III Loading Using an Anti-clastic Plate BendingMethod. International Journal of Pharmaceutics. 2001, 227:39–46
    113 P. Navabpour, D. G. Teer, D. J. Hitt, et al. Evaluation of Non-stick Properties ofMagnetron-sputtered Coatings for Moulds Used for the Processing of Polymers.Surface and Coatings Technology. 2006, 201:3802–3809
    114 T. M. On the Work of Adhesion of Film-substrate Solid Junctions. Thin solidfilms. 1991, 202:227–234
    115冯爱新,张永康,谢华琨,等.划痕试验法表征薄膜涂层界面结合强度.江苏大学学报(自然科学版). 2003, 24(2):15–19
    116 T. D. J. Burnet, D. S. Rickerby. The Relationship between Hardness and ScratchAdhesion. Thin solid films. 1987, 154(1-2):403–416
    117 C. S. Whitman, Y. Chung. Thermomechanically Induced Voilding of Al-CuThin Films. Journal of Vacuum Science and Technology. 1991, 9(4):2516–2522
    118 K. J. Cheng, S. Y. Cheng. Analysis and Computation of the Internal Stress inThin Films. Progress in Natural Science. 1998, 8(6):679–689
    119王若楠,刘继峰. C+离子注入对CoSi2薄膜应力的研究.自然科学进展.2002, 12(12):1296–1300
    120 B. Liang, C. Ding. Thermal Shock Resistances of Nanostructured and Conven-tional Zirconia Coatings Deposited by Atmospheric Plasma Spraying. Surfaceand Coating Technology. 2005, 197:185–192
    121 O. Sbaizero, G. Pezzotti. In?uence of Molybdenum Particles on Thermal ShockResistance of Alumina Matrix Ceramics. Materials Science and Engineering.2003, A343:273–281
    122朱贤方, J. S. Williams, L. C. Lim, et al.物理气相淀积薄膜的微结构与内应力.物理. 1998, 127(1):37–40
    123田民波,刘德令.薄膜科学与技术手册.北京:机械工业出版社, 1991:143–157124 V. Teixeira. Mechanical Integrity in PVD Coatings Due to the Presence ofResidual Stresses. Thin Solid Films. 2001, 392:276–281
    125毛起广.表面粗糙度的评定和测量.机械工业出版社
    126太原工业大学.教学课件. http://http://210.31.100.100/gclx/kejian/cllx/ch10.ppt
    127朴树寰,王德夫,韩学铨.机械设计手册(第1卷)机械制图、公差配合与表面粗糙度.北京:机械工业出版社, 2004:2–112
    128 ANSYS Help. 2-D Quadrilateral Structural Solid P-element, PLANE145 Ele-ment Description
    129申雁鸣,贺洪波,邵淑英,等.薄膜厚度对HfO2薄膜残余应力的影响.稀有金属与工程. 2007, 36(3):412–415
    130孙兆奇,吕建国,何玉平,等.射频磁控溅射的不同厚度MgF2薄膜的微结构和应力特征.硅酸盐学报. 2004, 32(6):700–703
    131 V. Chawla, R. Jayaganthan, R. Chandra. Finite Element Analysis of ThermalStress in Magnetron Sputtered Ti Coating. Journal of Materials ProcessingTechnology (2007). doi:10.1016/j.jmatprotec.2007.09.036
    132 W. Q. Wang, C. K. Sha, D. Q. Sun, et al. Microstructural Feature, ThermalShock Resistance and Isothermal Oxidation Resistance of Nanostructured Zir-conia Coating. Materials Science and Engineering. 2006, A 242:1–5
    133 Material Studio Online Help. Tutorials/discover Tutorials/polymer Interactionswith a Metal Oxide Surface/running Molecular Dynamics
    134仇健,于骏一,马文生,等.用飞切法加工光学晶体平面镜.机械工程学报.2000, 36(3):73–77
    135 A. Gajovic, D. Gracin, I. Djerdj, et al. Nanostructure of Thin Silicon Filmsby Combining HRTEM, XRD and Raman Spectroscopy Measurements and theImplication to the Optical Properties. Applied Surface Science. 2007, Appl.Surf. Sci. (2007), doi:10.1016/j.apsusc.2007.10.014
    136阴晓俊,费书国,章月州,等.有限元法计算膜厚均匀性.光学仪器. 2001,23(5-6):6–11
    137 J. Malzbender, J. M. J. den Toonder, A. R. Balkenende, et al. Measuring Me-chanical Properties of Coatings: A Methodology Applied to Nano-particle-filled sol-gel Coatings on Glass. Materials Science and Engineering. 2002,R:36(2-3):47–103
    138于峰,史立秋,王涛.单晶硅的纳米硬度测试分析.金属热处理. 2005,30(8):88–91
    139 O. Zywitzki, G. Hoetzsch. In?uence of Coating Parameters on the Structure andProperties of al2o3 Layers Reactively Deposited by Means of Pulsed MagnetronSputtering. Surface and Coatings Technology. 1996, 86-87:640–647

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700