用户名: 密码: 验证码:
流域非点源贡献率核定及总量负荷分配研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为指导流域污染负荷削减,实现流域水环境污染物总量控制,本文围绕水体富营养化程度识别,污染物及其来源定量分析技术和非点源污染物总量负荷分配体系进行了研究,从而为辨识流域污染控制方向,确定污染源,明确污染控制任务提供科学技术方法体系。
     首先,以指数型白化权函数替代线性白化权函数改进了灰色聚类综合评价模型。以改进模型、原模型和梯形白化权函数模型对太湖2001-2009年水质营养程度进行评价,并比较结果。其次,基于克里格插值分析水体水质空间分布情况后,利用聚类分析、因子分析及Unmix受体模型构建水体污染物来源解析技术体系。采用太湖局部区域水质数据,分析主要污染来源及贡献。最后,借鉴生态评价模型构建社会-经济-环境三方公平的污染物总量负荷二次分配技术体系。以苕溪流域为例,利用产污系数模型预测流域2015年农业非点源化学需氧量(COD)、总氮(TN)、总磷(TP)的总量负荷,在改进的灰色聚类模型确定COD、TN和TP的农业非点源总量负荷削控目标条件下,将削控的农业非点源总量负荷分配至10个不同产污行业。获得的主要结果如下:
     ①基于改进的灰色聚类综合评价方法获取的示例水体2001-2009年富营养化评价结果均为富营养等级。原模型法获取的结果为中-富营养等级,只有2006年为富营养等级。梯形白化权函数的模型方法结果与改进方法相一致。参照原始监测数据,改进方法是有效的,且解决了原方法的零权重问题。
     ②2005年示例区域克里格空间插值结果为2、5、8月CODMn、TP浓度均从湖岸向湖中心逐渐降低,11月其浓度从湖岸向湖中逐渐降低后又有所增加,2、5、8、11月TN、Chl-a浓度均从湖岸向湖中心逐渐降低。结果反映出水体主要富营养化指标存在浓度分布的时空差异。
     ③经聚类分析可将示例区域监测点划分为4个类别,各类别监测点位CODMn、TP、TN、Chl-a浓度变化与空间插值获得的变化趋势一致,且各类别监测点位富营养化均属P控制;各类别监测点位监测数据经因子分析显示其水质均可用3方面主要污染因素进行解释,且所有类别点位的3方面主要污染因素均涉及农业非点源;Unmix受体模型解析结果显示农业非点源对在前3类监测点位的氮、磷营养盐贡献大(Ⅰ类点:TN、TP、氨氮(NH3-N):81%、85%、79%;Ⅱ类点:TN、NH3-N、磷酸盐(Po43-):53%、90%、89%;Ⅲ类点:TN. NO3-N:34%.84%).
     ④以产污系数模型预测的2015年苕溪流域的COD. TN. TP农业非点源负荷总量分别为:35383.11、11337.83、705.36吨。由于产业及土地利用差异,流域内各区县农业非点源负荷总量最大来源产业并不一致,但最小来源产业均为家兔饲养。各行政区域中,COD.TN单位面积负荷量最高在长兴,最低在临安;TP单位面积负荷最高在德清,最低在临安。
     ⑤经水体浓度阈值估算,结合苕溪流域水环境容量,为使下游湖泊受纳水体达中营养等级,2015年苕溪流域农业非点源需削控COD. TN. TP的负荷总量分别为:9150.29、5047.37、116.52吨。以此为目标下的流域一次地域分配中,COD、TN、TP在吴兴区削控率最大,分别为:49.80%、91.27%、40.84%,德清县COD、TP削控率最小,分别为:13.88%、5.78%,TN在长兴县削控率最小,为23.62%;二次分配中,COD在流域中的茶桑果园、农村生活、鸡鸭饲养、生猪饲养污染源分配最大,TN在农村生活污染源分配最大,TP旱地、水产养殖、水浇地、生猪饲养污染源最大。
     研究建立的方法体系能准确辨识水体富营养化程度,简便、快速的获取主要污染源及其对水体污染物的贡献,实现污染物总量负荷公平分配。
To guide abatement of pollution load and achieve water environment total amount control of pollutants in watershed, this thesis focused on identification of the eutrophication degree, source apportionment of pollutants and waste load allocation of non-point source system, so as to provide scientific metods for clarifying the direction of pollution control, indentifying pollution source and clearing the pollution control tasks.
     Firstly, through replacing the linear whitening weight function with the exponential whitening weight function, the grey clustering comprehensive aseesment model was improved. The nutrition status of water quality of Lake Taihu from 2001-2009 was assessed with the improved model, the original model and the model based on the trapezoidal whitening weight function model and the assessment results were compared with each other. Secondly, after analyzing the spatial distribution of the main pollutatns in water body with the kriging interpolation method, clustering analysis, factor analysis and the Unmix receptor model were used to establish source apportionment technology system of water pollutants. Taking the local area of Lake Taihu as case study area, the main polltion sources and the contribution of the sourecs were analyzed. At last, drawing on ecological assessment model, the secondary technical system of waste load allocation based on socio-economic-environmental justice principles was established. Taking the watershed of Tiaoxi River which the agricultural non-point pollution of is serious as example, after predicting the total agricultural non-point source loads of chemical oxyen demand (COD), total nitrogen (TN) and total phosphorus (TP) and determinating control target of the total agricultural non-point source loads by deriving the concentration thresholds of COD, TN and TP with the improved grey clustering model, the total agricultural non-point source loads of COD, TN and TP which need to be abate were allocated in different 10 industries. The results showed as the following:
     a) For the water qulity of sample, the eutrophication assessment results with the improved grey clustering method were the eutrophication classification from 2001 to 2009. However, the eutrophication assessment results with the original method were the mesotrophic classification from 2001 to 2009, except the assessment result was the eutrophication classification in 2006. The assessment results with the grey clustering method based on the trapezoid whitening weight functions were consist with those with the improved method. Referring to the raw monitoring data, the improved method was more effective. Furthermore, the improved method completely solved the zero-weight problem in the general method.
     b) The interpolation results with the Kriging method in the example area were that the concentrations of CODMn and TP decreased from the shore to the center of the lake in February, May and August and they were decreased firstly and increased from the shore to the center of the lake in November and the concentrations of TN and Chl-a always decreased from the shore to the center in each month. The results show that the concentration distribution of the main eutrophicaiton indicators exist the spatial and temporal characters.
     c) Through cluster analysis, the routine monitoring points in the example area can be classified to four classifications. The concentration trends of CODMn, TP, TN and Chl-a were consistent with the aforementioned trends of spatial interpolation. In this monitoring points, the eutrophication was controlled by phosphorus concentration; Through factor analysis, the water quality of the four classifications can be explained by three main factors and agricultural non-point source were involved in the three main pollution factors of the four classifications; Analytical results with the the receptor model (Unmix) shows that agricultural non-point source had a greater contribution of nutrients (nitrogen and phosphorus) to the previous three monitoring sites of the four classifications (I classification:TN,TP and NH3-N:81%,85% and 79%,Ⅱclassification:TN, ammonia nitrogen (NH3-N) and phosphate (PO43-):53%, 90%, and 89%,Ⅲclassification:TN and nitrate (NO3-N):34% and 84%).
     d) The loads of COD,TN and TP from agricultural non-point source which were predicted with the pollutant production coefficient model in Tiaoxi River watershed are 35383.11,11337,705.6 tons in 2015 respectively. Because of the difference of industry and land use, the industry which generates the most load of COD,TN and TP respectively are differce in each county, but the industry which generates the least loads of COD,TN and TP respectively is the rabbit breeding. In all six counties which the Tiaoxi River watershed includs, Changxin county has the maxium loads of COD and TN in unit area, Linan county has the minium load of COD and TN in unit area; the maxium load of TP in unit area appears in Deqing county and the minium load of TP in unit area is in Linan county.
     e) In order to promote the water quality of the reveiving water body of downstream to the middle nutrition classification, through calculating the threshold concentration of CODMn,TN and TP and conbining water environment capacity of the Tiaoxi River watershed, the abatement load of CODMn,TN and TP from agricultural non-point source is 9150.29,5047.37,116.52 tons in 2015 respectively. Under the target, in the first allocation, Wuxing county is the county in which the abatement rates of CODMn, TN and TP are the maximum (the abatement rate of the three indexes is 57.77%,61.47% and 74.17% respectively), Deqing county is the county which the allocation load of CODMn and TP of is the minimum (13.88% and 5.78% respectively); the abatement rate of TN is in the Changxin county (23.62%). In the second allocation, the main pollutant sources which the COD allocation loads of is the maximum were plantations of tea, mulberry and orchards, rural life, poultry farming and hog raising respectively. The main pollutant sources which the TN allocation load of is the maximum was rural life. The main pollutant sources which the TP allocation load of is the maximum were plantation of dry land, aquaculture, plantation of irrigated land and hog raising respectively.
     The methodology established in the thesis can accurately identify the eutrophication state, simpley and fastly acquire the main pollution sources and their comtribution to water pollutants, and achieve fair waste load allocation.
引文
[1]Haroon, A. Experts gather to discuss water crisis that the world is ignoring [J]. The Lanct,2003,361(9361):935.
    [2]Michael, M. World Bank predicts water crisis [J]. The Lanct,1995, 346 (8973):496.
    [3]World Water Assessment Program. Water security:a preliminary assessment of policy progress since Rio [M]. Paris:UNESCO,2001.
    [4]中华人民共和国水利部.2002中国水资源公报[R].北京:2002.
    [5]中华人民共和国水利部.2003中国水资源公报[R].北京:2003.
    [6]中华人民共和国水利部.2007年中国水资源公报[R].北京:2007.
    [7]温家宝.国务院政府工作报告[R].北京:2005.
    [8]Novotny, V., Olem, H. Water Quality:Prevention, identification and management of diffuse pollution [M]. Van Nostrand Reinhold. New York (USA):1994.
    [9]U. S. Comptroller General, National water quality goals cannot be met without more attention to pollution from diffused or nonpoint sources [R]. Report to Congress.1977.
    [10]Anbumozhi, V., Yamaji, E., Brock, S. Sustainable land use practices for abetting non-point source pollution [A]. Promoting global innovation of agricultural science & technology and sustainable agriculture development [C].2001.
    [11]Van der Keur, P., Hansen, J. R., Hansen, S., et al. Uncertainty in simulation of nitrate leaching at field and catchment scale within the Odense River Basin [J]. Original Research,2008,7(1):10-21.
    [12]Pimental, D. World soil erosion and conservation [M]. Cambridge: Cambridge University Press,1993.
    [13]庞靖鹏,徐宗学,刘昌明.SWAT模型研究进展[J].水土保持研究,2007,14(3):31-35
    [14]贺缠生,傅伯杰,陈利顶.非点源污染的管理及控制[J].环境科学,1998, 19(5):97-91.
    [15]路月仙,陈振楼,王军,等.地表水环境非点源污染研究的进展与展望[J].环境保护,2003,11:22-26.
    [16]USEPA. National water quality inventory:Report to congress executive summary[R]. washington DC:USEPA,1995:497.
    [17]闫伍,玖鲍祥.巢湖流域农业活动与非点源污染的初步研究[J].水土保持学报,2001,15(3):129-132.
    [18]郭慧光,闯自申.滇池富营养化及面源控制问题思考[J].环境科学研究,1999,12(5):43-44.
    [19]崔健,马友华,赵艳萍,等.农业面源污染的特性及防治对策[J].中国雇学通报,2006,22(1):335-340.
    [20]王东胜,杜强.水体农业非点源污染危害及其控制[J].科学技术与工程,2004,4(2):123-126,142.
    [21]刘昌明,何希吾.我国21世纪上半叶水资源需求分析[J].中国水利,2001,1:19-20.
    [22]秦伯强.太湖地区水资源和水环境面临的问题、原因与建议[A].太湖高级论坛交流文集[C].2004.
    [23]中华人民共和国环境保护部.中国环境状况公报[R].http://www.zhb.gov. cn/plan/zkgb/06hjzkgb/200706/P020070619274778023610.pdf.(2011.1.10)
    [24]郭红岩,王晓蓉,朱建国,等.太湖流域非点源氮污染对水质影响的定量化研究[J].农业环境科学学报,2003,22(2):150-153.
    [25]高超,朱建国,窦贻俭.农业非点源污染对太湖水质的影响:发展态势与研究重点[J].长江流域资源与环境,2002,11(3):260-263.
    [26]于兴修,杨桂山,欧维新.非点源污染对太湖上游西苕溪流域水环境的影响[J].湖泊科学,2003,15(1):49-55.
    [27]陈晓宏,江涛,陈俊合.水环境质量评价与保护[M].广州:中山大学出版社,2001.
    [28]马太玲.湖库水质评价及水质模拟预测方法研究[D].内蒙古农业大学博士学位论文.呼和浩特:内蒙古农业大学,2007.
    [29]田红.改进的模糊层次综合评价方法在水环境质量评价中的应用[D].河海大学硕士学位论文.南京:河海大学,2008.
    [30]徐祖信.我国河流综合水质标识指数评价方法研究[J].同济大学学报,2005,33(4):482-488.
    [31]薛巧英.水环境质量评价方法的比较分析[J].环境保护科学,2004,30(124):64-67.
    [32]蒋火华,朱建平,梁德华,等.综合污染指数评价与水质类别判定的关系[J].中国环境监测,1999,15(6):46-48.
    [33]李绍飞.区域水资源水环境综合评价方法研究[D].天津大学博士学位论文.天津:天津大学,2006.
    [34]陈剑虹,杨保华.环境统计应用[M].北京:化学工业出版社,2010.
    [35]Devendra, S.B. Use of water quality index for river classification and zoning of Ganga River [J]. Environmental Pollution Series B, Chemical and Physical,1983,6(1):51-67.
    [36]谷朝君,潘颖,潘明杰.内梅罗指数法在地下水质评价中的应用及存在问题[J].环境保护科学,2002,28(1):45-47.
    [37]申锐莉,张建新,鲍征宇,等.洞庭湖水质评价[J].湖泊科学,2006,18(3):243-249.
    [38]Gvishiani, A. D., Agayan, S. M., Bogoutdinov, Sh. R., et al. Mathematical methods of Geoinformatics. Ⅱ. Fuzzy-Logic Algorithms in the Problems of Abnormality Separation in Time Series [J]. Cybernetics and Systems Analysis,2003,39 (4):555-563.
    [39]Weldon, A. L. Reliable Computing:Special issue on the linkages between interval mathematics and fuzzy set theory [J]. Reliable Computing, 2002,8(1):93-95.
    [40]孙靖南,邹志红,任广平.模糊综合评价在天然水体水质评价中的应用研究[J].环境污染治理技术与设备,2005,6(2):45-46.
    [41]李莲芳,曾希柏,李国学,等.利用模糊综合评判法评价潮白河流域水质[J].农业环境科学学报,2006,25(2):471-476.
    [42]Chang, N. B., Chen, H. W., Ning, S. K. Identification of river water quality using the fuzzy synthetic evaluation approach [J]. Journal of Environmental Management,2001,63(3):293-305.
    [43]Dahiya, S., Singh, B., Gaur, S., et al. Analysis of groundwater quality using fuzzy synthetic evaluation [J]. Journal of Hazardous Material,2007,14 (3):938-946.
    [44]文志明.模糊数学贴近度法在水环境质量综合评价中的应用[J].抚顺石油化工研究院院报,1993,6(1):206-210.
    [45]张文鸽,管建新,徐清山.水环境质量评价的模糊贴近度法[J].水资源保护,2006,2:19-22.
    [46]李祚泳,丁晶,彭荔红.环境质量评价原理与方法[M].北京:化学工业出版社,2004.
    [47]马建华,季凡.水质评价的模糊概率综合评价法[J].水文,1994,3:21-25.
    [48]王学武,谭得健.神经网络的应用与发展趋势[J].计算机工程与应用,2003,3:98-100,113.
    [49]张成燕,徐望,赵冬冬,等.基于神经网络的水厂原水水质的综合评价[J].冶金分析,2008,28(5):44-47.
    [50]孙莉宁,张之源,罗定贵.基于MATLAB实现的ANN方法在巢湖水质评价中的应用[J].安徽大学学报,2005,29(2):90-94.
    [51]莫明浩,杨洁,宋月君,等.人工神经网络在湖北洪湖水质综合评价中的应用[J].安徽农业科学,2010,25:13931-13933.
    [52]娄申,干晓蓉.基于BP神经网络的水质评价[J].云南民族大学学报,2007,16(2):165-167.
    [53]倪深海,白玉慧.BP神经网络模型在地下水水质评价中的应用[J].系统工程理论与实践,2000,8:124-127.
    [54]董曼玲,黄胜伟.径向基函数神经网络在水质评价中的应用[J].环境科学与技术,2003,26(1):23-25.
    [55]Walley, W. J., Fontama, V. N. Neural network predictors of average score per taxon and number of families at unpolluted river sites in Great Britain[J]. Water Research,1998,32(3):613-622.
    [56]李如忠.水质评价理论模式研究进展及趋势分析[J].合肥工业大学学报,2005,28(4):369-373.
    [57]邓璇,陈庆华,张江山.灰色聚类法在福建晋江水系水质评价中的应用[J].环境科学与管理,2010,35(9):187-191.
    [58]张旭,江长胜,郝庆菊.灰色聚类法在重庆北碚区境内支流河流水质评价中的应用[J].中国农学通报,2010,2:241-245.
    [59]云逸,邹志红.灰色聚类法在三峡库区城市江段水质综合评价中的应用[J].数学的实践与认识,2007,37(12):65-72.
    [60]朱庆峰,廖秀丽,陈新庚,等.用灰色聚类法对荔湾水质富营养化程度的评价[J].中国环境监测,2004,20(2):47-50.
    [61]崔振昂,贾华伟,李方林,等.改进的灰色变权聚类法在水质评价中的应用[J].安全与环境工程,2003,10(2):30-33.
    [62]孟宪林,孙丽欣,周定,等.灰色理论在环境质量评价中的应用与完善[J].哈尔滨工业大学学报,2002,34(5):700-702.
    [63]肖晓柏,许学工.地表水环境质量灰关联评价方法探讨[J].环境科学与技术,2003,26(3):34-36.
    [64]夏军.区域水环境质量灰关联度评价方法的研究[J].水文,1995,2:4-9.
    [65]章新,贺石磊,张雍照,等.水质评价的灰色关联分析方法研究[J].水资源与水工程学报,2010,21(5):117-119.
    [66]廖水文,鄢忠纯,黄沈发.应用灰色关联法评价上海市水源地水质状况[J].环境科学与技术,2009,32(B12):108-111.
    [67]赵宏,马立彦,贾青.基于变异系数法的灰色关联分析模型及其应用[J].黑龙江水利科技,2007,35(2):26-27.
    [68]吴京,王启山,张旋,等.改进的灰色关联度方法在天津引滦输水沿线水质评价中的作用[J].水资源与水工程学报,2010,21(1):71-74.
    [69]史晓新,金光炎.水质评价灰色模式识别模型及其应用[J].水电能源科学,1997,15(4):45-49.
    [70]芦云峰,谭德宝,王学雷.基于灰色模式识别模型的洪湖水质评价初探[J]. 长江科学院学报,2009,5:58-61.
    [71]郑建青.水环境质量评价的灰色局势决策法[J].科技与管理,2003,19(3):29-31.
    [72]李如忠.河流水环境系统不确定性问题研究[D].河南大学博士学位论文.郑州:河南大学,2004.
    [73]冯玉国.物元分析在地下水水质评价中的应用[J].水文,1995,(Ⅰ):54—56,29.
    [74]门宝辉,梁川.水质量评价的物元分析法[J].哈尔滨工业大学学报,2003,35(3):358-361.
    [75]樊文艳,吴国元.水质综合评价物元模型的建立与应用[J].上海环境科学,2000,19(5):205-207.
    [76]胡宝清,王效礼,夏军.区域水环境质量可拓评价方法的研究[A].水资源可持续管理问题研究与实践[M].武汉:武汉测绘科技大学出版社,1999,152-156.
    [77]王锦国,周志芳,袁永生.可拓评价方法在环境质量综合评价中的应用[J].河海大学学报,2002,30(1):15-18.
    [78]冯玉国,程锡良.地下水环境质量综合评价可拓集合方法及其应用[J].工程勘察,2002,3:23-25.
    [79]胡宝清.区域水环境质量的区间可拓评价方法及应用[J].中国工程科学,2001,3(6):53-56.
    [80]Ditoro, D. M. Probability model of stream quality due to runoff [J]. Journal of Environmental Engineering,1984,110(3):607-628.
    [81]刘开第,庞彦军,张博文.水环境质量评价的未确知测度模型[J].环境工程,2000,18(2):58-60.
    [82]Yan H.Y., Feng, X. B., Tang, S. L. The concentration and distribution of mercury species in the water columns of Baina Reservoir [J]. Journal De Physiqure,2003,107 (4):1385-1388.
    [83]Muxika, I., Borja, B. J. Using historical data, expert judgment and multivariate analysis in assessing reference conditions and benthic ecological status, according to the European Water Framework Directive [J]. Marine Pollution Bulletin,2006,55 (126):16-29.
    [84]谢森,何连生,田学达,等.巢湖水质时空分布模式研究[J].环境工程学报,2010,4(3):531-539.
    [85]卢进登,张劲,陈红兵,等.GIS技术在长湖水污染现状分析中的应用[J].湖北大学学报,2007,29(2):199-202.
    [86]陈利顶,李俊然,郭旭东,等.蓟运河流域地表水质时空变化特征分析[J].环境科学,2000,21(6):61-64.
    [87]姚维科,杨志峰,刘卓,等.澜沧江中段水质时空特征分析[J].水土保持学报,2005,19(6):148-152.
    [88]陶平,邵秘华,丁永生,等、小窑湾营养盐和铅、锌的时空变化新探[J].海洋通报,2005,24(3):22-28.
    [89]郭跃东,何岩,邓伟,等.扎龙湿地水体N、P营养物质空间异质性研究[J].环境科学研究,2005,18(2):51-56.
    [90]穆迪,袁德奎,陶建华.地理信息系统在渤海湾水体富营养化研究中的应用[J].海洋技术,2006,25(1):73-77.
    [91]朱广一.大气可吸入颗粒物研究进展[J].环境保护科学,2002,28(113):3-5.
    [92]于瑞莲,胡恭任,袁星,等.大气降尘中重金属污染源解析研究进展[J].地球与环境,2009,37(1):73-79.
    [93]Henry, R. C. Multivariate receptor models-current practice and future trends [J]. Chemometrics and Intelligent Laboratory Systems,2002, 60 (1-2):43-48.
    [94]江锦花.台州湾近海海水中多环芳烃的浓度水平及源解析[J].环境化学,2007,26(4):551-552.
    [95]周溶冰,谢正苗,李静.杭州下沙地面水体中PAHs的浓度水平和源解析[J].第五届全国环境化学大会,大连,2009.
    [96]韩菲,马溪平,刘颖颖.辽河水中PAHs的污染水平及源解析[J].气象与环境学报,2009,25(6):68-71.
    [97]陈明华,陈静森,李德.上海市大气颗粒物高浓度区污染物的源解析[J].上 海环境科学,1997,16(10):15-17.
    [98]Samara, C. Chemical mass balance source apportionment of TSP in a lignite-burning area of Western Macedonia, Greece [J]. Atmospheric Environment,2005,39(34):6430-6443.
    [99]Argyropoulos, G., Samara, C. Development and application of a robotic chemical mass balance model for source apportionment of atmospheric particulate matter [J]. Environmental Modelling & Software, 2011,26(4):469-481.
    [100]Srivastava, A., Sengupta, B., Dutta, S. A. Source apportionment of ambient VOCs in Delhi City [J]. Science of The Total Environment,2005, 343(1-3):207-220.
    [101]Bi, X. H., Feng, Y. C., Wu, J. H., et al. Source apportionment of PM10 in six cities of northern China [J]. Atmospheric Environment,2007,41(5): 903-912.
    [102]Hopke, P. K. An introduction to receptor modeling [J]. Chemometrics and Intelligent Laboratory Systems,1991,10:21-43.
    [103]Henry, R. C., Lewis, C. W., Hopke, P. K., et al. Review of receptor model fundamentals, Atmospheric Environment [J].1984,18 (8):1507-1515.
    [104]Dutton, S. J., Vedal, S., Piedrahita, R., et al. Source apportionment using positive matrix factorization on daily measurements of inorganic and organic speciated PM2.5[J]. Atmospheric Environment,2010, 44(23):2731-2741.
    [105]Brown, S. G., Frankel, A., Hafner, H. R. Source apportionment of VOCs in the Los Angeles area using positive matrix factorization [J]. Atmospheric Environment,2007,41 (2):227-237.
    [106]Karanasiou, A. A., Siskos, P.A., Eleftheriadis, K. Assessment of source apportionment by Positive Matrix Factorization analysis on fine and coarse urban aerosol size fractions [J]. Atmospheric Environment, 2009,43(21):3385-3395.
    [107]Lau, A. K. H., Yuan, Z. B., Yu, J. Z., et al. Source apportionment of ambient volatile organic compounds in Hong Kong [J]. Science of The Total Environment,2010,408(19):4138-4149.
    [108]Hellen, H., Hakola, H., Laurila, T. Determination of source contributions of NMHCs in Helsinki (60°N,25°E) using chemical mass balance and the Unmix multivariate receptor models [J]. Atmospheric Environment,2003,37(11):1413-1424.
    [109]Song, Y., Dai, W., Shao, M., et al. Comparison of receptor models for source apportionment of volatile organic compounds in Beijing, China [J]. Environmental Pollution,2008,156(1):174-183.
    [110]Hu, S.H., Mcdonald, R., Martuzevicius, D., et al. UNMIX modeling of ambient PM2.5near an interstate highway in Cincinnati, OH, USA[J]. Atmospheric Environment,2006,40 (2):378-395.
    [111]Almeida, S.M., Pio, C. A., Freitas, M. C., et al. Approaching PM2.5 and PM2.5-10 source apportionment by mass balance analysis, principal component analysis and particle size distribution [J]. Science of The Total Environment,2006,368 (2-3):663-674.
    [112]Gordon, G. E. Receptor models [J]. Environmental Science and Technology,1980,14 (7):792-799.
    [113]何优选.总量控制下排污指标分配的原则[J].嘉应大学学报,2001,19(3):28-32.
    [114]崔正国.环渤海13城市主要化学污染物排海总量控制方案研究[D].青岛:中国海洋大学博士学位论文,2008.
    [115]中国环境保护总局,中国环境科学研究院.总量控制技术手册[M].北京:中国环境科学出版社,1990.
    [116]张天柱.水污染物排放总量控制管理的经济原则[J].环境科学,1991,11(6):2-6.
    [117]林高松,李适,宇江峰.基于公平区间的污染物允许排放量分配方法[J].水利学报,2006,37(1):52-57.
    [118]Ecker, J. G. A geometric programming model for optimal allocation of stream dissolved oxygen [J]. Management Science,1975,21(6):658-668.
    [119]Revelle, C. S., Loucks, D. P., Lynn, W. R. Linear programming applied to water quality management [J]. Water Resources Research,1968,4(1): 1-9.
    [120]Fujiwara,0., Gnanendran, S. K., Ohgaki, S. River quality management under stochastic streamflow [J]. Journal of Environmental Engineering, 1986,112 (2):185-198.
    [121]Burn, D. H. Mcbean E A. Optimization modeling of water quality in an uncertain environment [J]. Water Resources Research,1985,21 (7): 934-940.
    [122]Burn, D. H., Lence, B. J. Comparison of optimization formulations for waste-load allocations [J]. Journal of Environmental Engineering,118 (4): 597-612.
    [123]Li, S. Y., Morioka, T. Optimal allocation of waste loads in a river with probabilistic tributary flow under transverse mixing [J]. Water Environment Research,1999,71 (2):156-162.
    [124]Li, S. Y. A programming model for river quality management under transverse mixing [J]. Water Science and Technology,1992,26 (7-8): 1823-1830.
    [125]Joshi, V., Modak, P. Heuristic algorithms for waste load allocation in a river basin [J]. Water Science and Technology,1989,21:1057-1064.
    [126]Tung, Y. K. Multiple-objective stochastic waste-load allocation [J]. Water Resources Management.1992,6(2):117-133.
    [127]Qin, X. S., Huang, G. H., Chen, B., et al. An interval-parameter waste-load-allocation model for river water quality management under uncertainty [J]. Environmental Management,2009,43(6):999-1012.
    [128]林巍,傅国伟,刘春华.基于公理体系的排污总量公平分配模型[J].环境科学,1996,17(3):35-37.
    [129]吴悦颖,李云生,刘伟江.基于公平性的水污染物总量分配评估方法研究[J].环境科学研究,2006,19(2):66-70.
    [130]张志耀,张海明.污染物排放总量分配的群体决策方法研究[J].系统科学与数学,2001,21(4):473-479.
    [131]李彦武,张永良.污染负荷分配计算的方法研究[J].环境科学研究,1992,5(2):45-48.
    [132]李如忠,钱家忠,汪家权.水污染物允许排放总量分配方法研究[J].水利学报,2003,5:112-115,121.
    [133]杨玉峰.污染物排放总量控制系统的不确定性分析[D].清华大学博士学位论文.北京:清华大学,1999.
    [134]邓聚龙,灰色系统基本方法[M].武汉:华中科技大学出版社,1985.
    [135]Deng, J. L., Grey system book [M]. Windsor:Sci-Tech Information Services,1988.
    [136]严良忠,基于灰色系统理论的绿色住宅设计评价研究[D].北京工业大学硕士学位论文.北京:北京工业大学,2007.
    [137]曾波,刘思峰,谢乃明,等.基于灰数带及灰数层的区间灰数预测模型[J].控制与决策,2010.25(10):1585-1588,1592.
    [138]刘思峰,党耀国,方志耕.灰色系统理论及其应用[M].第五版.北京:科学出版社,2010:21-25,85-109.
    [139]姚建玉,钟正燕,陈金发.灰色聚类关联评估在水环境质量评价中的应用[J].环境科学与管理,2009,34(2):172-174.
    [140]Pan, A., Hu, L. H., Li, T. S., et al. Assessing the eutrophication of Shengzhong Reservoir based on grey clustering method [J]. Chinese Journal of Population, Resources and Environment,2009,7 (2):83-87.
    [141]张卫华,赵铭军.指标无量纲化方法对综合评价结果可靠性的影响及其实证分析[J].统计与信息论坛,2005,20(3):33-36.
    [142]张立军,袁能文.线性综合评价模型中指标标准化方法的比较与选择[J].统计与信息论坛,2010,25(8):10-15.
    [143]李炳军,朱春阳,周杰.原始数据无量纲化处理对灰色关联序的影响[J]. 河南农业大学学报,2002,36(2):199-202.
    [144]张永凯,杜德斌.上海城市科技创新能力的指标体系及分析评价[J].科技与经济,2010,23(137):21-24.
    [145]许文杰,陈为国.应用灰色聚类法评价湖泊水体富营养化[J].山东建筑大学学报,2007,22(1):49-51,56.
    [146]党国辉,孙翔.关于灰色聚类分析计算的研究[M].开封:河南大学出版社,1993,103-107.
    [147]兰文辉.灰色聚类分析法在大气环境评价中的应用及与其它方法的比较[J].干旱环境监测,1995,9(3):147-150.
    [148]Zhou, L. F., Xu, S. G. Application of grey clustering method in eutrophication assessment of wetland [J]. Journal of American Science, 2006,2(4),53-58.
    [149]李新,程国栋,卢玲.空间内插方法比较[J].地球科学进展,2000,15(3):260-265.
    [150]田考聪,王显红,周燕荣,等.优化利用点源数据的一种GIS空间分析方法[J].中国卫生统计,2002,19(4):211-213.
    [151]林振山,袁林旺,吴得安.地学建模[M].北京:气象出版社,2003.
    [152]刑怀学.基于GIS合肥地区土壤元素空间变异及分形特征研究[D].合肥工业大学硕士学位论文.合肥:合肥工业大学,2007.
    [153]冯锦明,赵天保,张英娟.基于台站降水资料对不同空间内插方法的比较[J].气候与环境研究.2004,9(2):261-276.
    [154]Chang, K. T.地理信息系统导论(第三版)[M].北京:清华大学出版社,2006.
    [155]晏星,马小龙,赵文慧.基于不同插值法的PM1污染物浓度研究[J].测绘.2010,33(4):172-175.
    [156]刘刚,赵荣,刘纪平,等.澜沧江流域降水量空间分布的克里格插值分析[J].测绘科学.2007,32(3):104-105,113.
    [157]Allasia, G. Some physical and mathematical properties of inverse distance weighted methods for scattered data interpolation [J]. Calcolo, 1992,29(1-2):97-109.
    [158]Bartier, P. M., Keller, C. P. Multivariate interpolation to incorporate thematic surface data using inverse distance weighting (IDW)[J]. Computers & Geosciences,1996,22(7):795-799.
    [159]阎洪.气候时空数据的样条插值与应用[J].地理与地理信息科学.2003,19(5):27-31.
    [160]Evan, J. England spatial simulation:Environmental application, environmental modeling with GIS [M]. NewYork:Oxford University press, 1993.
    [161]Matheron, G. Principles of geostatistics [J]. Economic Geology, 1963,58:1246-1266.
    [162]李莉,胡建平.克里金插值算法在等高线绘制中的应用[J].天津城市建设学院学报.2008,14(1):68-71.
    [163]颜慧敏.空间插值技术的开发与实现[D].西南石油学院硕士学位论文.南充:西南石油学院,2005.
    [164]Yost, R. S., Uchara, G., Fox, R. L. Geostatistical analysis of soil chemical properties of large land areas. Ⅰ. Semi-variograms [J]. Soil Science Society of America Journal.1982,46:1028-1037.
    [165]陈伟志,魏振军,王春迎.多元统计分析在数据挖掘中的作用[J].信息工程大学学报.2003,4(4):22-25.
    [166]Reghunath, R., Murthy, T. R. S., Raghavan, B. R. The utility of multivariate statistical techniques in hydrogcochemical studies:an example from Karnataka,India [J]. Water Research,2002,36(10): 2437-2442.
    [167]Lambrakis, N., Antonakos, A., Panagopoulos, G. The use of multicomponent statistical analysis in hydrogeological environmental research. Water Research,2004,38(7):1862-1872.
    [168]Astel, A., Tsakovski, S., Simeonov, V., et al. Multivariate classification and modeling in surface water pollution estimation[J]. Analytical and Bioanalytical Chemistry,2008,390(5):1283-1292.
    [169]Zippy, E. Data mining by means of binary representation:A model for similarity and clustering [J]. Information System Frontiers,2002,4(2): 187-197.
    [170]高惠璇.应用多元统计分析[M].北京:北京大学出版社,2006.
    [171]Gordon, G. E. Receptor models [J]. Environmental. Science Technology. 1988,22:1132-1142.
    [172]Henry, R. C. Multivariate receptor modeling by N-dimensional edge detection[J]. Chemometrics and Intelligent Laboratory Systems,2003,65: 179-189.
    [173]Kim, B. M., Henry, R. C. Appl ication of SAFER model to the Los Angeles PM10 data [J]. Atmospheric,2000,34 (11):1747-1759.
    [174]Song, Y., Xie, S. D., Zhang, Y. H., et al. Source apportionment of PM2.5 in Beijing using principal component analysis/absolute principal component scores and UNMIX [J]. Science of the Total Environment,2006, 372(1):278-286.
    [175]Henry, R. C. EPA Unmix 6.0 fundamentals & user guide. USEPA,2007. http://www. epa.gov/heasd/products/unmix/unmix-6-user-manual.pdf.
    [176]张玉清.河流功能区水污染物容量总量控制的原理和方法[M].北京:中国环境科学出版社,2001:2-9.
    [1771李如忠,汪家权,钱家忠.区域水污染负荷分配的Delphi-AHP法[J].哈尔滨工业大学学报,2005,37(1):84-88.
    [178]傅伯杰,刘世梁,马克明.生态系统综合评价的内容与方法[J].生态学报,2001,21(11):1885-1892.
    [179]海热提·涂尔逊.城市生态环境规划—理论、方法与实践[M].北京:化学工业出版社,2005.
    [180]Button, K. City management and urban environmental indicators [J]. Ecological Economics,2002.40(2):217-233.
    [190]Cheng, J. Q, Turkstra, J., Peng, M. J., et al. Urban land administration and planning in China:Opportunities and constraints of spatial data models [J]. Land Use Policy,2006,23:604-616.
    [191]马世骏,王如松.社会—经济—自然复合生态系统[J].生态学报,1984,4(1):129.
    [192]张翔,佘红英,万鹏,等.我国城市生态评价研究进展[J].四川环境,2009,28(3):89-93,113.
    [193]Xiong, Y., Zeng, C.M., Chen, G. Q., et al. Combining AHP with GIS in synthetic evaluation of eco-environment quality—A case study of Hunan Province, China[J]. Ecological Modelling,2007,209:97-109.
    [194]徐建华.现代地理学中的数学方法[M].北京:高等教育出版社,2002.
    [195]刘庄,谢志仁,沈渭寿.提高区域生态环境质量综合评价水平的新思路—GIS与层次分析法的结合[J].长江流域资源与环境,2003,12(2):163-168.
    [196]Peter, K., Zhu, W., Mario, M. Water and mass budgets for estimating phosphorus sediment water exchange in Lake Taihu (China P. R.) [J]. Hydrobiologia,2005,544(1):167-175.
    [197]Wang, X. J., Liu, R.M. Spatial analysis and eutrophication assessment for Chlorophyll a in Taihu Lake [J]. Environmental Monitoring and Assessment,2005,101(1-3):167-174.
    [198]金相灿,刘鸿亮,屠清瑛,等.中国湖泊富营养化[M].北京:中国环境科学出版社,1990.
    [199]太湖流域管理局.太湖流域水质及水资源公报2001-2009[R].上海:2001-2009.
    [200]樊红艳,刘学录.基于综合评价法的各种无量纲化方法的比较和优选——以兰州市永登县的土地开发为例[J].湖南农业科学,2010,(17):163-166.
    [201]兰文辉.灰色聚类分析法在大气环境评价中的应用及与其它方法的比较[J].干旱环境监测,1995,9(3):147-150.
    [202]郭劲松,龙腾锐,霍国友,等.四种水质综合评价方法的比较[J].重庆建筑大学学报,2000,22(4):6-12.
    [203]Zhang, Q. L., Chen, Y. X., Jilani, G., et al. Model AVSWAT apropos of simulating non-point source pollution in Taihu lake basin [J]. Journal of Hazardous Materials,2010,174:824-830.
    [204]Adebowale, K.O., Agunbiade, F.O., Olu-Owolabi, B.I. Fuzzy comprehensive assessment of metal contamination of water and sediments in Ondo Estuary, Nigeria [J]. Chemistry and Ecology,2008,24(4):269-283.
    [205]Zhang, Q. L., Chen, Y. X., Jilani, G., et al. Model AVSWAT apropos of simulating non-point source pollution in Taihu lake basin [J]. Journal of Hazardous Materials,2010,174:824-830.
    [206]Niu, X. J., Geng, J. J., Wang, X. R., et al. Temporal and spatial distributions of phosphine in Taihu Lake China [J]. Science of The Total Environment,2004,323 (1-3):169-178.
    [207]黄文钰,杨桂山,许朋柱.太湖流域“零点”行动的环境效果分析[J].湖泊科学,2002,14(1):67-71.
    [208]肖文胜,杨开,郭建林.环境因子对湖泊底泥释磷的影响研究[J].中国给水排水,2009,25(3):50-53.
    [209]Jeppesen, E., Kristensen, P., Jensen, J. P., et al. Recovery resilience following a reduction in external phosphorus loading of shallow, eutrophic Danish lakes:duration, regulating factors and methods for overcoming resilience [J], Memorie Dell'Istituto Italiano Di Idrobiologia,1991,48:127-148.
    [210]Wang, X. J., Zhang, W., Huang, Y. N., et al. Modeling and simulation of point-non-point source effluent trading in Taihu Lake area: perspective of non-point sources control in China [J]. Science of the Total Environment,2004,325(1-3):39-50.
    [211]Zhang, J. Y., Ni, W. M., Luo, Y., et al. Response of freshwater algae to water quality in Qinshan Lake within Taihu Watershed, China [J]. Physics and Chemistry of the Earth, Parts A/B/C,2011,36(9-11):360-365.
    [212]谢正苗,李静,徐建明,等.杭嘉湖平原土壤中氟元素的空间分布特征[J].中国环境科学,2005,25(6):719-723.
    [213]张绪美,董元华,石浚哲,等.聚类因子分析在太湖水质参数评价中的应用[J].安全与环境学报,2006,6(6):58-62.
    [214]吴梅林,王友绍,林立,等.基于主成分分析研究大亚湾水质时空变化特征[J].海洋环境科学,2009,28(3):279-282.
    [215]Guo, H. Y., Zhu, J. G., Wang, X. R., et al. Case study on nitrogen and phosphorus emissions from paddy field in Taihu region [J]. Environmental Geochemistry and Health,2004,26:209-219.
    [216]Pekey, H., Karakas, D., Bakoglu, M. Source apportionment of trace metals in surface waters of a polluted stream using multivariate statistical analyses [J]. Marine Pollution Bulletin,2004, 49(9-10):809-818.
    [217]缪恒锋.太湖富营养化水体中典型污染物的臭氧氧化研究[D].江南大学博士学位论文.无锡:江南大学,2008.
    [218]江苏省环境科学研究院.太湖流域主要入湖河流水环境综合整治规划编制技术规范[R].南京:2008.
    [219]中国环境规划院.全国水环境容量核定技术指南[M].北京:2003.
    [220]张大弟,章家骐.上海市郊区非点源污染综合调查评价[J].上海农业学报,1997,13(01):31-36.
    [221]吕俊.基于GIS的杭州市水环境容量计算及总量分配系统研制[D].河海大学硕士学位论文.南京:河海大学,2007.
    [222]王浩.湖泊流域水环境污染治理的创新思路与关键对策研究[M].北京:科学出版社,2010.
    [223]张大弟,张晓红.甲胺磷的稻田流失初探[J].上海农学院学报,1995,13(3):165-169.
    [224]钱秀红,徐建民,施加春,等.杭嘉湖水网平原农业非点源污染的综合调查和评价[J].浙江大学学报,2002,28(2):147-150.
    [225]Kuusisto, M., Koponen, J., Sarkkula, J. Modelled phytoplankton dynamics in the Gulf of Finland [J]. Environmental Modelling & Software, 1998,13:461-470.
    [226]Dodds, W. K. Trophic state, eutrophication and nutrient criteria in streams [J]. Trends in Ecology and Evolution,2007,22 (12):669-676.
    [227]Ruben, S., Richard, D. R. The significance of autotrophic and heterotrophic picoplankton in hypertrophic ecosystems [J]. FEMS Microbiology Ecology,1997,24:187-200.
    [228]Jiang, X., Jin, X. C., Yao, Y., et al. Effects of biological activity, light, temperature and oxygen on phosphorus release processes at the sediment and water interface of Taihu Lake, China [J]. Water Research, 2008,42:2251-2259.
    [229]Schelske, C.L. Eutrophication:focus on phosphorus[J]. Science, 2009,324(5928):722.
    [230]Schindler, D. W., Hecky, R. E., Findlay, D. L., et al. Eutrophication of lakes cannot be controlled by reducing nitrogen input:Results of a 37-year whole-ecosystem experiment [J]. PNAS,2008,105 (32):11254-11258.
    [231]陈永根,刘伟龙,韩红娟,等.太湖水体叶绿素a含量与氮磷浓度的关系[J].生态学杂志,2007,26(12):2062-2068.
    [232]浙江大学.太湖流域苕溪农业面源污染河流综合整治技术集成与示范工程课题报告[R].杭州:2011.
    [233]Xiong, Y., Zeng, C.M., Chen, G. Q., et al. Combining AHP with GIS in synthetic evaluation of eco-environment quality-A case study of Hunan province, China. Ecological Modelling,2007,209:97-109
    [234]陈健,宋春梅,刘云慧.黄淮海平原旱田氮素损失特征及其环境影响研究[J].中国生态农业学报,2006,14(2):99-102.
    [235]谢红梅,朱波.农田非点源氮污染研究进展[J].生态环境,2003,12(3):349-352.
    [236]饶本华,陶晴,苏帆,等.少耕覆盖耕作法的初步研究和应用[J].中国水土保持,1983,06:8-11.
    [237]刘礼祥,刘真,章北平,等.人工湿地在非点源污染控制中的应用[J].华中科技大学学报,2004,21(1):40-43.
    [238]杨林章,周小平,王建国,等.用于农田非点源污染控制的生态拦截型沟渠系统及其效果[J].生态学杂志,2005,24(11):1371-1374.
    [239]王岩,王建国,李伟,等.三种类型农田排水沟渠氮磷拦截效果比较[J].土壤,2009,6:902-906.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700