用户名: 密码: 验证码:
两种难加工材料的切削试验研究及其工艺参数优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文在低碳经济战略思想指导下,针对我国高端装备制造业常用的塑性难切削加工材料奥氏体不锈钢(022Cr19Ni10)和钛合金(Ti6A14V),切削加工中的切削状态、表面完整性、环保节能、高效切削加工等问题进行了深入的试验研究。针对两种被切削材料分别在干式、环保型湿式、低温冷风微油雾三种清洁切削加工条件下的各种切削参数进行了对比切削试验研究和参数优化,获得了控制切削加工状态、零件表面完整性和切削精度保证的基本方法,以利于指导生产。本文开展了以下研究工作:
     (1)用均匀设计法设计切削试验方案,引入伪变量A表达冷却降温切削条件,实现含定性因素混合水平切削试验,提升了因素水平数和因素取值范围,减少了切削试验次数,降低了试验成本,建立的各因变量回归模型的回归效果非常显著,并且BP神经网络各因变量模型训练结果的总误差很小,使低成本全面清洁切削试验变为可行。
     (2)针对奥氏体不锈钢切削和钛合金切削,分别建立了对应两种不同材料的二次回归切削力模型、表面粗糙度模型、刀具前刀面温度模型和已切削加工面残余应力模型,同时还建立了BP神经网络6-7-5-1结构的表面粗糙度模型、切削温度模型,以及BP神经网络6-7-1结构的切削温度模型和已切削加工面表面残余应力模型。并分析了各自变量及自变量交互作用对切削力、表面粗糙度、切削温度和表面残余应力的影响。
     (3)针对奥氏体不锈钢切削,建立了刀具寿命SCL、S二次回归模型,和刀具寿命SCL、S的BP神经网络6-7-1模型,并进行了各自变量及自变量交互作用对刀具寿命SCL、S的影响分析;同时建立了切削参数多目标优化模型并进行了验证。
     本论文基于两种难切削加工材料、三种清洁冷却降温切削条件,在试验设计、因变量模型建立、切削参数多目标优化模型建立、因变量影响因素分析等方面进行了积极的探索,解决了清洁切削加工推广应用进程中出现的一系列问题,尤其为低成本实现含定性因素混合水平切削试验研究探索了一种新的思路,丰富和完善了切削试验研究方法手段。
Under the guidence of Low-Carbon Economic Strategy(LCES) thought, aimed at the problems of energy-saving, environmental protection and high efficiency cutting for hard-to-cut martieral,022Cr19Ni10Austenitic stainless steel (ASS) and Ti6A14V Titanium alloy (TA), which are common used in high level equipment manufacture in our country, a lot of experiment researches are carried out. Comparison tests are done for the two materials in three cooling conditions of dry, clean liquid and low temperature wind with fine oil and the cutting parameters obtained are optimazed. The optimatic cutting parameters, which are useful for instructing manufacture, are obtained.
     Main works in this thesis as following:
     (1) Cutting experimental scheme is designed by uniform design method and a pseudo-variable A is introduced to express cooling cutting conditions, and then mix horizontal cutting experiments including qualitative factors is carry out, the provided factor horizontal number and the factors range, therefore, are promoted, the number and the cost of cutting experiments are reduced. By means of this scheme, the regression effect of the dependent variable regression models built is very significant and the result differences of the variable model training in BP neural network are very fine, therefore it makes that posible to carry low-cost clean cutting experiment.
     (2) Aimed at the cutting process of ASS and TA, cutting force model, workpiece surface roughness model, cutting temperature pattern model and workpiece surface residual stress model of quadratic regression for the two materials are built up. At the meantime, workpiece surface roughness model and cutting temperature pattern model of BP neural network's6-7-5-1structure as well as cutting temperature pattern model, workpiece surface residual stress model of6-7-1structure for the two materials are also built up. And the then, effects on the cutting force, workpiece surface roughness, cutting temperature and workpiece surface residual stress due to the respective variables and the independent variable interaction are analyzed respectively.
     (3) SCL^S tool life models of quadratic regression and BP neural network's6-7-1for the ASS cutting are built respectively, and effects on the tool life SCL, S due to respective variables and the independent variable interaction are analyzed. Meanwhile, a Multi-objective Integrated Optimization model of cutting parameter is built and the model is tested and verified.
     Aimed at two type of hard-to-cut materials in three clean cooling cutting conditions, the active researches for the experimental design, the modeling dependent variable, modeling cutting parameter multi-objective optimization and the dependent variable factor analysis etc are carried in this thesis. A series of problems which appeared in the clean cutting promotion and application process, therefor, as solved based on the researches, and also a new approach for carrying out mix horizontal cutting experiments including qualitative factors at low cost are explored, the research ways are enriched and cutting tests means are completed.
引文
[1]黄长江,董巧香,林俊达.全球温暖化与海平面上升[J].自然杂志:2000,22(4):225-232.
    [2]施华宏,黄长江.全球温暖化对淡水生态系统的影响及适应对策[J].生态科学:1999,18(4):59-63.
    [3]储开宇,范孝良.21世纪绿色制造的生产模式及发展趋势[J].煤矿机械:2002(11):1-2.
    [4]国家环境保护局编.企业清洁生产审计手册[Z].中国环境科学出版社.1996.12.
    [5]张根保,江永超,向东编著.清洁化生产的原理与方法--绿色设计与制造[M].四川科学技术出版社.2001.4.
    [6]陈冠周编著.机械工业污染与防护[M].航空工业出版社.1988.8.
    [7]史捍明主编.企业清洁生产实施指南[S].化学工业出版社.1997.9.
    [8]刘飞,徐宗俊,但斌,昝昕武著.机械加工系统能量特性及其应用[M].机械工业出版社.1995.12.
    [9]Howes T.D.etal.Environmental Aspects of Grinding Fluids[J].Annals of the CIRP.1991.44 (2)
    [10]A.atmadi,D.A.Stephenson and S.Y.Liang.Cutting Fluid Aerosol from Splash in Turning:Analysis for Environmentally Conscious Machining[J].The International Journal of Advanced Manufacturing Technology 2001:238-243.
    [11]Kenneth L,John W.Sutherland*.An experimental investigation into the effect of process conditions on the mass concentration of cutting fluid mist in turning[J] Journal of Cleaner production 1999:341-350.
    [12]刘光复,刘志峰编著.绿色制造[M].中国科学文化出版社.2002.8.
    [13]陈德成,铃木康夫,酒井克彦.复合喷雾加工法在切削过程中的冷却和润滑效果[J].中国机械工程.2000.11(9).
    [14]陈建岭.钛合金高速铣削加工机理及铣削参数优化研究[D].山东大学.2009.
    [15]牟涛.高速铣削钛合金Ti6A14V的刀具磨损研究.[D].山东大学.2009.
    [16]Bruni C, Forcellese A, Gabrielli F, et al. Effect of the lubrication-cooling technique,insert technology and machine bed material on the workpart surface finish and tool wear in finish turning of AISI 420B [J].International Journal of Machine Tools and Manufacture.2006,46(12-13):1547-1554.
    [17]Kamata Y, Obikawa T. High speed MQL finish-turning of Inconel 718 with different coated tools [J].Journal of Materiais Processing Technology.2007,192-193:281-286.
    [18]Seah K H W, Li X, Lee K S. The effect of applying coolant on tool wear in metal machining [J] Journal of Materials Processing Technology.1995,48(1-4):495-501.
    [19]Khrais S K, Lin Y J.Wear mechanisms and tool performance of TiAIN PVD coated inserts during machining of AISI 4140 steel [J]. Wear.2007,262(1-2):64-69.
    [20]Nandy A K, Gowrishankar M C, Paul S. Some studies on high-pressure cooling in turning of Ti-6A1-4V [J]. International Journal of Machine Tools and Manufacture. 2009 49(2):182-198.
    [21]Vosough M. Effect of High-Pressure on the Residual Stress in Ti-Alloys during Machining [D]. Lulea University of Technology,2005.
    [22]刘菊东.干切削机床的结构特点[J].江苏机械制造与自动化.2001(4):106-109.
    [23]S. Tumis, K.Weinert.绿色制造中的干切削技术[J].航空制造技术.2007,4:32-35.
    [24]叶伟昌.干切削刀具及其应用[J].机械工程师.2000.6:23-25.
    [25]胡景姝,王宇,盆洪民等.干式和准干式切削技术及其刀具材料[J].机械工程师.2006,2:76-77.
    [26]李志英,罗勇,张伯霖等.干切削及其对刀具的要求[J].机械传动.2000.1:25-29.
    [27]张培耘,华希俊,王贵成等.基于绿色制造的清洁机械加工技术研究与发展[J].江苏理工大学学报(自然科学版).2001,22(1):49-53.
    [28]王晓琴,艾兴,赵军等.涂层刀具铣削Ti6 A14 V刀具寿命及切削参数优化[J].武汉理工大学学报.2008,30(10):109-112.
    [29]李登万,陈洪涛,许明恒等.基于均匀设计法的钛合金清洁加工试验研究[J].中国机械工程.2011,22(1):15-18.
    [30]李登万,陈洪涛,黄隧等.不同冷却条件下钛合金材料的车削性能研究[J].工具技术.2010,44(3):19-21.
    [31]李登万,陈洪涛,许明恒等.钛合金车削加工表面粗糙度试验研究[J].制造业自动化.2010,32(5):6-7.
    [32]李登万,陈洪涛,甘建水等.钛合金加工切削力试验研究[J].广西大学学报(自然科学版).2010,35(5):733-737.
    [33]李登万, 陈洪涛,甘建水等.钛合金冷风加工切削力试验研究[J].制造技术与机床.2010,9:88-91.
    [34]李登万,陈洪涛,司徒渝等.钛合金冷风切削表面粗糙度试验研究[J].现代制造工程.2010,9:12-15.
    [35]LI Dengwan-wan,CHEN Hong-tao XU Ming-heng, et al.Study on Multi-objective Cutting Parameters Optimization of Tianium Alloy[J].Plant Engineering and Management.2010.15(4):242-246.
    [36]Dengwan Li, Hongtao Chen, Mingheng Xu, et al. Study on Cutting Parameters Optimization Based on Uniform Design Method [C]. Applied Mechanics and Materials Vols.26-28(2010) pp 764-769.
    [37]Dengwan Li, Hongtao Chen,Mingheng Xu, et al. Study on Turning Parameter Optimization of Austenitic Stainless Steel[C]. Advanced Materials Research Vols.34-35(2010) pp 1829-1833.
    [38]张希康.不用切削油的干态高速滚齿[J].机械传动.1999,1.
    [39]刘志峰.干式螺纹加工工艺[J].机械科学与技术.1998,6.
    [40]贾晓鸣,王宝中.绿色切削加工技术分析[J].润滑与密封.2002,6:83-85.
    [45]刘献礼,文东辉,钟佳.A2发生装置及风冷却切削用技术[J].制造技术与机床.2001,10:8-9.
    [46]苏宇,何宁,李亮等.新型切削用A2发生装置的研制及性能测试[J].中国机械工程.2007,18(10):1208-1211.
    [47]韩荣第,张悦.采用气体射流冷却润滑绿色切削技术的研究进展[J].工具技术.2006,40(1):6-9.
    [48]杨颖,童伟明,严兴春等.低温A2射流对断屑影响的实验[J].重庆大学学报.2004,27(5):74-77.
    [49]顾祖慰,张昌义,魏成双等.干式A2切削技术在高效车、铣加工中的应用[J].工具技术.2007,41(4):83-85.
    [50]殷雪艳,孙路.风冷雾化深孔加工系统的研究[J].机械.2006,33(12):28-30.
    [51]宋宏文.A2切削薄壁不锈钢零件[J].机械制造.2002,40(456):36-37.
    [52]杨颖.低温A2在绿色加工中应用的若干问题研究[D].重庆大学博士论文.2004(6).
    [53]李新龙,何宁,李亮.绿色切削中的MQL技术[J].航空精密制造技术.2005,41(2):24-27,35.
    [54]T.Cselle.New Directions in Drilling[J].Manufacturing Engineering.1995,115(2):77-80.
    [55]M.Rahman,A-Senthil Kumar,M.U,Salam,Experimental evaluation on the effect of minimal quantities of lubricant in milling[C].Machine Tools & Manufacture.42(2002):539-547.
    [56]D.U.Braga,A.E.Diniz,G.W.A.Mirandab,et al.Using a minimum quantity of lubricant(MQL)and a diamond coated tool in the drilling of aluminum-silicon alloys[C]. Materials Processing Technology.122(2002):127-138.
    [57]R.Heinemann,S.Hinduja,G.Barrow,et al.Effect of MQL on the tool life of small twist drills in deep-hole drilling[J].Machine Tools & Manufacture.2006,46(1):1-6.
    [58]陈德成,铃木康夫,酒井克彦.微量润滑油润滑和A2切削冷却加工法对高硅铝合金切削面的影响[J].机械工程学报,2000,36(11):70-74.
    [59]张少锋,黄拿灿,吴乃优等.PVD氮化钛涂层刀具切削性能的试验研究[J].金属热处理.2006,31(7):50-52.
    [60]刘爱华,邓建新,颜培等.TiAIN涂层刀具的抗高温特性研究[J].制造技术与机床.2010,7:94-96.
    [61]黄震,张弘弢,李嫚等.基于切削力的金属陶瓷刀具表面摩擦系数研究[J].制造技术与机床.2009,3:76-80.
    [62]赵时璐,张钧,刘常升.涂层刀具的切削性能及其应用动态[J].材料导报.2008,22(11):62-65.
    [63]李洪林,蒋金龙,曾祥才等.涂层结构和表面的优化设计对硬质合金涂层刀具寿命影响的研究[J].工具技术.2010,44(9):31-33.
    [64]乔阳,艾兴,刘战强等.涂层硬质合金刀具铣削粉末冶金高温合金的切削性能研究[J].四川大学学报(工程科学版).2010,42(3):206-210.
    [65]陈崇亮,刘利国,安孝玲.硬质合金刀具A1203涂层摩擦磨损性能研究[J].润滑与密封.2010,35(9):72-75.
    [66]谢宏,肖逸锋,贺跃辉等.硬质合金涂层刀具研究的新进展[J].中国钨金.2006,21(2):32-36,44.
    [67]横川和彦,横川宗彦,奥村成史.冷風研削.切削加工技衍.機械と工具.1998,42(7):57-62.
    [68]廖厚德.新型切削机床(续).设备管理与维修.2003(4):23-25.
    [69]E O Ezugwu,J Bonney, Y Yamane,An overview of the machinability of aeroengine alloys[J] Journal of Materials Processing Technology,2003,(134):233-253.
    [70]E O Ezugwu,Z M Wang, Titanium alloys and their machinability-a review [J]. Journal of Materials Processing Technology,1997, (68):262-274.
    [71]Mustafizur Rahman, Zhi Gang Wang, Yoke Sun Wong. A review on high speed maching of titanium alloy[J].JSME Internationnal Jounal,2006, (1):11-20.
    [72]P J Arrazola, A Garay, L M Iriarte. Machinability of titanium alloys (Ti6A14V and Ti555.3)[J].Journal of materials processing technology,2009, (209):2223-2230.
    [73]钛及钛合金牌号和化学成分[s].GB/T3620.1-2007.
    [74]不锈钢和耐热钢牌号及化学成分[s].GB/T20878-2007.
    [75]方开泰,马长兴.正交与均匀试验设计[M].科学出版社.2001.9.
    [76]Zhang Wei, Yu Xingju and Yuan Quan.Uniform design a new approach of design fermentation media[J].Biotechnology,Techiques,7(No.5)P379-384,(1993).
    [77]方开泰.均匀设计与均匀设计表[M].科学出版社.1994.6.
    [78]http://www.coromant.sandvik.com/cn.
    [79]陈日曜.金属切削原理[M].机械工业出版社.2002.01.
    [80]Nakayama K.et al.Peculiarity in the Grinding of Hardened Steel Annals of the CIRP[R]. Vol.23/1/1974.p.89-90.
    [81]Matsuo T.et al.Relationship between the wear property of single abrasive grains and the grinding performance of wheels Annals of the CIRP[R].Vo1.23/1 1974.
    [82]Salje.有关磨削的几个问题[R].中国机械加工学会磨削学组,机械部磨料磨具磨削研究所整理,1981.9.
    [83]周泽华,于启勋.金属切削原理[M].上海科学技术出版社.1996.
    [84]张伯霖.高速切削技术及应用[M].机械工业出版社.2002.
    [85]He Zhen-wei Quan Yan-ming Le You-shu.Studv on cutting heal in high-speed cutting based on FEM sinulation[J].Tool Engineeririg 2006, 40(3):60-63.
    [86]华中工学院机制教研室.机械制造工艺上册(一)金属切削基础部分[B].华中工学院印,1975.5.
    [87]Komanduri R, Hou Z.B.A review of the experimental techniques for the measurement of heat and temperatures generated in some manufacturing processes and tribology[R].Tribology International.2001,34:653-682.
    [88]Lazoglu.L,Altintas.Y.Prediction of tool and chip temperature in continuous and interrupted machining[C].Int.J.Mach.Tools Manufacture.2002,42:1011-1022.
    [89]Suttera.G,Ranc.N.Temperature fields in a chip during high-speed orthogonal cutting An experimental investigation[C].International Journal of Machine Tools & Manufacture.2007,47:1507-1517.
    [90]Abulhshim N.A, Mativenga P.T, Sheikh M.A.Heat generation and temperature prediction in metal cutting A review and implications for high speed machining[C]. Mach.Tools Manufacture.2006,46:782-800.
    [91]Dinc C,Lazoglu I,Serpenguzel A,Analysis of thermal fields in orthogonal machining with infrared imaging[C]. Journal of Materials Processing Technology,2008,198: 147-154.
    [92]刘有荣,刘家浚,朱宝亮等.热像仪法实测陶瓷刀具切削区的温度场分布[J].钢铁研究学报.1997.9(6):46-50.
    [93]徐昊.基于红外热像技术的高速车削加工温度测量[D].华南理工大学.2010(5).
    [94]陈明,袁人炜.铝合金高速铣削中切削温度动态变化规律的试验研究[J].工具技术.2000.34(5):7-11.
    [95]Widrow B,et al.Neural Networks Application in Industry,Business and Science.Communication of the ACM,1994,37:93-105.
    [96]Special Issue on Application of Neural Network.Proc IEEE,1996,84(10).
    [97]阎平凡,张长水编著.人工神经网络与模拟进化计算.北京:清华大学出版社,2006.
    [98]LiMin F.An Expert Network for DNA Sequence Analysis.IEEE Intelligent System, Jan./Feb.,1999:65-71.
    [99]Special Issue on NN Application in Astronomy. Geoscience.Neural Networks,2003,16(3-4).
    [100]Tsukinetu H.Exraction Rules for Trained Neural Networks.IEEE Trans NN,2000,11(2):377-389.
    [101]Special Issue on NN for Data Mining and Knowledge Discovery.IEEE Trans NN,2000,11(3).
    [102]Werbos P J.The Roots of Backpropagaton:From Ordered Derivatives to NN.John Wiley & Sons Inc,1994.
    [103]史峰等编著.Matlab神经网络安全30个案例分析.北京:北京航空航天大学出版社,2010.
    [104]Macherauch E,Wohlfahrt H,Wolfstieg U.Zurzweckmabigen definition von eigenspannungen[J].Harterei-Techn Mitt.Vol.28(1973)P:201-211.
    [105]王素玉.高速铣削加工表面质量的研究[D].山东大学.2006.
    [106]吕克茂.X射线应力测定技术预备知识[B].爱斯特应力技术研究所.2007.
    [107]张定铨.X射线应力测定的基本原理[B].爱斯特应力技术研究所.2007.
    [108]Eigenmann B,Macherauch E.Roentgenographische unrersuchung von spanmugszustaenden in werkstoffen(teil3)[J].Mat-wissU Werkstoffiechnik,1996,27:427-431.
    [109]吕克茂.X射线应力测定方法[B].爱斯特应力技术研究所.2007.
    [110]Bourniquel B,Feron J.Proc.1st Int.Conf.on Residual Stresses,DGM Informations gesellschaft.1987.275.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700