用户名: 密码: 验证码:
高活性镍基析氢电极的制备及其在碱性条件下析氢行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着能源危机以及环境污染的日益加剧,各种新能源和可再生能源的开发已受到世界各国的高度重视,而氢气作为二次能源以其清洁无污染、高效、可储存和运输等优点,被视为最为理想的能源载体。从自然界中大规模获取纯净的氢气作为开发和利用氢能源重要环节之一,目前业已发展的制氢方法有很多,但在各种制氢技术中,电解水制氢具有产品纯度高、电解效率高、无污染、取材丰富等优点已被广泛利用。但由于电解过程中存在能耗较高问题,因而限制了该项技术的进一步发展。而通过降低电解槽阴极析氢过电位来实现降低能耗的途径已成为普遍共识。进入20世纪70年代以来,各种高活性镍基析氢电极的开发为降低阴极析氢过电位提供了广阔的前景,而镍基析氢电极主要有四大类:镍基合金系析氢电极、多孔镍系析氢电极、镍基贵金属氧化物系析氢电极以及镍基弥散复合系析氢电极,但目前关于镍基合金系析氢电极的结晶结构与其析氢行为缺乏详细研究,多孔镍系析氢电极目前的制备方法对电极表面的孔结构缺乏有效控制,镍基贵金属氧化物系析氢电极其析氢活性很难进一步提高。因此,继续开发和完善高活性镍基析氢电极的研究显得十分必要。
     基于以上研究背景,本论文主要进行了三方面的研究:对于镍基合金系析氢电极,主要研究Ni-S、Ni-Sn两种合金的结晶结构与其析氢活性以及析氢机制的关联;对于多孔镍系析氢电极,主要研究了多孔镍电极的孔结构以及孔密度可控制备的规律;对于镍基贵金属氧化物析氢电极,主要对现有商业化镍网基贵金属氧化物电极进行改进,以泡沫金属镍替代商业电极中镍网基底,以进一步提高其析氢电催化活性。在本论文的研究中,主要通过电沉积法以及涂覆热分解法成功制备出Ni-S、Ni-Sn、多孔镍析氢电极以及具有高表面积的贵金属氧化物析氢电极。并采用XRD、SEM、EDS、HRTEM、XPS等物性评价方法对所制得的析氢电极进行结构表征,对所得到具有典型结构以及形貌特征的析氢电极采用电化学测试方法对其在碱性条件下的析氢行为进行系统评价,并揭示其结构与析氢行为的内在关联。具体取得的创新性的结果如下:
     (1)本论文采用恒电流电沉积法成功制备出非晶/Ni_3S_2混晶、Ni_3S_2以及Ni_3S_2/NiS混晶三种结构的镍硫合金,并且通过引入磺基水杨酸作为表面活性剂,消除在电沉积过程中由残留应力而产生裂纹的负面影响,通过建立结晶结构与析氢性能之间的关系发现,Ni_3S_2是影响其析氢电催化活性的主要因素;并在结晶结构与析氢机制关联的研究中,揭示了镍硫合金析氢机制由Volmer、Heyrovsky以及扩散混合控制,其中电荷转移过程是整个析氢反应过程的速率控制步骤,且Ni_3S_2金属间化合物镍硫合金具有最快的电荷转移过程。
     (2)本论文采用恒电流电沉积法成功制备出非晶、Ni_3Sn_2/Ni_3Sn_4混晶以及Sn/Ni_3Sn_4三种结构的镍锡合金,通过对其结晶结构分析发现,非晶结构镍锡合金是由镍晶胚与非晶镍锡而构成,Ni_3Sn_2/Ni_3Sn_4混晶呈现层状自主装排列;通过建立结晶结构与析氢性能之间的关系发现,非晶镍锡合金具有较好的电催化活性,比纯镍电极析氢过电位降低近200mV,其良好的析氢活性源于镍锡合金化后,能够有效降低镍原子表面富余d电子与活性氢原子之间的成键能力,削弱了金属原子M-H之间的键能,进而有利于提高活性氢的脱附能力,提高了析氢催化性能.通过在结晶结构与析氢机制关联的研究中,揭示了非晶以及混晶结构的镍锡合金在析氢电催化反应过程中由Volmer以及Heyrovsky两个电荷转移过程控制,且在相同极化电位下,非晶结构的镍锡合金电极相比于Ni_3Sn_4与Ni_3Sn_2混晶结构电极的高活性源于其具有更快的电荷转移速度以及更快的扩散速度。
     (3)本文通过模板辅助复合电沉积法成功的制备出多孔镍析氢电极,通过对多孔镍析氢电极制备过程的研究中发现,通过控制PS微球在镀液中的含量、PS微球粒径以及沉积电流密度可以达到对多孔镍电极表面孔结构的可控制备。所制备的多孔结构镍电极表面孔密度可达到10~8/cm~2;通过在1M NaOH溶液中的极化曲线测试可知:随着电极表面孔隙度的增大,其在碱性条件下的电催化活性逐渐升高,多孔结构镍电极析氢反应过程的表面活化能可达到17.26kJ·mol~(-1);通过对多孔镍电极的机理分析,揭示了多孔镍电极在析氢电催化过程中由扩散以及电荷转移过程混合控制,其良好的析氢活性主要来自于较大的电化学表面积。
     (4)本文以高表面积的泡沫镍作为导电基底,利用涂覆热分解法成功制备出泡沫镍基贵金属氧化物析氢电极,通过结晶结构以及元素分析得知,所制备的贵金属氧化物电极活性层由RuO_2、NiO以及CeO_2而构成,活性层中贵金属RuO_2用量为26.5g·m~(-2);通过与商业化电极对比发现,所制备的泡沫镍基贵金属氧化物析氢电极在高电流密度电解条件下,析氢过电位比目前商业化电极低200mV以上,且通过与本文中其他三种析氢电极相比较,所制备的泡沫镍基贵金属氧化物具有最低的表观活化能,即具有较好的起始析氢活性,故表现出良好的工业化应用前景;通过对其析氢电化学过程表明,所制备的泡沫镍基贵金属氧化物析氢电极具有较快的电荷转移过程,其较快的电荷转移过程主要来自于较高的电化学活性表面积所提供更多的反应单元,且其析氢过程由Volmer以及Heyrovsky两个电荷转移过程控制和非法拉第扩散过程混合控制,其中电荷转移控制过程是整个析氢反应的速率控制步骤。
With the decrease of energy storage and the aggravation ofenvironmental pollution, much attention has been paid to thedevelopment of various new energy materials or renewable energyresource by many countries in recent years. As a secondary energy,hydrogen is considered as the most ideal energy carrier for its clean, highefficiency, storability and transportability. Among all of the approachesfor the synthesis of hydrogen, water electrolysis has been widely usedbecause of its environmental friendly, high efficitncy and considerableproduct purity. However, for this approach, numerous electric energy wasdemanded in the electrolysis process. It has become a common opinionthat reducing the hydrogen evolution over-potential during waterelectrolysis could reduce the energy consumption. Since the1970s, theinvestigation of various nickel-based hydrogen evolution electrodes withhigh activity provided broad prospects for the reducing of theover-potential for the hydrogen evolution process. nickel-based hydrogenevolution electrodes mainly have four major categories: nickel-based alloys, active porous nickel, nickel-based noble metal oxide electrode,and nickel-based dispersed composite electrode. But, the detailed study ofthe crystalline structure of nickel-based hydrogen evolution electrodesand the relationship between their hydrogen evolution behaviors are stilldevoid. For the preparation of porous nickel-based hydrogen evolutionelectrodes, few methods were reported to effectively control the porousstructure on the electrode surface. Besides, it is difficult to furtherimprove the hydrogen evolution reaction of the nickel-based noble metaloxide. Therefore, it is necessary to develop highly active nickel-basedelectrode for hydrogen evolution reaction.
     Based on the background mentioned above, herein, three main researchaspects were carried out.(1) The crystalline structure of Ni-S, Ni-Snbinary alloy, was detailedly investigated as well as its correspondinghydrogen evolution performance and mechanisms;(2) Active porousnickel electrodes with tunable pore size and density were successfullyobtained and also the main rules for the controllable preparation wereproposed.(3) Facile modification was made to further enhance theelectro-catalytic activity for the hydrogen evolution of the commercialnickel mesh-based noble metal oxide electrodes. In this article, we havesuccessfully prepared various hydrogen evolution electrodes including:Ni-S, Ni-Sn, porous nickel, and nickel-based noble metal oxide through electrodepositon method and thermal annealing method. The X-raydiffraction (XRD), scanning electron microscopy (SEM), energydispersive spectroscopy (EDS), high-resolution transmission electronmicroscopy (HRTEM), and X-ray photoelectron spectroscopy (XPS)were taken to characterize the morphologies and structures of thehydrogen evolution electrodes. Besides, the electrochemcialperformances of the as-prepared electrodes with typical structures andmorphologies for the hydrogen evolution reaction were detailedlyinvestigated by cathode polarization, electrochemical impadancespectroscopy, and cyclic voltammetry. Accordingly, we proposed theinternal relationship between the electrode structure and its hydrogenevolution behavior. These results are summarized as follows:
     (1)The Ni-S alloy with two kinds of structures, including: amorphous/Ni_3S_2mixed crystals, and Ni_3Sn_2were successfully prepared bygalvanostatic electrodeposition respectively. By using sulfo salicylicacid as surfactant, the residual stress could be effectively eliminatedduring the electro-deposition process. thus the micron-cracks on thedeposited electrode disappered The relationships between the crystalstructures of the obtained electrodes and their hydrogen evolutionbehaviors were studied. It is concluded that the presence of Ni_3S_2is themain factor which influenced the electrocatalytic hydrogen evolutionactivity. The mechanism of the hydrogen evolution process on the nickel-sulfur alloy electrode were controlled by Volmer, Heyrovsky,and diffusion processes In these processes, charge transfer is the ratecontrol step of the entire hydrogen evolution reaction. Besides, themetallic compound of nickel-sulfur alloy-Ni_3S_2performed the mostfast charge transfer process.
     (2)The nickel-tin alloy electrodes with three kinds of structures:amorphous, Ni_3Sn_2/Ni_3Sn_4mixed crystals, and Sn/Ni_3Sn_4wereprepared by galvanostatic electrodeposition. It is found that the crystalstructure of the amorphous alloy is constituted with nickel embryos andamorphous nickel-tin. The mixed crystals of Ni_3Sn_2/Ni_3Sn_4showedlayered self-assembly arrangement. By establishing the relationshipbetween the crystal structures and their hydrogen evolutionperformance, it showed that the amorphous Ni-Sn alloys has betterelectrocatalytic activity than pure nickel, the overpotential of hydrogenevolution reaction were reduced by nearly200mV. Its good activitywas attributed to the alloying of Ni and Sn, This effect coud decreasethe bonding ability between the d-orbit electrons in Ni and active Hatoms thus weakening the bond energy of the metal atom and H atom(M-H). The desorption of active H atoms was enhanced and thehydrogen evolution was improved. The relationship between thecrystal structures and their hydrogen evolution mechanisms fo thenickel-tin alloys was detailedly discussed and it is found that the reaction procedure is controlled by two charge transfer processes ofVolmer and Heyrovsky. Besides, the non-faraday diffusion was alsoobserved. At the same polarization potential, the amorphous nickel-tinelectrode performed a much higher activity than that of the Ni_3Sn_4andNi_3Sn_2mixed electrode. This phenomenon is owing to the faster chargetransfer speed and faster diffusion rate.
     (3)Porous nickel hydrogen evolution electrode were obtained by aemplate-assisted composite electrodeposition method using modifiedpolystyrene (PS) microsphere as the template. The surface structuresuch as porous size and density of the electrode could be facilecontrolled by changing the content or size of the PS microspheres inthe plating bath as well as the depositing current density. The porosityof the prepared porous nickel electrode can reach10~8/cm~2. From thepolarization curves of the prepared electrodes carried out in1M NaOHsolution, it is considered that with the increasing of the porous density,the electrocatalytic activity gradually increased. The apparentactivation energy of the porous nickel electrode in hydrogen evolutionreaction can reach to17.26kJ·mol~(-1). The mechanism for the hydrogenevolution reaction of the porous nickle electrode was discussed and itis deduced that the process is controlled by both diffusion and chargetransfer. The excellent hydrogen evolution performance is attributed tothe large electrochemical specific surface area.
     (4)Nickel foam based noble metal oxides hydrogen evolution electrodewas prepared by thermal annealing using high surface area nickel foamas the conductive substrate. From the crystal structure and elementalanalysis, it showed that the active layer of the noble metal oxideelectrode was constituted by RuO_2, NiO, and CeO_2. The content ofRuO_2in the active layer was26.5g/m~2. Compared with the commercialelectrode, the hydrogen evolution over-potential of the obtained nickelfoam based noble oxides electrode is decreased by more than200mV,which showed potential prospects for industrial application. The asprepared nickel foam based precious oxides electrode performed a fastcharge transfer process during hydrogen evolution reaction. This ismainly owing to its high electrochemical active surface area whichcould provide more active reaction units. The hydrogen evolutionprocess is also controlled by two charge transfer processes of Volmerand Heyrovsky and a nonfaradaic diffusion process.
引文
[1]. SNeecntoiofn To nM A, Blteerrmnaatniv Me E Rn,e Grglya sSgyoswte Km sC:, HCyedsrao Mge nC,, SToalfatr,H a. nIdn trBoidoufcuteilosn[J t]o. t|hIen dS.p eEcnigal.Chem. Res.,2012,51(37):11819-11820
    [2]. Pastore M, Fantacci S, Angelis F D. Modeling Excited States and Alignment of EnergyLevels in Dye-Sensitized Solar Cells: Successes, Failures, and Challenges[J]., J. Phys.Chem. C.,2012,116(27):14248-14256
    [3]. Momirlan M, Veziroglu T N. The properties of hydrogen as fuel tomorrow in sustainableenergy system for a cleaner planet[J]. Int. J. Hydrogen Energy.,2005,30(7):795-802
    [4]. Elama C C, Gregoire-Padroa C E, Sandrock G, Luzzic A, Lindblad P, Hagene E F.Realizing the hydrogen future: the International Energy Agencys efforts to advancehydrogen energy technologies[J]. Int. J. Hydrogen Energy.,2003,28(6):601-607
    [5]. Chalk S G, Miller J F. Key challenges and recent progress in batteries, fuel cells, andhydrogen storage for clean energy systems[J]. Journal of Power Sources.,2006,159(1):73-80
    [6]. Marinescu S C, Winkler J R, Gray H B. Molecular mechanisms of cobalt-catalyzedhydrogen evolution[J]. PNAS.,2012,109(38):15127-15131
    [7]. Wang B, Li Y F, Ren N Q. Biohydrogen from molasses with ethanol-type fermentation:Effect of hydraulic retention time[J]. Int. J. Hydrogen Energy.,2013,38(11):4361-4367
    [8]. García-Vargas J M, Valverde J L, Lucas-Consuegra A D, Gómez-Monedero B, DoradoF, Sánchez P. Methane tri-reforming over a Ni/b-SiC-based catalyst: Optimizing thefeedstock composition[J]. Int. J. Hydrogen Energy.,2013,38(11):4524-4532
    [9]. Rasten E, Hagen G, Tunold R. Electrocatalysis in water electrolysis with solid polymerelectrolyte[J]. Electrochimi. Acta.,2003,48(25-26)3945-3952
    [10]. Lichta S, Wang B, Mukerji S, Soga T, Umeno M, Tributsch H. Over18%solar energyconversion to generation of hydrogen fuel; theory and experiment for effcient solarwater splitting[J]. Int. J. Hydrogen Energy.,2001,26(7):653-659
    [11]. Turner J A. Sustainable Hydrogen Production[J]. Science.,2004,305(13):972-974
    [12].陶文平,杨振伟,崔小兵.离子膜电解槽膜极距技术改造[J].中国盐业.,2011,3:31-33.
    [13]. La njevac U, Jovic′B M, Jovic′V D, Krstajic′N V. Determination of kinetic param-eters for the hydrogen evolution reaction on the electrodeposited Ni-MoO2compositecoating in alkaline solution[J]. J. Electroanal. Chem.,2012,677-680(15):31-40
    [14]. Antonio L A, Claudia B, Luciano I, Marco M, Lourdes V′G′. EIS study of the servicelife of activated cathodes for the hydrogen evolution reaction in the chlor-alkalimembrane cell process[J]., Electrochim Acta,2008,53(25):7410-7416
    [15]. Rosalbino F, Maccio D, Angelini E, Saccone A, Delfino S. Electrocatalytic properties ofFe-R (R=rare earth metal) crystalline alloys as hydrogen electrodes in alkaline waterelectrolysis[J]. J. Alloys Compd.,2005,403(1-2):275-282
    [16]. Jayalakshmi M, Kim W Y, Jung K D, Joo O S. Electrochemical Characterization ofNi-Mo-Fe Composite Film in Alkali Solution[J]. Int. J. Electrochem. Sci.,2008,3(8):908-917
    [17].邢家悟,康建忠,王玉兰,张良虎,陆崖青,刘怡,于昕,王锐.电极及其制备方法[P].中国专利,101029405A.2007-09-05.
    [18].王璐,牟佳琪,侯建平,张伟华,沈颖莹,姜颖,李永峰.电解水制氢的电极选择问题研究进展[J].化工进展.,2009,28(S1):512-515
    [19]. Rommal H E G, Moran P J, Time-Dependent Energy Efficiency Losses at NickelCathodes in Alkaline Water Electrolysis Systems[J]. J. Electrochem. Soc.,1985,132(2):325-329.
    [20]. Soares D M, Teschke O, Torriani I. Hydride Effect on the Kinetics of the HydrogenEvolution Reaction on Nickel Cathodes in Alkaline Media[J]. J. Electrochem. Soc.,1992,139(1):98-105
    [21]. Huot J Y, Brossard L. Time dependence of the hydrogen discharge at70C on nickelcathodes[J]. Int. J. Hydrogen Energy.,1987,12(12):821-830
    [22]. Choquette Y, Brossard L, Ménard H. Leaching of Raney nickel composite-coatedelectrodes[J]. J Appl Electrochem.,1990,20(5):855-863
    [23]. Norsk Hydro, Oslo. Electrolyte Cell Active Cathode With Low Overvoltage[P].Nederlands Patent,7801955.1978-08-28.
    [24]. Farzaneh M A, Zamanzad-Ghavidel M R, Raeissi K, Golozar M A, Saatchi A, Kabi S.Effects of Co andWalloying elements on the electrodeposition aspects and properties ofnanocrystalline Ni alloy coatings[J]. Applied Surface Science.,2011,257(13):5919-5926
    [25]. Nagai N, Takeuchi M, Kimura T, Oka T. Existence of optimum space between electro-des on hydrogen production by water electrolysis[J]. Int. J. Hydrogen Energy.,2003,28(1):35-41
    [26]. Luciana S. Sanches, Sergio H. Domingues, Claudia E.B. Marino, Lucia H. Mascaro.Characterisation of electrochemically deposited Ni-Mo alloy coatings[J]. ElectrochemCommun.,2004,6(6):543-548
    [27]. Hashimoto K, Sasaki T, Meguro S, Asami K. Nanocrystalline electrodeposited Ni-Mo-Ccathodes for hydrogen production[J]. Materials Science and Engineering A.,2004,377(15):942-945
    [28]. Ezaki H, Morinaga M, Watanabe S, Saito J. Hydrogen overpotential for intermetalliccompounds, TiAl, FeAl and NiAl, containing3d transition metals[J]. Electrochim Acta.,1994,39(11-12):1769-1773
    [29]. Tanaka S, Hirose N, Tanaki T. Evaluation of Raney-Nickel Cathodes Prepared withAluminum Powder and Titanium Hydride Powder[J]. J. Electrochem. Soc.,1999,146(7):2477-2480
    [30]. Endoh E, Otouma H, Morimoto T, Oda Y. New Raney nickel composite-coatedelectrode for hydrogen evolution[J]. Int. J. Hydrogen Energy.,1987,12(7):473-479
    [31]. Correia A N, Machado S A S, Avaca L A, Studies of the hydrogen evolution react-ion on smooth Co and electrodeposited Ni-Co ultramicroelectrodes[J]. Electrochem.Commun.,1999,1(12):600-604
    [32].王华,段成林.电沉积方法制备镍硫析氢电极及其电化学性能[J].电镀与涂饰.,2011,30(8):1-5
    [33]. De-Giz M J, Tremiliosi-Filho G, Gonzalez E R, Srinivasan S, Appleby A J. The hydrog-en evolution reaction on amorphous nicke and cobalt alloys[J]. Int. J. Hydrogen Energy.,1995,20(6):423-427
    [34]. Jak i M M. Advances in electrocatalysis for hydrogen evolution in the light of theBrewer-Engel valence-bond theory[J]. Molecular Catalysis.,1986,38(1-2):161-202
    [35]. Gennero de Chialvo M R, Chialvo A C. Hydrogen evolution reaction on smoothNi(1-x)Mo(x)alloys[J]. J. Electroanal. Chem.,1998,448(1):87-93
    [36]. Solmaz R, Doner A. Kardas G. Electrochemical deposition and characterization of NiCucoatings as cathode materials for hydrogen evolution reaction[J]. Electrochem.Commun.,2008,10(12):1909-1911
    [37]. Campillo B, Sebastian P J, Gamboa S A, Albarran J L, Caballero L X. ElectrodepositedNi-Co-B alloy: application in water electrolysis[J]. Materials Science and Engineering C2002,19(1-2):115-118
    [38]. Shan Z Q, Liu Y J, Chen Z, Warrender G, Tian J H. Amorphous Ni-S-Mn alloy ashydrogen evolution reaction cathode in alkaline medium[J]. Int. J. Hydrogen Energy.,2008,33(1):28-33
    [39].费锡明,邹勇进,任新林.非晶态Ni-Co-W-P合金电极的制备及其电催化活性研究[J].华中师范大学学报(自然科学版).,2005,39(1):71-73
    [40]. Shibli S M A, Dilimon V S. Development of nano IrO2composite-reinforced nickelphosphorous electrodes for hydrogen evolution reaction[J]. J. Solid State Chem.,2007,11(8):1119-1126
    [41]. Kokkinidis G, Papoutsis A, Stoychev D, Milchev A. Electroless deposition of Pt on Ti-catalytic activity for the hydrogen evolution reaction[J]. J. Electroanal. Chem.,2000,486(1):48-55
    [42]. Huot J Y, Trudeau M L, Schulz R. Low Hydrogen Overpotential Nanocrystalline Ni-MoCathodes for Alkaline Water Electrolysis[J]. J. Electrochem. Soc.,1991,138(5):1316-1321
    [43].黄金昭,徐征,李海玲,亢国虎,朱海娜,王文静.纳米晶Ni-Mo-Fe催化阴极的制备与表征[J].北京交通大学学报.,2007,31(6):35-37
    [44]. Lee J K, Yi Y, Lee H J, Uhm S, Lee J. Electrocatalytic activity of Ni nanowires preparedby galvanic electrodeposition for hydrogen evolution reaction[J]. Catalysis Today.,2009,146(1-2):188-191
    [45].马强,巴俊洲,蒋亚雄,李军,吴文宏.电沉积Ni-S、Ni-P-S合金析氢阴极的研究[J].化学工业与工程.,2008,25(6):475-479
    [46]. Metiko-Hukovi M, Jukic A. Correlation of electronic structure and catalytic activity ofZr-Ni amorphous alloys for the hydrogen evolution reaction[J]. Electrochim Acta.,2000,45(25-26):4159-4170
    [47]. Panek J, Serek A, Budniok A, Rowinski E, Lagiewka E. Ni+Ti composite layersascthodematerialsfor electrolytic hydrogen evolution[J]. Int. J. Hydrogen. Energy.,2003,28(2):28:169-175
    [48]. Kedzierzawski P, Oleszak D, Janik-Czachor M. Hydrogen evolution on hot and coldconsolidated Ni-Mo alloys produced by mechanical alloying[J]. Materials Science andEngineering A.,2001,300(1-2):105-112
    [49]. Lloyd A C, No l J J, McIntyre S. Shoesmith D W. Cr, Mo and W alloying additions in Niand their effect on passivity[J]. Electrochim Acta.,2004,49(17-18):3015-3027
    [50].张卫国,王飙,刘春松,张溪,姚素薇.离子膜电解槽用纳米Ni-Mo合金阴极的制备及其催化析氢性能[J].氯碱工业,2006,12:12-14
    [51]. Han Q, Cui S, Pu N W, Chen J S, Liu K R, Wei X J.A study on pulse plating amorphousNi-Mo alloy coating usedas HER cathode in alkaline medium[J]. Int. J. Hydrogen.Energy.,2010,35(11):5194-5201
    [52]. Yamashita H, Yamamura T, Yoshimoto K. Ni/Sn cathode having reduced hydrogenovervoltage.USA. Pat. Appl.4801368,1987.
    [53]. Yamashita, H.; Yamamura, T. Yamashita K. The Relation Between Catalytic Ability forHydrogen Evolution Reaction and Characteristics of Nickel-Tin Alloys[J]. J. Electroch-em. Soc.,1993,140(8):2238-2243.
    [54].马强,张跃兴,隋然,魏海兴.多孔基Ni-Sn合金析氢阴极的研究[J].舰船防化.,2010,5:47-50
    [55]. Jovic V D, Lacnjevac U, Jovic B.M, Karanovic Lj, Krstajic N.V. Ni-Sn coatings as cath-odes for hydrogen evolution in alkaline solution. Chemical composition, phase compos-ition and morphology effects. Int. J. Hydrogen. Energy.,2012,37(23):17882-17891
    [56]. Gonsalez E R, Avaca L A, Tremiliosi-Filho G. Hydrogen evolution reaction on Ni-Selectrodes in alkaline solutions[J]. Int. J. Hydrogen. Energy.,1994;19(1):17-21
    [57]. Han Q, Chen J S, Liu K R, Li X, Wei X J. The heat-treatment effect of amorphousNi-S(La) electrode on the hydrogen evolution reaction in an alkaline media[J]. Int. J.Hydrogen. Energy.,2004,29(6):597-603
    [58].袁铁锤,李瑞迪,刘红江,周科朝.电沉积制备Ni-S涂层电极的研究[J].功能材料.,2009,40(7):1121-1123
    [59]. He H W, Liu H J, Liu F, Zhou K C. Structures and electrochemical properties of amorph-ous nickel sulphur coatings electrodeposited on the nickel foam substrate as hydrogenevolution reaction cathodes[J]. Surface&Coatings Technology.,2006,201:958-964
    [60].刘芳,何捍卫,周科朝.电沉积Ni-S合金硫含量的影响因素[J].粉末冶金材料科学与工程.,2005,10(1):60-64
    [61].山川宏二,椿野晴繁,秋吉浩一,井上博之,吉本勝利.食塩電解用Ni-Sカソード材料の開発-パルス電解法による非晶質Ni-Sめっき[J].金属表面技術.,1987,38(7):285-289
    [62]. Vandenborre H, Vermeiren P, Leysen R. Hydrogen evolution at nickel sulphide cathodesin alkaline medium[J]. Electrochim Acta.,1984,29(3):297-301
    [63].曹寅亮,王峰,刘景军,王建军,张良虎,覃事永.镍硫析氢电极的电化学制备及其电催化机理[J].物理化学学报.,2009,25(10):1979-1984.
    [64].杜敏,魏绪钧.电解水析氢的Ni-S非晶态合金电极研究[J].有色金属(冶炼部分).,1997,5:38-40
    [65].山川宏二,椿野晴繁,秋吉浩一,井上博之,吉本勝利.食塩電解用Ni-Sカソード材料の開発-電極特性[J].金属表面技術.,1987,38(8):14-18
    [66].王国庆,尉海军,朱磊,简旭宇,王忠.沉积电流对Ni-Mo-Co合金析氢催化性能的影响[J].稀有金属.,2010,34(5):712-716
    [67].魏海兴,周振芳,马强,吕东方. Ni-Mo-Co合金电极的制备和析氢性能研究[J].舰船防化,2011,3:24-28
    [68]. Gao C H, Li N. Hydrogen evolution reaction activity of electrodeposited amorphous/nanocrystalline Ni-Mo-La alloy electrode[J].The Chinese Journal of Nonferrous Metals.,2011,21(11):2819-2824
    [69].韩庆,陈建设,刘奎仁,李鑫,魏绪钧.电沉积非晶态Ni-S-Co合金在碱性介质中的析氢反应[J].金属学报.,2004,40(3):331-336
    [70]. Song L J, Meng H M. Electrodeposition of Nanocrystalline Nickel Alloys and TheirHydrogen Evolution in Simulated Seawater Solution[J]. Acta Phys.-Chim. Sin.,2010,26(9):2375-2380
    [71]. Zhang H, Hu Y J, Wu P, Zhang H, Cai C X. Preparation of an Ultrahigh Aspect RatioAnodic Aluminum Oxide Template for the Fabrication of Ni Nanowire Arrays[J].Acta Phys.-Chim. Sin.,2012,28(6):1545-1550
    [72]. Motoyama M, Fukunaka Y, Sakka T, Ogata Y H, Kikuchi S. Electrochemicalprocessing of Cu and Ni nanowire arrays[J]. J. Electroanal. Chem.,2005,584(2):84-91
    [73]. Wang X W, Fei G T, Xu X J, Jin Z, Zhang L D. Size-Dependent Orientation Growth ofLarge-Area Ordered Ni Nanowire Arrays[J]. J. Phys. Chem. B.,2005,109(51):24326-24330
    [74].张卫国,尚云鹏,刘丽娜,姚素薇,王宏智.电化学法制备Ni-W-P纳米线阵列电极及其催化析氢性能[J].物理化学学报.,2011,27(4):900-904
    [75]. Paseka I. Influence of hydrogen absorption in amorphous Ni-P electrodes on doublelayer capacitance and charge transfer coeffcient of hydrogen evolution reaction[J].Electrochim Acta.,1999,44(25)4551-4558
    [76].张学会,刘峥,王国瑞,张京迪.脉冲电沉积制备Ni-W-Fe-La纳米晶析氢电极材料[J].材料保护.,2010,6:42-45
    [77]. Salvi P, Nelli P, Villa M, Kiros Y, Zangari G, Bruni G, Marini A, Milanese C. Hydrogenevolution reaction in PTFE bonded Raney-Ni electrodes[J]. Int. J. Hydrogen. Energy.,2011,36(13):7816-7821
    [78]. Choquette Y, Brossard L, Lasia A, Menard H. Investigation of hydrogen evolution onRaney-nickel composite-coated electrodes[J].Electrochim Acta.,1991,35(8):1251-1256
    [79]. Hitz C, Lasia A. Determination of the kinetics of the hydrogen evolution reaction bythe galvanostatic step technique[J]. J Electroanal Chem.,2002,532(1-2):133-140
    [80]. Endoh E, Otouma H, Morimoto T, Oda Y. New Raney nickel compositecoatedelectrode for hydrogen evolution[J]. Int. J. Hydrogen. Energy.,1987,12(7):473-479
    [81]. Choquette Y, Brossard L, Lasia A, Menard H. Study of the kinetics of hydrogenevolution reaction on Raney Nickel composite-coated electrode by AC impedancetechnique[J]. J. Electrochem. Soc.,1990,137(6):1723-1730
    [82]. Martínez W M, Fernández A M, Cano U, Sandoval A. Synthesis of nickel-based skeletalcatalyst for an alkaline electrolyzer[J].Int.J. Hydrogen.Energy.,2010,35(16):8457-8462
    [83]. Ramazan S, Güféza K. Hydrogen evolution and corrosion performance of NiZn oatings[J]. Energy Conversion and Management.,2007;48(2):583-591
    [84]. Jaron A, Zurek Z. New porous Fe64Ni36and Ni70Cu30electrodes for hydrogen EvolutionProduction and properties[J]. Solid State Ionics.,2010,181(21-22):976-981
    [85]. Chen L L, Lasia A. Study of kinetics of hydrogen evolution reaction on nickel-zincpowder electrodes[J], J. Electrochem. Soc.,1993,139(11):3214-3219
    [86]. Los P, Rami A, Lasia A. Hydrogen evolution reaction on Ni-Al electrodes[J].J. Appl.Electrochem.,1993,23(2):135-140
    [87]. Shervedani R K, Lasia A. Kinetics of hydrogen evolutionreaction on nickel-zinc-phosphorus electrodes[J]. J. Electrochem Soc.,1997,144(8):2652-2657
    [88]. Sheela G, Pushpavanam M, Pushpavanam S. Zinc-nickel alloy electrodeposits forwater electrolysis[J]. Int. J. Hydrogen. Energy.,2002,27(6):627-633
    [89]. Dong H X, Lei T, He Y H, Xu N P, Huang B Y, Liu C T. Electrochemical performance ofporous Ni3Al electrodes for hydrogen evolution reaction[J]. Int. J. Hydrogen. Energy.,2011,36(19):12112-12120
    [90]. Huang Y J, Lai C H, Wu P W, Chen L Y. Ni Inverse Opals for Water Electrolysis in anAlkaline Electrolyte[J]. J. Electrochem Soc.,2010,157(3):18-22
    [91]. A·L·安托兹, M·布里奇斯, A·卡尔德拉拉.用于电解工艺的阴极[P].中国专利,102549197.2012-07-04
    [92].奈良美和子,鈴木智久.水素発生用陰極[P].日本专利,特開2012102408.2012-01-23
    [93]. Yoshida M, Noaki Y.氯碱工业电解中阳极和阴极的最新进展[J].陶应云译.氯碱工业.,1991,1:5-14
    [94].中島保夫.活性化陰極及びその製造方法[P].日本专利,特開平11140680.1999-05-25
    [95].付银辉,黎学明,李武林,张君. Ni-Ru-Ir氧化物阴极涂层的析氢活性[J].电化学.,2010,16(2):202-205
    [96].王雯,黎学明,杨文静,付银辉,李武林. Ni/PdO/RuO2复合型电极的制备及表征[J].无机化学学报.,2010,26(9):1633-1638
    [97].奈良美和子,锦善则,古田常人.析氢阴极[P].中国专利,1763252A.2005-05-27
    [98].野秋康秀.低い過電圧と耐久性に優れた水素発生用陰極[P].日本专利,特開2003-277966.2003-10-02
    [99]. Shi Y L, Yang Z, Li M K, Xu H, Li H L.Electroplated synthesis of Ni-P-UFD,Ni-P-CNTs, and Ni-P-UFD-CNTs composite coatings as hydrogen evolution electrodes[J]. Materials Chemistry and Physics.,2004,87(1):154-161.
    [100]. Wu G, Li N, Dai C S. Electrochemical preparation and characteristics of Ni-Co-LaNi5composite coatings as electrode materials for hydrogen evolution [J]. MaterialsChemistry and Physics.,2004,83(2):307-314
    [101]. Tavares A C, Trasatti S. Ni+RuO2co-deposited electrodes for hydrogen evolutionElectrochim. Acta.,2000,45(25-26):4195-4202
    [102].姚素薇,姚颖悟,张卫国,王宏智.镍-钨/二氧化锆纳米复合电极析氢性能的研究[J].电镀与涂饰.,2009.28,2,1-3
    [103]. Zheng H J, Huang J G, Wang W, Ma C N. Preparation of nano-crystalline tungstencarbide thin film electrode and its electrocatalytic activity for hydrogen evolution[J].Electrochem. Commun.,2005,7(10):1045-1049
    [104]. Justin C. Tokash, Bruce E. Logan. Electrochemical evaluation of molybdenum disulfideas a catalyst for hydrogen evolution in microbial electrolysis cells[J]. Int. J. Hydrogen.Energy.,2011,36(16):9439-9445
    [105].武刚,李宁,周德瑞. Ni-Co-LaNi5复合电极材料在碱性介质中的电催化析氢性能[J].无机化学学报,2003,19(7):739-744
    [106]. Zheng Z, Li N, Wang C Q, Li D Y, Zhu Y M, Wu G. Ni-CeO2composite cathodematerial for hydrogen evolution reaction in alkaline electrolyte[J]. Int. J. Hydrogen.Energy.,2012,37(19):13921-13932
    [107]. Daniel A. Dalla Corte, Camila Torres, Patricia dos Santos Correa, Ester Schmidt Rieder,Ce′lia de Fraga Malfatti. The hydrogen evolution reaction on ickel-polyanilinecomposite electrodes. Int. J. Hydrogen. Energy.,2012,37(4):3025-3032
    [108].郭鹤桐,张三元.复合电镀技术[M].北京:化学工业出版社,2007,4-6
    [109]. Krstaji N V, Gaji-Krstaji L, La njevac U, Jovi B M, Mora S, Jovi V D. Non-noblemetal composite cathodes for hydrogen evolution. Part I: the Ni-MoOx coatings electro-deposited from Watt’s type bath containing MoO3powder particles. Int. J. HydrogenEnergy.,2011;36(11):6441-6449.
    [110]. Dalla Corte D A, Torres C. Correa P D S, Rieder E S, Malfatti C D F. The hydrogenevolution reaction on nickel-polyaniline composite electrodes. Int. J. Hydrogen Energy.,2012;37(4):3025-3032.
    [111]. Adán C, Pérez-Alonso F J, Rojas S, Peňa M A, Fierro J.L.G. Enhancement ofelectrocatalytic activity towards hydrogen evolution reaction by boron-modified nickelnanoparticles[J]. Int. J. Hydrogen Energy.,2012;37(1):1-8.
    [112]. Iwakura C, Furukawa N, Tanaka M. Electrochemical Preparation and characterizationNi/Ni+RuO2composite coatings as an active cathode for hydrogen evolution[J].Electrochim. Acta.,1992,37(4):757-758.
    [113]. Lourdes V′azquez-G′omez, Sandro Cattarin, Paolo Guerriero, Marco Musiani.Preparation and electrochemical characterization of Ni+RuO2composite cathodes oflarge effective area[J]. Electrochim. Acta.,2007,52(28):8055-8063
    [114].马强,巴俊洲,蒋亚雄,李军,吴文宏.镍合金用作碱性电解水析氢阴极的研究综述[J].船舶工业.,2007,2:6-14
    [115].范少华,蔡乃才,桂岳琼.含NiMo和稀土储氢合金的电催化析氢电极[J].武汉大学学报.,1998,44(4):703-706
    [116]. Wang S L. Zhang. Y. Preparation and Electrocatalytic Performance of Ni-Mo/LaNi5Porous Composite Electrode toward Hydrogen Evolution Reaction[J]. Acta Phys.-Chim.Sin.,2011,27(6):1417-1423
    [117].肖秀峰,刘榕芳,朱则善. Ni-W-WC复合电极在碱性介质中的电催化析氢[J].物理化学学报,1999.15(8):742-746
    [118].黄成德,覃奇贤,郭鹤桐,Ni-WC复合电极的结晶结构及其电化学性能的研究[J].化学研究与应用.,1997,9(5):494-469
    [119].贾梦秋,杨文胜.应用电化学[M].北京:高等教育出版社,2004.87
    [120].傅献彩,沈文霞,姚天扬.物理化学[M].北京:高等教育出版社,1990,659
    [121].阿伦. J.巴德,拉里. R.福克纳.电化学方法原理和应用[M].邵元华,朱果逸,董献堆,张柏林.译:北京:化学工业出版社,2005.37
    [122]. Kellenbergera A, Vaszilcsina, N.; Brandlb, W.; Duteanua, N. Kinetics of hydrogenevolution reaction on skeleton nickel and nickel-titanium electrodes obtained by thermalarc spraying technique[J]. Int. J. Hydrogen. Energy.,2007,32:3258-3265
    [123]. Tasic G S, Maslovara S P, Zugic D L, Maksic A D, Kaninski M P M. Characterization ofthe NieMo catalyst formed in situ during hydrogen generation from alkaline waterelectrolysis[J]. Int. J. Hydrogen. Energy.,2011,36(18):11588-11595
    [124].贾梦秋,杨文胜.应用电化学[M].北京:高等教育出版社,2004.124
    [125]. Castro E B, Giz M J, Gonzalez E R, Vilche J R. An electrochemical impedance study onthe kinetics and mechanism of the hydrogen evolution reaction on nickel olybdeniteelectrodes[J]. Electrochim. Acta.,1997,42(6):951-959
    [126]. Krstajic′N, Popovic′M, Grgur B, Vojnovic′M, Sepa D. On the kinetics of thehydrogen evolution reaction on nickel in alkaline solution Part I. The mechanism[J]. J.Electroanal. Chem.,2001,512(1-2):16-26
    [127]. Losiewicz B, BudniokA, Róowiński E, Lagiewka E, LasiaA. The structure, morphologyand electrochemical impedance study of the hydrogen evolution reaction on the modify-ed nickel electrodes[J]. Int. J. Hydrogen. Energy.,2004,29(2):145-157
    [128]. Herraiz-Cardona I, Ortega E, Pérez-Herranz V.Impedance study of hydrogen evolutionon Ni/Zn and Ni-Co/Zn stainless steel based electrodeposits[J]. Electrochim. Acta.,2011,56(3):1308-1315
    [129]. Birry L, Lasia A. Studies of the hydrogen evolution reaction on Raney nickel molybden-um electrodes[J]. J. Appl. Electrochem.,2004,34(7):735-749
    [130]. Rosalbino F, Delsante S, Borzone G, Angelini E. Correlation of microstructure andcatalytic activity of crystalline Ni-Co-Y alloy electrode for the hydrogen evolutionreaction in alkaline solution[J]. J. Alloys Compd,2007,429:270-275
    [131]. Chen L, Lasia A. Study of the Kinetics of Hydrogen Evolution Reaction on Nickel-ZincAlloy Electrodes[J]. J. Electrochem. Soc,1991,138(11):3321-3328
    [132]. Rami A, Lasia A. Kinetics of hydrogen evolution on Ni-Al alloy electrodes[J].J. Appl. Electrochem,1992,22(4):376-382
    [133]. Los P, Lasia A, Ménard H.Impedance studies of porous lanthanum-phosphate-bondednickel electrodes in concentrated sodium hydroxide solution[J].J. Electroanal. Chem.,1993,36(1):101-118
    [134]. Chen L L, Lasia A, Ni-Al Powder Electrocatalyst for Hydrogen Evolution Effect ofHeat-Treatment on Morphology, Composition, and Kinetics[J]. J. Electrochem. Soc.,1993,140(9):2464-2473
    [135]. Lasia A, Rami A. Kinetics of hydrogen evolution on nickel electrodes[J]. J. Electroanal.Chem.,1990,294(1-2):123-141
    [136]. Lasia A. Study of electrode activities towards the hydrogen evolution reaction by a.c.impedance spectroscopy[J]. Int. J. Hydrogen Energy.,1993,18(7):557-560
    [137]. Miousse D, Lasia A. hydrogen evolution reaction on RuO2electrodes in alkalinesolutions[J]. J. New Mat. Electrochem Systems.,1999,2:71-78
    [138]. Han Q. A study on the electrodeposited Ni-S alloys as hydrogen evolution reaction catho-des[J]. Int J Hydrogen Energy.,2003,28(11):1207-1212
    [139]. Domínguez-Crespo M A, Torres-Huerta A M, Brachetti-Sibaja B, Flores-Vela A. Electr-ochemical performance of Ni-RE (RE=rare earth) as electrode material for hydrogenevolution reaction in alkaline medium[J]. Int J Hydrogen Energy,2011,36(1):135-151
    [140]. Fundo A M, Abrantes L M. The electrocatalytic behaviour of electroless Ni-P alloys[J]. JElectroanal Chem,2007,600(1):63-79
    [141].段钱花,王森林,王丽品.电沉积多孔复合Ni-P/LaNi5电极及其析氢电催化性能[J].物理化学学报,2013,29(1):123-130
    [142]. Cao Y L, Liu J J, Wang F, Ji J, Wang J J, Qin S Y, Zhang L H. Electrodeposited Ni-Sintermetallic compound film electrodes for hydrogen evolution reaction in alkalinesolutions[J]. Mater Lett.,2010,64(3):261-263
    [143]. Han Q, Jin Y, Pu N W, Liu K R, Chen J S, Wei X J. Electrochemical evolution of hydro-gen on composite La-Ni-Al/Ni-S alloy film in water electrolysis[J]. Int. J. Hydrogen.Energy.,2010,35(12):2627-2631
    [144]. Tilak B V, Ramamurthy A C, Conway B E. High performance electrode materials for thehydrogen evolution reaction from alkaline media[J]. Proceedings of the Indian Academyof Sciences-Chemical Sciences,1986,97(3-4):359-393
    [145]. Paseka I. Sorption of hydrogen and kinetics of hydrogen evolution on amorphous Ni-Sxelectrodes[J]. Electrochim. Acta,1993,38(16):2449-2454
    [146]. Herraiz-Cardona I, Ortega E, Vázquez-Gómez L, Pe′rez-Herranz V. Double-template fa-brication of threedimensionalporous nickel electrodes for hydrogen evolutionreaction[J]. Int J Hydrogen Energy.,2012,37(3):2147-2156
    [147].何捍卫,刘红江,刘芳,周科朝.泡沫镍基镍硫合金涂层形貌、结构和析氢性能研究[J].功能材料,2006,37(1):87-91
    [158].杜敏,高荣杰,蒲艳丽.电沉积Ni-S合金作碱液电解电极的研究进展[J].腐蚀科学与技术,2001,13:543-547
    [149]. Giz M J, Ferreira M, Tremiliosi-Filho G, Gon-zalez E R. Mechanistic study of thehydrogen evolution reaction on Ni-Zn and Ni-S cathodes[J]. J Appl Electrochem,1993,23(6):641-645
    [150]. Sabela R, Paseka I. Properties of Ni-Sxelectrodes for hydrogen evolution from alkalinemedium[J]., J. Appl. Electrochem.,1990,20(3):500-505
    [151]. Valanda T, Burchardta T, GrHntoftb T. Structure and catalytic behaviour of NiSxfilmswith respect to the hydrogen evolution[J]. Int J Hydrogen Energy,2002,27(1):39-44
    [152]. Donten M, Cesiulis H, Stojek Z. Electrodeposition of amorphous/nanocrystalline andpolycrystalline Ni-Mo alloys from pyrophosphate baths[J]. Electrochim. Acta.,2005,50(6):1405-1412.
    [153]. He H W, Liu H J, Zhou K C. Effect of sulphosalicylic acid on structures and electroche-mical properties of nickel sulphur alloy coatings[J]. J Nonferrous Metals.,2005,15(11):1780-1785
    [154].成田彰,渡辺徹.電析法による镍硫合金の析出過程と非晶质膜の形成[J].表面技術.,1991,42(5):559-563
    [155]. Wen T C, Lin S M, Tsal J M. Sulphur content and the hydrogen evolving activity ofNiSxdeposits using statistical experimental strategies[J]. J. Appl. Electrochem.,1994,24(3):233-238
    [156]. Zhang B, Ye X C, Dai W, Hou W Y, Xie Y. Biomolecule-Assisted Synthesis andElectrochemical Hydrogen Storage of Porous Spongelike Ni3S2Nanostructures GrownDirectly on Nickel Foils[J]. Chem. Eur. J.2006,12(8):2337-2342
    [157]. Han S C, Kim H S, Song M S, Lee P S, Lee J Y, Ahn H J. E lectrochemical properties ofNiS as a cathode material for rechargeable lithium batteries prepared by mechanicalAlloying[J]. J. Alloys. Compd.,2003,349(1-2):290-296
    [158]. Krstaji N, Popovi M, Grgur B, Vojnovi M, Sepa D. On the kinetics of the hydrogenevolution reaction on nickel in alkaline solution: PartII. Effect of temperature. JElectroanal Chem,2001,512(1-2):27-35
    [159]. Lasia A, Rami A. Kinetics of hydrogen evolution on Nickel electrodes[J]. J. Electroanal.Chem.,1990,294(1-2):123-141
    [160]. Kellenberger A, Vaszilcsin N, Brandl W, Duteanu N. Kinetics of hydrogen evolutionreaction on skeleton nickel and Nickel-titanium electrodes obtained by thermal arc spra-ying technique[J]. Int J Hydrogen Energy.,2007,32(15):3258-3265
    [161]. Hitz C, Lasia A. Experimental study and modeling of impedance of the her onporous Nielectrodes[J]. J. Electroanal. Chem.,2011,500(1-2):213-222
    [162]. Pierozynski, B. On the Hydrogen Evolution Reaction at Nickel-Coated Carbon Fibre in30wt.%KOH Solution.[J]. Int. J. Electrochem. Sci.,2011,6:63-77
    [163]. Antozzi A L, Bargioni C, Iacopetti L, Musiani M, V′azquez-G′omez L. EIS study of theservice life of activated cathodes for the hydrogenevolution reaction in the chlor-alkalimembrane cell process[J]. Electrochim. Acta.,2008,53(25):7410-7416
    [164]. Augis J A, Bennet J E. Kinetics of the transformation ofmetastable tinenickel eposits[J].J. Electrochem. Soc.,1978,125(2):330-334
    [165]. Santos M B F, Peres da Silva E, Andrade J R, Dias J A F. NiSn and porous NiZn coatingsfor water electrolysis[J]. Electrochim. Acta.,1992,37(1):29-32
    [166]. Shervedani R K, Lasia A. Studies of the Hydrogen Evolution Reaction on Ni-PElectrodes[J]. J. Electrochem. Soc.,1997,144(2):511-519
    [167]. Jaksic M M, Jaksic J M. Fermi dynamics and some structural bonding aspects of electro-catalysis for hydrogen evolution[J]. Electrochim. Acta.,1994,39(11-12):1695-1714
    [168]. Wei Z D, Yan A Z, Feng Y C, Li L, Sun C X, Shao Z G, Shen P K. Study of hydrogenevolution reaction on Ni-P amorphous alloy in the light of experimental and quantumchemistry[J]. Electrochem. Commun.,2007,9:2709-2715
    [169]. Tanabe Y, Shimizu Y. Electron microscopic Investigations on Microstructure and Phaseof Electrodeposited Ni-Sn Alloys[J]. Journal of the Metal Finishing Society of Japan.1975,26:406-410
    [170].胡赓祥,;钱苗根.金属学,上海:上海科学技术出版社,1980:129-130
    [171].伊藤清,王峰,渡辺徹.電析Ni-P合金めっき膜の微細構造と熱平衡状態図との関係[J].日本金属学会誌.,2001,65,495
    [172].渡辺徹,ファインプレーティングめっき膜の構造制御技術と解析法,1st.;技術情報協会:東京,2002; pp389-397.
    [173]. Okamoto H. Nickel-Tin[J]. Journal of Phase Equilibria and Diffusion.,2008,29(3):297-298
    [174]. Oue S, Nakano H, Kuroda R, Kobayashi S, Fukushima H. TEM-EDX Observations ofthe Microstructure of Electrodeposited Ni-Sn Alloys[J]. Materials Transactions.2006,47(6):1550-1554
    [175]. Kaninski M P M, Nikolic V M, Tasic G S, Rakocevic Z L. Electrocatalytic activation ofNi electrode for hydrogen production by electrodeposition of Co and V species[J]. Int. J.Hydrogen. Energy.2009,34(2):703-709
    [176]. Chen L, Lasia A. Study of the Kinetics of Hydrogen Evolution Reaction on Nickel-ZincPowder Electrodes[J]. J. Electrochem. Soc.,1992,139(11):3214-3219
    [177]. Lasia A. Electrochemical Impedance Spectroscopy and its Applications[J]. ModernAspects of Electrochemistry.,2002,32:243-248
    [178]. Marozzi C A, Chialvo A C, Development of electrode morphologies of interest inelectrocatalys-is. Part1: Electrodeposited porous nickel electrodes[J]. Electrochimi.Acta,2000,45(13):2111-2120
    [179]Yuana Y F, Xia X H, Wu J B, Chen Y B, Yang J L, Guo S Y. Enhanced electrochromicproperties of ordered porous nickel oxide thin film prepared by self-assembled colloidalcrystal template-assisted electrodeposition[J].Electrochimi. Acta,2011,56(3):1208-1212
    [180].Park J Y, Hendricks N R, Carter K R, Hierarchically Structured Porous CadmiumSelenide Polycrystals Using Polystyrene Bilayer Templates[J]. Langmuir,2012,28(37):13149-13156
    [181]. Zheng Z Y, Gao K Y, Luo Y H, Li D M, Meng Q B, Wang Y R, Zhang D Z. RapidlyInfrared-Assisted Cooperatively Self-Assembled Highly Ordered Multiscale PorousMaterials[J]. J. Am. Chemi. Soc.,2008,130:9785-9789
    [182]. Doherty C M, Caruso R A, Smarsly B M, Drummond C J. Colloidal Crystal Templatingto Produce Hierarchically Porous LiFePO4Electrode Materials for High Power LithiumIon Batteries[J]. Chem. Mater,2009,21(13):2895-2903
    [183].Lan D, Wang Y R, Ma W J, Cao H, Xie T H, Yao C. The key factors in fabrication ofhigh-quality ordered macroporous copper film[J]. Applied Surface Science,2008,254:6775-6778
    [184]. Vázquez G, Alvarez E, Navaza J.M, Surface Tension of Alcohol+Water from20to50degree.C[J]. Journal of Chemical and Engineering Data,1995,40:611-614
    [185].Zein El Abedin S, Prowald A, Endres F. Fabrication of highly ordered macroporouscopper films using template-assisted electrodeposition in an ionic liquid[J]. Electrochem.Commun.,2012,18:70-73
    [186]. Reese C E, Asher S A. Emulsifier-Free Emulsion Polymerization Produces HighlyCharged Monodisperse Particles for Near Infrared Photonic Crystals[J]. J. ColloidInterface Sci,2002,248(1):41-46
    [187].李淑娟,鞠鹤,蔡天晓,方媛.镍基金属氧化物电极的制备和应用性能的研究[J].氯碱工业,2010,46(11):13-17
    [188]. Shervedani R K, Kazemi S H, Lasia A, Mehrjerdi H R Z. Electrocatalytic behavior ofthermally deposited RuO2into the microporous Raney nickel electrode (Ni-Zn-P-RuO2)towards the HER[J]. J. New. Mater. Electrochemi. Syst.,2005,8:213-220
    [189]. Sp taru N, Helloco J G L, Durand R. A study of RuO2as an electrocatalyst for hydrogenevolution in alkaline solution[J]. J. Appl. Electrochem.,1996,26(4):397-402
    [190].高强,刘亚菲,胡中华,郑祥伟,温祖标.氧化锰表面改性活性炭电极材料的电化学特性[J].物理化学学报.,2009,25(2):229-236

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700