用户名: 密码: 验证码:
低压等离子喷涂射流特性及金属基涂层组织性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
热喷涂技术是以热源的不断更新而发展的,随着等离子喷涂技术(APS)的发展,近年来超低压等离子喷涂技术(VLPPS)倍受瞩目。这种技术使用大功率等离子喷枪,在50~100Pa的超低压条件下,等离子射流达到超音速状态,可以制备出区别于传统层状组织的特殊结构涂层,具有良好的应用前景。
     目前,对低压条件下等离子射流特性以及涂层形成机理的研究还处于初级阶段。研究等离子射流的特性,对获得良好的涂层组织有重要意义。本课题首先利用热焓探针系统,研究了低压条件下等离子射流的压力、比焓、温度、速度和努森数的分布,结果表明喷嘴出口附近射流的温度和速度较高,可分别达到10950K和2024m/s,努森数在1.0左右,等离子体的平均自由程与粉末颗粒的尺寸相当,对粉体的加热能力降低,使用内送粉喷涂方式可弥补这一不足。
     根据射流特性的研究结果确定喷涂参数,选择316L不锈钢粉末和FeAl金属间化合物粉末作为研究对象,讨论低压等离子喷涂制备的涂层的组织和性能,得到在较高的喷涂能量和基体温度时,可以制备出等轴晶结构的316L不锈钢涂层,相比大气等离子喷涂制备的层状结构涂层,等轴晶涂层中几乎不存在孔隙及氧化物,并具有较低的显微硬度以及较高的耐腐蚀性。
     尽管FeAl金属间化合物的熔点低于316L不锈钢,但使用得到等轴晶结构316L不锈钢涂层的喷涂参数制备的FeAl涂层依然为层片状组织,相比缺陷较多的大气等离子喷涂和超音速火焰喷涂涂层,低压等离子喷涂FeAl涂层组织十分致密,氧化物含量少,具有较高的显微硬度、弹性模量以及较低的断裂韧性,表现出特殊的性能。
Development of the thermal spray technology is usually accompanied with improving of the heat source. Recently, as compared with atmospheric plasma spray (APS) technique, very low pressure plasma spray (VLPPS) becomes attracting much attention. Currently, in the process of VLPPS, a high power plasma gun is adopted principally. The plasma jet is expanded, and jet velocity can reach an ultrasonic regimen at the pressure of50~100Pa. Under such conditions, the unique coating could be deposited and its applications would be more expected.
     The technologies for the characteristics of plasma jet and how to deposite unique coatings still have a great many unbeknown problems. It's very significant to study the characteristics of plasma jet for manufacturing perfect coatings. In this work, distribution of pressure, temperature, velocity and Knudsen number of the plasma jet are investigated as a function of distance from nozzle exit by using enthalpy probe system under reduced chamber pressure. The results show that the temperature and velocity of plasma jet near the nozzle exit can reach10950K and2024m/s, and the Knudsen number is about1.0. This indicates the heat transfer from high temperature plasma to powder particles is decreased at exit of the nozzle. However, the internal powder feed torch we designed can remedy the decreased heating ability of plasma.
     Meanwhile,316L stainless steel coating and FeAl intermetallic compound coating are deposited by low pressure plasma spray, and their microstructures and properties are also investigated. The results indicate that the equiaxed316L stainless steel coatings with clear grain boundary could be deposited at optimized parameters when spraying power and substrate temperature are carefully controlled. Compared with lamellar coating deposited by APS, the equiaxed coating shows less oxides and pores, and has much lower microhardness and higher corrosion resistance.
     Though the melting temperature of FeAl is lower than that of316L stainless steel, but FeAl coating deposited at the same parameters as equiaxed316L stainless steel coating still exhibits lamellar microstructure. Furthermore, the FeAl coating deposited by LPPS presents special mechanical properties such as higher microhardness and elastic modulus as well as lower fracture toughness, when compared with those by atmospheric plasma spray or high velocity oxy-fuel spray.
引文
[1]Fauchais P. Understanding plasma spraying. Journal of Physics D:Applied Physics,2004,37:86-108.
    [2]Buchner P, Schubert H, Uhlenbusch J et al. Evaporation of zirconia powders in a thermal radio-frequency plasma. Journal of Thermal Spray Technology,2001,10(4):666-672.
    [3]Yoshida T, Tani T, Nishimura H et al. Characterization of hybrid plasma and its application to chemical synthesis. Journal Applied Physics,1983,54(2):640-646.
    [4]Kim K S, Seo J H, Nam J S et al. Production of hydrogen and carbon black by methane decomposition using DC-RF hybrid thermal plasmas. IEEE Transactions on Plasma Science,2005, 33(2):813-823.
    [5]An L T, Gao Y, Zhang T. Effect of powder injection location on ceramic coatings properties when using plasma spray. Journal of Thermal Spray Technology,2007,16(5-6):967-973.
    [6]Ma W, Pan W X, Wu C K. Preliminary investigations on low-pressure laminar plasma spray processing. Surface & Coatings Technology,2005,191:166-174.
    [7]陈传忠,雷挺权,包全合等.等离子喷涂-激光重熔陶瓷涂层存在问题及改进措施.材料科学与工艺,2002,10(4):431-435.
    [8]Pawlowski L. The science and engineering of thermal spray coatings:second edition. England: John Wiley & Sons Ltd,2008.
    [9]Houben J M. Relation of the adhesion of plasma sprayed coatings to the process parameters, size, velocity and heat content of the spray particles:[dissertation]. The Netherlands:University of Eindhoven,1988.
    [10]Sampath S, Jiang X Y, Matejicek J et al. Substrate temperature effects on splat formation, microstructure development and properties of plasma sprayed coatings Part I:Case study for partially stabilized zirconia. Materials Science and Engineering,1999,A272:181-188.
    [11]Yoshida T. Toward a new era of plasma spray processing. Pure and Applied Chemistry,2006, 78(6):1093-1107.
    [12]Salimijazi H R, Coyle T W, Mostaghimi J et al. Microstructure and failure mechanism in as-deposited vacuum plasma-sprayed Ti-6Al-4V alloy. Journal of Thermal Spray Technology,2005, 14(2):215-223.
    [13]Wilms V, Herman H. Plasma spraying of Al2O3 and Al2O3-Y2O3. Thin Solid Films,1976,39: 251-262.
    [14]Wilden J, Frank H. Thermal spraying-simulation of coating structure. Proceedings of the International Thermal Spray Conference, Dusseldorf, Germany,2005.
    [15]Steeper T J, Varacalle D J. Optimizing plasma spraying alumina-titania coatings using statistical methods. Proceedings of International Thermal Spray Conference, California, USA,1993.
    [16]安连彤,高阳.双阳极等离子喷枪电弧特性与热效率分析.真空科学与技术学报,2007,27(2):109-112.
    [17]高阳,安连彤,严志军等.小功率等离子体射流的流特性.核聚变与等离子体物理,2004,24(2):147-151.
    [18]Gao Y, An L T, Sun C Q et al. The characteristics of a low power consumption plasma jet and ceramic coatings. Journal of Thermal Spray Technology,2004,13(4):521-525.
    [19]Guessasma S, Montavon G, Coddet C. Velocity and temperature distributions of alumina-titania in-flight particles in the atmospheric plasma spray process. Surface & Coatings Technology,2005, 192:70-76.
    [20]Leung K, Heberlein J, Pfender E. Particle trajectory control with the use of different carrier gases. Proceedings of the International thermal Spray Conference, Texas, USA,1995.
    [21]陈熙.热等离子体传热与流动.北京:科学出版社,2009.
    [22]Taylo M P. Assessment of plasma-sprayed hydroxyapatite coatings:[dissertation]. Birmingham: University of Birmingham,1994.
    [23]Sun L, Berndt C C, Gre C P. Phase structural and microstructural investigations of plasma sprayed hydroxyapatite coatings. Materials Science and Engineering:A,2003,360:70-84.
    [24]Cizek J, Khor K A, Prochazk Z. Influence of spraying conditions on thermal and velocity properties of plasma sprayed hydroxyapatite. Materials Science and Engineering:C,2007,27(2):340-344.
    [25]Kweh S W K, Khor K A, Cheang P. Plasma-sprayed hydroxyapatite (HA) coatings with flame-spheroidized feedstock:microstructure and mechanical properties. Biomaterials,2000,21(6):1223-1234.
    [26]Bianchi L, Blein F, Lucchese P et al. Effect of particle velocity and substrate temperature on alumina and zirconia splat formation. In Thermal Spray Industrial Applications, ASM International, Materials Park, OH,1994:569-74.
    [27]Pershin V, Lufitha M, Chandra S et al. Effect of substrate temperature on adhesion strength of plasma-sprayed nickel coatings. Journal of Thermal Spray Technology,2003,12(3):370-376.
    [28]Ohmolori A, Li C J. Quantitative characterization of the structure of plasma sprayed Al2O3 coating by using copper electroplating. Thin Solid Films,1991,201:241-252.
    |29] Li C J, Ohmolori A. Relationship between the structure and properties of thermal sprayed deposits. Journal of Thermal Spray Technology,2002,11:365.
    [30]Tian B H, Chang L, Qu W L, et al. Effects of heat treatment on the mechanical properties of plasma-sprayed 316L coatings. Proceedings of the International Thermal Spray Conference, Missouri, USA,2009:1062-1066.
    [31]Muehlberger E. A high energy plasma coating process. Proceedings of the 7th International Metal Spray Conference, Cambridge, UK,1973:245-256.
    132] http://www.sulzer.com//h/About-us/Our-Businesses/Sulzer-Metco/History?et_cid=14&.et_lid= 21&et sub=POS0037 History
    [33]Wlims V. LPPS deposited coatings for the protection against hot gas corrosion-a first evaluation. Proceedings of the International Thermal Spray Conference. The Netherlands,1980:317-324.
    [34]Braguier M, Tueta R. Supersonic and vacuum arc plasma spraying apparatus characteristics and application to metallic coatings. Proceedings of the International Thermal Spray Conference, The Netherlands,1980:167-172.
    [35]Pawlowski L. The vacuum plasma sprayed copper and tantalum coatings. Proceedings of the International Thermal Spray Conference, The Netherlands,1980:299-355.
    [36]Muehlberger E. Method of forming uniform thin coatings on large substrates. US patent, 5.853.815,1998.
    [37]Niessen K, Gindrat M. Vapor phase deposition using a plasma spray process. Proceedings of the International Thermal Spray Conference, Singapore,2010.
    [38]Terry S G, Litty J R, Levi C G. Evolution of porosity and texture in thermal barrier coatings grown by EB-PVD. Proceedings of TMS Annual Meeting, Warrendale,1999:13-25.
    [39]William B R, Douglas E J. Electron beam physical vapor deposition apparatus. US Patent, US, 6.983.718.2001.
    [40]Kenneth M. Thermal barrier coating. US Patent, US,6.689.487,1988.
    [41]Loch M, Barbezat G, Meyer P. Progress in the area of low pressure plasma spraying. Proceedings of the International Thermal Spray Conference, Dusseldorf, Germany,2002:347-350.
    [42]Salhi Z, Klein D, Gougeon P et al. Development of coating by thermal plasma spraying under very Low-pressure condition< 1 mbar. Vacuum,2005,77:145-150.
    [43]Sokolov D E, Chwa S O, Klein D et al. Coatings obtained by low pressure plasma spraying. Proceedings of the International Thermal Spray Conference, Washington, USA,2005.
    [44]Rhamane M, Soucy G, Boulos M I. Analysis of the enthalpy probe technique for thermal plasma diagnostics. Review of Scientific Instruments,1995,66(6):3424-3432.
    [45]Capetti A, Pfender E. Probe measurements in argon plasma jets operated in ambient argon. Plasma Chemistry and Plasma Processing,1989,9(2):329-341.
    [46]Swank W D, Fincke J R. Haggard D C. Modular enthalpy probe and gas analyzer for thermal plasma measurements. Review of Scientific Instruments,1993,64(1):56-62.
    [47]Fincke J R, Snyder S C, Swank W D. Comparison of enthalpy probe and laser light scattering measurement of thermal plasma temperatures and velocities. Review of Scientific Instruments, 1993, 64(3): 711-718.
    [48]Dorier J L, Gindrat M,Hollenstein C et al.Plasma jet properties in a new spraying process at low pressure for large area thin film deposition. Proceedings of the International Thermal Spray Conference, Singapore, 2001.
    [49]张楠楠.超低压等离子喷涂中的等离子焰流检测及涂层制备:(博士论文)、大连:大连理工大学,2012.
    [50]Refke A, Hawley D, Doesburg J et al. LPPS thin film technology for the application of TBC systems. Proceedings of the International Thermal Spray Conference, Washington, USA, 2005.
    [51]Refke A, Gindrat M, Niessen K et al. LPPS Thin Film: A hybrid coating technology between thermal spray and PVD for functional thin coatings and large area applications. Proceedings of the International Thermal Spray Conference, Beijing, China, 2007.
    [52]Hall A C, Mccloskey J F, Urrea D A. Low pressure plasma spray-thin film at sandia national laboratories. Proceedings of the International Thermal Spray Conference, Las Vegas, USA, 2009: 725-728.
    [53]Zhang N, Sun F, Zhu L et al. Characteristics of Cu film-like deposited by using VLPPS. Proceedings of the International Thermal Spray Conference, Singapore, 2010.
    [54]Baik K H, Grant P S, Cantor B. The equiaxed-banded microstructural transition during low pressure plasma spraying. Acta Materialia, 2004, 52:199-208.
    [55]Muehlbcrgcr E,Meyer P. LPPS-thin fim processes: overview of origin and future possibilities. Proceedings of the International Thermal Spray Conference, Las Vegas. Nevada, USA. 2009: 737-740.
    [56]Bolot R, Sokolov D, Klein D et al. Nozzle developments for thermal spray at very low pressure. Journal of Thermal Spray Technology, 2006,15(4): 827-833.
    [57]Niessen K, Malko G. Plasma spray-PVD: A new thermal spray process to deposit out of the vapor phase. Journal of Thermal Spray Technology, 2011,20 (4):736-743.
    [58]Zhu L, Zhang N, Sun F et al. Thin yttria-stabilized zirconia coatings deposited by low-energy plasma spraying under very low pressure condition. Journal of Thermal Spray Technology,2011,20(5): 1118-1124.
    [59]高阳.一种低压等离子喷涂用等离子喷枪.中国发明专利:201010288490.1.2010.
    [60]Zhu L, Zhang N, Sun F et al. An improvement of low power plasma torch for Very Low Pressure Plasma Sprayed thin and dense ceramic coatings. Proceedings of the International Thermal Spray Conference, Hamburg, Germany,2011.
    [61]印永嘉.大学化学手册.山东:山东科学技术出版社,1987.
    [62]Hsc K C. A self-consistent model for the high intensity free-buring argon arc:[dissertation]. Minneaplis:University of Minnesota,1982.
    [63]Brossa M, Pfender E. Probe measurements in thermal plasma jets. Plasma Chemistry and Plasma Processing,1988,8(1):75-90.
    [64]Blais A, Jodoin B, Dorier J L et al. Inclusion of aerodynamic non-equilibrium effects in supersonic plasma jet enthalpy probe measurements. Journal of Thermal Spray Technology,2005,14(3):342-353.
    [65]Chen X. Particle heating in a thermal plasma. Pure and Applied Chemistry,1988,60:651-662.
    [66]Pfender E. Heat and momentum transfer to particles in thermal plasma flows. Pure and Applied Chemistry,1985,57:1179-1195.
    [67]Chen X. Heat and momentum transfer between a thermal plasma and suspended particles for different Knudsen numbers. Thin Solid Films,1999,345:140-145.
    [68]Gindrat M, Dorier J L, Hollenstein C et al. Effect of specific operating conditions on the properties of LPPS plasma jets expanding at low pressure. Proceedings of the International Thermal Spray Conference, Dusseldorf, Germany,2002.
    [69]Dorier J L, Gindrat M, Hollenstein Ch et al. Plasma jet properties in a new spraying process at low pressure for large area thin film deposition. Proceedings of the International Thermal Spray Conference, Singapore,2001:28-30.
    [70]Zhang N, Sun F, Zhu L, Planche M P et al. Measurement of specific enthalpy under very low pressure plasma spray condition. Proceedings of the International Thermal Spray Conference, Texas, USA,2012.
    [71]Ma W, Pan W X, Wu C K. Preliminary investigations on low-pressure laminar plasma spray processing. Surface & Coatings Technology,2005,191:166-174.
    [72]邝子奇,刘敏,邓畅光等.低压等离子喷涂钨涂层性能的研究.材料研究与应用,2008,2(3):191-194.
    [73]高阳.节能、高效等离子喷涂设备的开发和喷涂组织.中国表面工程,1999,3:24-29.
    [74]Han L Q, Lin G B, Wang Z D. Study on corrosion resistance of 316L stainless steel welded joint. Rare Metal Materials and Engineering,2010,39(3):393-396.
    [75]Tian B H, Gao Y. Study on microstructure, mechanical properties and corrosion resistance of the 316L coatings. Proceedings of the Asian Thermal Spray Conference, Xi'an, China,2009:302-306.
    [76]Grant P S, Cantor B, Katgerman L. Modelling of droplet dynamic and thermal histroies during spray forming-Ⅰ. individual droolet beharviour. Acta Metallurgies et Materialia,1993,41(11):3097-3108.
    [77]Grant P S. Spray forming. Progress in Materials Science,1995,39:497-545.
    [78]Delplanque J P, Cai W D, Rangel R H et al. Spray atomization and deposition of tantalum alloys. Acta Materialia,1997,45(12):5233-5243.
    [79]Cantor B, Baik K H, Grant P S. Development of microstructure in spray formed alloys. Progress in Materials Science,1997,42:373-397.
    [80]Zhang N, Sun F, Zhu L et al. Characteristics of Cu film deposited using VLPPS. Journal of Thermal Spray Technology,2011,20(1-2):351-357.
    [81]孙扬关.Fe3Al金属间化合物的高温抗氧化性能.金属学报,1998,34(11):1131-1136.
    [82]黄传兵,杜令忠,张伟刚等.三种热喷涂工艺制备NiCr/Cr3C2-BaF2·CaF2涂层的结构与性能.航空材料学报,2009,29(9):70-76.
    [83]陈庆军,胡林丽,杨湘杰.热喷涂Fe基非晶合金涂层的研究现状.热喷涂技术,2010,2(1):8-12.
    [84]Grosdidier T, Ji G, Bozzolo N. Hardness, thermal stability and yttrium distribution in nanaostructured deposits obtained by thermal spraying from milled-Y2O3 reinforced-or atomized FeAl powders. Intermetallics,2006,14:715-721.
    [85]Zhu L, Bolot R, Liao H et al. In situ synthesis of FeAl dense coatings by very low pressure reactive plasma spraying. Proceedings of the International Thermal Spray Conference, Texas, USA, 2012:21-24.
    [86]Senderowski C, Bojar Z. Gas detonation spray forming of Fe-AI coatings in the presence of interlayer. Surface & Coatings Technology,2008,202:3538-3548.
    [87]Kim H J, Kweon Y G. Elastic modulus of plasma-sprayed coatings determined by indentation and bend tests. Thin Solid Films,1999:201-206.
    [88]Du H, Hua W G. Influence of process variables on the qualities of detonation gun sprayed WC-Co coatings. Materials Science and Engineering,2005,408:202-210.
    [89]Lima R S, Marple B R. Near-isotropic air plasma sprayed titania. Acta Materialia,2004,52:1163-1170.
    [90]Marshall D B, Noma T, Evans A G. A simple method for determining elastic modulus to hardness ratios using knoop indentation measurements. Journal of the American Ceramic Society,1982,65(10): 175-176.
    [91]Erickson L C, Hawthorne H M, Troczynski T. Correlations between microstructural parameters, micromechanical properties and wear resistance of plasma sprayed ceramic coatings. Wear,2001,250: 569-575.
    [92]Evans A G, Charles E A. Fracture toughness determination by indentation. Journal of the American Ceramic Society,1976,59(7-8):38-72.
    [93]Chicota D, Duarte G. Vickers indentation fracture (VIF) modeling to analyze multi-cracking toughness of titania, alumina and zirconia plasma sprayed coatings. Materials Science and Engineering A,2009,527:65-76.
    [94]Feng W, Yan D. Microhardness and toughness of the TiN coating prepared by reactive plasma spraying. Applied Surface Science,2005,243:204-213.
    [95]Li H, Khor K A. Young's modulus and fracture toughness determination of high velocity oxy fuel sprayed bioceramic coatings. Surface & Coatings Technology,2002,155:21-32.
    [96]Li H, Khor K A. Mechanical properties of the plasma-sprayed Al2O3/ZrSiO coatings. Surface & Coatings Technology,2002.150:14-150.
    [97]Ji G, Grosdidier T, Liao H L et al. Spray forming thick nanostructured and microstructured FeAl deposits. Intermetallics,2005,13:596-607.
    [98]Grosdidier T, Tidu A, Liao H L. Nanocrystalline Fe-40AI coating processed by thermal spraying of milled powder. Scripta Materialia,2001,44:387-393.
    [99]Ji G, Klkedim O, Grosdidier T. Deposition and corrosion resistance of HVOF sprayed nanocrystalline iron aluminide coatings. Surface & Coatings Technology,2005,190:406-416.
    [100]宋丹.利用可控气氛热喷涂方法制备复合材料涂层的研究:(博士位论文),沈阳:沈阳工业大学,2010.
    [101]韩志海,徐滨士.王海军等.三种超音速热喷涂工艺制备WC-12Co涂层的组织结构分析中国表面工程,2005,18(3),23-27.
    [102]Totemeier T C. Wright R N, Swank W D. FeAl and Mo-Si-B intermetallic coatings prepared by thermal spraying. Intermctallics,2004,12:1335-1344.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700