用户名: 密码: 验证码:
N-杂环螯合高柠檬酸钒(钼)及其同系物研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
固氮酶是某些微生物在常温常压下固氮成氨的催化剂,其催化作用机理和化学模拟一直是国际上长期致力研究的对象。钼铁蛋白的单晶高分辨X光衍射分析表明,铁钼辅基的结构为MoFe_7S_9X(S-cys)(N-his)(homocit)(x=C,N,O)。其中,Mo原子处于一端的角落位置上,并和3个μ_3-硫配体、一个组氨酸和一个高柠檬酸配位,形成八面体的络合物。高柠檬酸以α-烷氧基氧和α-羧基氧直接同钼形成双齿配位。在钼元素缺乏的环境中,则形成了含钒的钒固氮酶。最新的研究成果表明,在固氮酶固氮铁铝辅基的生物合成过程中,其中心金属和高柠檬酸是在最后的步骤中才插入铁硫簇前驱体中。但中心金属和高柠檬酸是如何插入铁硫簇前驱体和以什么样的结构形式插入其中都还有待了解。另外,α-羧酸钼、钒主要以双核配合物存在,因而了解羧酸钼、钒的双核和单核之间的相互联系以及所形成配合物的成键规律,有利于进一步模拟铁钼辅基的结构,为固氮酶的固氮机理提供化学依据。
     本文以柠檬酸、苹果酸、柠苹酸和高柠檬酸为配体,钼、钒为金属源,再引入邻菲啰啉和联吡啶含氮配体,合成了一系列的配合物1-19:[Hneo]_4[V_2O_4(R-Hcit)(OH)][V_2O_4(S-Hcit)(OH)]·4H_2O(1),[Ni(phen)_3]_2[V_2O_4(R-Hcit)(OC_2H_5)][V_2O_4(S-Hcit)(OC_2H_5)]·4H_2O(2),[V_2O_3(phen)_3(Hcit)]·5H_2O(3),[V_2O_3(phen)_3(Hcit)_2(phen)_3O_3V_2]·12H_2O(4),Na_3(Hhomocit)·H_2O(5),[V_2O_3(phen)_3(R,S-H_2homocit)]Cl·6H_2O(6),[VO_2(phen)_2]_2[V_2O_4(R,S-H_2homocit)_2]·4H_2O·2C_2H_5OH(7),[V_2O_3(phen)_3(mal)H(mal)(phen)_3O_3V_2]Cl·14H_2O(8),[VO(bpy)(R,S-H_2cit)]·2H_2O(9),[VO(phen)(R,S-H_2cit)]·1.5H_2O(10),[VO(phen)(R,S-H_2cit)]·6.5H_2O(11),[VO(bpy)(R,S-Hmal)]·H_2O(12),[VO(phen)(R,S-Hmal)]·H_2O(13),[VO(bpy)(R-Hcitmal)]·2H_2O(14),[Co(phen)(R,S-H_2cit)(H_2O)]·3H_2O(15),[Ni(phen)(R,S-H_2cit)(H_2O)]·3H_2O(16),[(MoO_2)_2O(phen)(H_2cit)(H_2O)_2]·H_2O(17),[(MoO)_2O(bpy)_2(H_2cit)_2]·4H_2O(18),[MoO_2(bpy)(H_2cit)]·H_2O(19)。主要结果总结如下:
     一、1和2的配阴离子为不对称双核V_2O_2结构,钒与柠檬酸的比例为2:1,柠檬酸为三齿配体与两个钒配位,α-烷氧基氧作为桥氧与两个钒键联,α-羧基氧和β-羧基氧分别与钒配位,形成五元环或六元环。5是高柠檬酸的正盐,为链式结构。配合物3,4,6和8为不对称双核V_2O_3结构,钒与羧酸的比例为2:1,羧酸以α-烷氧基氧和α-羧基氧与钒配位,形成五元环。配合物7为对称双核V_2O_2结构,是配合物6的前驱体。配合物9-16为单核的金属配合物,羧酸α-烷氧基氧、α-羧基氧和β-羧基氧与金属配位,形成MN_2O_4(M=V,Co,Ni)结构。17为双核柠檬酸钼配合物,为Mo_2O_5L_1L_2结构,柠檬酸以α-烷氧基氧和α-羧基氧与钼配位,形成五元环。19为单核柠檬酸配合物,形成MoN_2O_4结构,柠檬酸也以α-烷氧基氧和α-羧基氧与钼配位,形成五元环。18是还原态钼(Ⅴ)的柠檬酸配合物,为对称的双核结构,两个钼通过一个桥氧键连,每个钼为MoN_2O_4结构,柠檬酸也以α-烷氧基氧和α-羧基氧与钼配位,形成五元环。在以上配合物中,羟基羧酸配体都可以用α-烷氧基氧和α-羧基氧与钼、钒进行双齿配位,形成五元环,这与固氮酶中高柠檬酸钼的配位形式相同,因此这种配位形式是羟基羧酸与钼、钒相互作用的一种典型模式,这一结论为通过羟基羧酸的金属钼和钒配合物研究固氮酶的配位提供了间接证据。
     二、通过配合物3和4中不同氢键模式的研究以及它们之间的转化反应,我们发现柠檬酸的β-羧基不仅可以与结晶水形成氢键,还可以在β-羧基之间形成分子内和分子间的氢键,且分子内和分子间氢键间存在相互转化。由此说明不仅高柠檬酸γ-羧基可以参与质子的传递,其β-羧基也有可能参与质子的传递。这为固氮酶中高柠檬酸搭桥的质子(电子)传递途径提供了佐证。
     三、不对称的双核钒和单核钒配合物的合成和表征显示,pH值对产物的形成和分离具有至关重要的作用。pH值在一定范围内,柠檬酸的烷氧基氧作为桥氧的化学键才容易断开,从而形成不对称的双核钒和单核钒结构。pH值不仅影响不对称双核V_2O_3钒配合物和单核钒配合物的形成,还关系到钒还原的速度。这两类配合物可以相互转化的,如:这为我们研究固氮酶反应体系中中心金属的价态变化提供了依据。
     四、双核柠檬酸钼(Ⅵ)和柠檬酸钼(Ⅴ)的成功合成分离,说明在双核柠檬酸钼配合物中,其三齿配位的β-羧基配位是可以被取代的。而首次双齿配位的柠檬酸单核钼(Ⅵ)的成功提取,也说明高柠檬酸和钼有可能在最后插入铁硫簇前驱体中时可以以单核的方式插入,且高柠檬酸与钼形成了双齿配位。
Nitrogenase catalyzes the reduction of dinitrogen to ammonia in the process of biological nitrogen fixation. In the past few decades, its catalytic mechanism and chemical simulation have been widely studied. The high resolution (1.16 (?)) X-ray structural analysis of the MoFe protein of nitrogenase reveals the FeMo-co (iron molybdenum cofactor) as a cage structure, MoFe_7S_9X(S-cys)(N-his)(homocit). The molybdenum atom is coordinated by three sulfur atoms, a nitrogen atom from histidine and two oxygen atoms from homocitrate. The homocitrate entity employs itsα-alkoxy andα-carboxy oxygen atoms chelating to the molybdenum atom. In addition, some organisms have alternative nitrogenases containing metal atoms like Fe and V, or Fe only. These alternative nitrogenases are inferred to have much similarity with Mo-nitrogenase in structure, but appear to be less efficient than the latter and are generally only expressed when Mo-nitrogenase is unavailable in the organism.
     Recent reference shows that potentially molybdenum and homocitrate are transferred into the NifEN protein in the last step. How do the molybdenum and homocitrate add to the precursor cluster and what are the detail composition and structure of molybdenum-homocitrate system remain unclear, as well as the molybdenum-hydroxycarboxylate system and vanadium-hydroxycarboxylate system.
     In order to further mimic the coordinative environment of molybdenum in FeMo-co and study theα-hydroxycarboxylato molybdenum and vanadium species in solutions, we have studied vanadium and molybdenum complexes 1-19 with citric acid, malic acid, citric acid, citramalic acid, homocitric acid as ligands, as well as 1,10-phenanthroline and 2, 2'-bipydine: [Hneo]_4[V_2O_4(R-Hcit)(OH)][V_2O_4(S-Hcit)(OH)]·4H_2O (1), [Ni(phen)_3]_2[V_2O_4(R-Hcit)(OC_2H_5)] [V_2O_4(S-Hcit)(OC_2H_5)]·4H_2O (2), [V_2O_3(phen)_3(Hcit)]·5H_2O (3),[V_2O_3(phen)_3(Hcit)_2(phen)_3O_3V_2]·12H_2O (4), Na_3(Hhomocit)·H_2O (5),[V_2O_3(phen)_3(R,S-H_2homocit)]Cl·6H_2O (6),[VO_2(phen)_2]_2[V_2O_4(R,S-H_2homocit)_2]·4H_2O·2C_2H_5OH (7),[V_2O_3(phen)_3(mal)H(mal)(phen)_3O_3V_2]Cl·14H_2O (8), [VO(bpy)(R,S-H_2cit)]·2H_2O (9), [VO(phen)(R,S-H_2cit)]·1.5H_2O (10),[VO(phen)(R,S-H_2cit)]·6.5H_2O (11), [VO(bpy)(R,S-Hmal)]·H_2O (12), [VO(phen)(R,S-Hmal)]·H_2O (13), [VO(bpy)(R-Hcitmal)]·2H_2O (14), [Co(phen)(R,S-H_2cit)(H_2O)]·3H_2O (15), [Ni(phen)(R,S-H_2cit)(H_2O)]·3H_2O (16), [(MoO_2)_2O(phen)(H_2cit)(H_2O)_2]H_2O (17), [(MoO)_2O(bpy)_2(H_2cit)_2]·4H_2O (18), [MoO_2(bpy)(H_2cit)]·H_2O (19). The results are summarized as follows:
     1, The anions of complexes 1 and 2 have asymmetric V_2O_2 core containing hydroxy or ethoxy bridges, respectively. The molar ratio of vanadium and citrate is 2: 1, the citrate acts as tridentate ligand via itsα-alkoxy,α-carboxy andβ-carboxy groups. 5 is trisodium homocitrate. 3,4,6 and 8 have asymmetric V_2O_3 core containing oxygen atom bridges. The molar ratio of vanadium and citrate is also 2: 1, theα-hydroxycarboxylates act as bidentate ligands via theirα-alkoxy andα-carboxy groups. The complex 7 has symmetric V_2O_ core, which is a precursor of complex 6. The a-hydroxycarboxylates act as tridentate ligand via theirα-hydroxy,α-carboxy andβ-carboxy groups in complexes 9-16, and each metal formed MN_2O_4 configuration (M=V,Co,Ni). Complex 17 is asymmetric dinuclear citrato molybdate, the citrate chelates bidentately to molybdenum via its a-alkoxy and a-carboxy groups. Complex 19 is mononuclear citrato molybdate, formed MoN_2O_4 configuration, the citrate also chelates bidentately to molybdenum via itsα-alkoxy andα-carboxy groups. Symmetric dinuclear structure was found in molybdenum (V) complex 18. Each molybdenum atom is in MoN_2O_4 configuration, and the citrate also acts as bidentate ligand via its a-alkoxy andα-carboxy groups. The bidentate coordination modes of molybdenum or vanadium in these hydrocarboxylato complexes are similar to that of homocitrato molybdate in FeMo-co. Itseems that the complexes could be served as model complexes for exploring the coordination environment of molybdenum in nitrogenase.
     2, By studying the different hydrogen bond models and their relationship in complex 3 and 4, it is found that theβ-carboxy groups of citrate not only hydrogen bond to lattice water, but also form intramolecular and intermolecular hydrogen bonds each other. The species with intramolecular hydrogen bond can transformed into the species with intermolecular hydrogen bond. Thus, it is proposed that the homocitrate may participate in proton's transformation byγ-carboxy groups in the nitrogen fixation, but also withβ-carboxy groups.
     3, The synthesis and characterization of asymmetric dinuclear and mononuclear vanadium complexes show that the pH value is very important for the products' formation and isolation. In some pH range, theα-alkoxy bridge was easy to break and form asymmetric dinuclear and mononuclear vanadium structure. The pH value also affects the speed of reduction of vanadium. The asymmetric dinuclear and mononuclear vanadium complexes can be transformed each other, e.g.:
     4, Dinuclear citrato molybdenum (Ⅴ,Ⅵ) complexes 17 and 18 were successfully synthesized and isolated, show that theβ-carboxy group of citrate can be replaced in dinuclear citrato molybdenum complexes. Meanwhile, the first mononuclear citrato molybdenum (Ⅵ) complex 19 was isolated and the citrate acted as bidentate ligand. It is proposed that the homocitrate and molybdenum were transferred into precursor cluster by mononuclear mode,while the homocitrate acts as bidentate ligand.
引文
[1] Eady RR. Current status of structure function relationships of vanadium nitrogenase [J]. Coord.Chem. Rev., 2003, 237: 23-30.
    [2] 王友绍.李季伦.固氮酶催化机制及化学模拟生物固氮研究进展.自然科学进展[J].2000.10:481-490.
    [3] Carnahan JE, Mortenson LE, Mower HF, Castle JE. Nitrogen fixation in cell-free extracts of Clostridium pasteurianum [J]. Biochim. Biophys. Acta, 1960,44: 520-535.
    [4] (a) Mortenson LE. Ferredoxin and ATP, requirements for nitrogen fixation in cell-free extracts of Clostridium pasteurianum [J]. Proc. Natl. Acad Sci. USA, 1964, 52: 272-279; (b) Mortenson LE. Components of cell-free extracts of Clostridium pasteurianum required for ATP-dependent H_2 evolution from dithionite and for N_2 fixation [J]. Biochim. Biophys. Acta,1966, 127:18-25.
    [5] Bulen WA, Lecomte JR. The nitrogenase system from Azotobacter:Two-enzyme requirement for N_2 reduction, ATP-dependent H_2 evolution, and ATP hydrolysis [J]. Proc. Natl. Acad. Sci. USA, 1966, 56: 979-986.
    [6] Shah VK, Brill WJ. Isolation of an iron-molybdenum cofactor of nitrogenase [J]. Proc. Natl. Acad. Sci. USA, 1977, 74: 3249-3253.
    [7] Hoover TR, Robertson AD, Cerny RL, Hayes RN, Imperial J, Shah VK, Ludden PW. Identification of the V factor needed for synthesis of the iron-molybdenum cofactor of nitrogenase as homocitrate [J]. Nature, 1987, 329: 855-857.
    [8] Robson RL, Eady RR, Richardson TH, Miller RW, Hawkins M, Postgate JR. The alternative nitrogenase of Azotobacter vinelandii is a vanadium nitrogenase [J]. Nature, 1986, 322:388-390.
    [9] Chinsell JR, Premakumar R, Bishop PE. Purification of a second alternative nitrogenase from anifHDK deletion strain in Azotobacter vinelandii [J]. J. Bacteriol., 1988, 170: 27-33.
    [10] (a) Kim J, Rees DC, Crystallographic structure and functional implications of the nitrogenase iron-molybdenum protein from Azotobacter vinelandii [J]. Nature, 1992, 360: 553-560; (b) Kim J, Rees DC, Structural models for the metal centers in the nitrogenase iron-molybdenum protein [J]. Science, 1992, 257: 1677-1682; (c) Chan MK, Kim J, Rees DC. The nitrogenase FeMo cofactor and P-cluster pair: 2.2 A Resolution Structure [J]. Science, 1993, 260:792-794.
    [11] Georgiadis MM, Komiya H, Chakrabarti P, Woo D, Kornuc JJ, Rees DC. Crystallographic structure of the nitrogenase iron protein from Azotobacter vinelandii [J]. Science, 1992, 257: 1653-1659.
    [12] Peters JW, Stowell MHB, Soltis SM, Finnegan MG, Johnson MK, Rees DC, Redox-dependent structural changes in the nitrogenase P-cluster [J]. Biochemistry, 1997, 36:1181-1187.
    [13] Mayer SM, Lawson DM, Gormal CA, Roe SM, Smith BE, New insights into structure-function relationships in nitrogenase: A 1.6 angstrom resolution X-raycrystallographic study of Klebsiella pneumoniae MoFe-protein [J]. J. Mol. Biol., 1999, 292:871-891.
    [14] Einsle O, Tezcan FA, Andrade SLA, Schmid B, Yoshida M, Howard JB, Rees DC, Nitrogenase MoFe-protein at 1.16 A resolution: A central ligand in the FeMo-cofactor [J]. Science 2002, 297: 1696-1702.
    [15] Jang SB, Seefeldt LC, Peters JW, Insights into nucleotide signal transduction in nitrogenase: Structure of an iron Protein with MgADP bound [J]. Biochemistry 2000, 39: 14745-14752.
    [16] Orme-Johnson WH. The molybdenum iron protein of nitrogenase-structural and functional features of metal cluster prosthetic groups [J].. ACS Sym. Sen, 1993, 535: 257-270.
    [17] (a) Howard JB, Rees DC. Structural basis of biological nitrogen fixation [J]. Chem. Rev., 1996, 96: 2965-2982. (b) Burgess BK, Lowe DJ. Mechanism of molybdenum nitrogenase [J]. Chem. Rev., 1996, 96: 2983-3012.
    [18] (a) Robson RL, Eady RR, Richardson TH, Mille RW, Hawkins M, Postgate JR. The alternative nitrogenase of Azotobacter chroococcum is a vanadium enzyme [J]. Nature, 1986, 322: 388-390; (b) Eady RR, Robson RL, Richardson TH, Mille RW, Hawkins M. The vanadium nitrogenase of Azotobacter chroococcum. Purification and properties of VFe protein [J]. Biochem. J, 1987, 244: 197-207.
    [19] Hales BJ, Case EE, Morningstar JE, Dzeda MF, Mauterer LA. Isolation of a new vanadium-containing nitrogenase from Azotobacter vinelandii [J]. Biochemistry, 1986, 25: 7251-7255.
    [20] Eady RR. Vanadium nitrogenases of Azotobacter. In Metal Ions in Biological Systems, Vol 31, Vanadium and Its Role in Life (eds. Sigel H, Sigel A), New York/Basel/Hong Kong: Marcel Dekker Inc., 1995: 363-405.
    [21] Fallik E, Chan YK, Robson RL. Detection of alternative nitrogenases in aerobic gram-negative nitrogen-fixing bacteria [J]. J Bacteriol, 1991, 173: 365-371.
    [22] Thiel T. Characterization of gens for an alternative nitrogenase in the cyanobacterium Anabaena variabilis [J]. J Bacteriol, 1993, 175: 6276-6286.
    [23] Rehder D. Vanadium nitrogenase [J]. J. Inorg. Biochem., 2000, 80: 133-136.
    [24] (a) Pau RN, Mitchenall LA, Robson RL. Genetic evidence for an Azotobacter vinelandii nitrogenase lacking molybdenum and vanadium [J]. J Bacteriol, 1989, 171: 124-129; (b) Raina R, Bageshwar UK, Das HK. Construction of a vnfH: lacZ fusion and study of expression from vnfH promoter of the vanadium dependent nitrogen fixation pathway in Azotobacter vinelandii [J]. FEMS Microbiol Lett, 1992, 98: 169-174; (c) Jacobitz S, Bishop PE. Regulation of nitrogenase-2 in Azotobacter vinelandii by ammonium, molybdenum and vanadium [J]. J Bacteriol, 1992, 174: 3884-3888.
    [25] Crans DC, Smee JJ, Gaidamauskas E, Yang L. The chemistry and biochemistry of vanadium and the biological activities exerted by vanadium compounds [J]. Chem. Rev., 2004, 104: 849-902.
    [26] Strange RW, Eady RR, Lawson D, Hasnain SS. XAFS studies of nitrogenase: the MoFe and VFe proteins and the use of crystallographic coordinates in three-dimensional EXAFS data analysis [J]. J Synchrotron Rad, 2003, 10: 71-75.
    [27] Smith BE, Eady RR, Lowe DJ, Gormal C. The vanadium-iron protein of vanadium nitrogenase from Azotobacter chroococcum contains an iron-vanadium cofactor [J]. Biochem J, 1988,250:299-302.
    [28] Ravi N, Moore V, Lloyd SG, Hales BJ, Huynh BH. Mossbauer characterization of the metal clusters in Azotobacter vinelandii nitrogenase VFe protein. [J]. J Biol. Chem, 1994, 269: 20920-20924.
    [29] Bishop PE, Jarlenski DML, Hetherington DR. Evidence for an alternative nitrogen fixation system in Azotobacter vinelandii [J]. Proc. Natl. Acad. Sci. USA, 1980, 77: 7342-7346.
    
    [30] Chisnell JR, Premakumar R, Bishop PE. Purification of a second alternative nitrogenase from a nifHDK deletion strain in Azotobacter vinelandii [J]. J Bacteriol, 1988, 170: 27-33.
    
    [31] Pau RN, Eldridge ME, Lowe DJ, Mitchenall LA, Eady RR. Molybdenum-independent nitrogenases of Azotobacter vinelandii: a functional species of alternative nitrogenase-3 isolated from a molybdenum-tolerant strain contains an iron-molybdenum cofactor [J]. Biochem J, 1993, 293: 101-107.
    
    [32] Davis R, Lehmann L, Petrovich R, Shah VK, Roberts GP, Ludden PW. Purification and characterization of the alternative nitrogenase from the photosynthetic bacterium Rhodospirillum rubrum [J]. J Bacteriol, 1996, 178: 1445-1450.
    
    [33] (a) Schneider K, Muller A, Schramm U, Klipp W. Demonstration of a molybdenum-and vanadium-independent nitrogenase in a nifHDK-deletion mutant of Rhodobacter capsulatus [J]. Eur J Biochem, 1991, 195: 653-661; (b) Schneider K, Gollan U, Drottboom M, Selsemeier-Voigt S, Muller A. Comparative biochemical characterization of the iron-only nitrogenase and the molybdenum nitrogenase from Rhodobacter capsulatus [J]. Eur J Biochem, 1997, 244: 789-800; (c) Gollan U, Schneider K, Muller A, Schuddekopf K, Klipp W. Detection of the in vivo incorporation of a metal cluster into a protein. The FeMo cofactor is inserted into the FeFe protein of the alternative nitrogenase of Rhodobacter capsulatus [J]. Eur J Biochem, 1993, 215: 25-35; (d) Sicking C, Brusch M, Lindackers A, Riedel KU, Schubert B, Isakovic N, Krall C, Klipp W, Drepper T, Schneider K, Masepohl B. Identification of two new genes involved in diazotrophic growth via the alternative Fe-only nitrogenase in the phototrophic purple bacterium Rhodobacter capsulatus [J]. J Bacteriol, 2005, 187:92-98.
    
    [34] Joerger RD, Jacobson MR, Premakumar R, Wolfinger ED, Bishop PE. Nucleotide sequence and mutational analysis of the structural genes (anfHDGK) for the second alternative nitrogenase from Azotobacter vinelandii. [J]. J Bacteriol., 1989, 171: 1075-1086.
    
    [35] (a) Hales BJ. Vanadium nitrogenase. In Catalysts For Nitrogen Fixation: Nitrogenases, Relevant Chemical Models And Commercial Processes (Eds. Smith BE, Richards RL & Newton WE). Kluwer Academic Publishers, 2004, pp 255-279. (b) Schneider K, Muller A. Iron-only nitrogenase: Exceptional catalytic, structural and spectroscopic features. In Catalysts For Nitrogen Fixation: Nitrogenases, Relevant Chemical Models And Commercial Processes (Eds. Smith BE, Richards RL & Newton WE). Kluwer Academic Publishers, 2004, pp 281-307.
    
    [36] (a) Ribbe M, Gadkari D, Meyer O, N_2 fixation by Streptomyces thermoautotrophicus involves a molybdenum-dinitrogenase and a manganese-superoxide oxidoreductase that couple N_2 reduction to the oxidation of superoxide produced from O_2 by a molybdenum-CO dehydrogenase [J]. J. Biol. Chem., 1997, 272: 26627-26633; (b) Gadkari D. Superoxide-dependent nitrogenase. In Catalysts For Nitrogen Fixation: Nitrogenases, Relevant Chemical Models And Commercial Processes (Eds. Smith BE, Richards RL & Newton WE). Kluwer Academic Publishers, 2004, pp 309-332.
    
    [37] Siemann S, Schneider K, Oley M, Muller A. Characterization of a tungsten-substituted nitrogenase isolated from Rhodobacter capsulatus [J]. Biochemistry, 2003,42: 3846-3857.
    
    [38] Bishop PE, Jarlenski DML, Hetherington DR. Expression of an alternative nitrogen fixation system in Azotobacter vinelandii [J]. J Bacteriol., 1982, 150: 1244-1251.
    [39] (a)黄巨富.汪志平.骆爱玲.钟泽璞.李佳格.钒铁蛋白的体外组装研究[J].植物学报,1993,35(1):837-843;(b)黄巨富.骆爱玲.胡长征.王继伟.林永齐.董兴初.陈玉华.李佳格.含钨重组液对钼铁蛋白金属原子簇体外重组的影响[J].植物学集刊,1994,7:278-286;(c)黄巨富.汪志平.骆爱玲.钟泽璞.李佳格.锰对部分缺失金属原子簇的固氮酶钼铁蛋白的重组作用[J].植物学报,1994,36(6):411-417;(d)黄巨富.汪志平.骆爱玲.钟泽璞.李佳格.含铬重组液激活部分缺失金属原子簇的钼铁蛋白的研究[J].植物学报,1995,37(4):283-288;(e)黄巨富.汪志平.汪道涌.董志刚.李佳格.含铼重组液对部分缺失金属原子簇的钼铁蛋白的激活作用[J].植物学报,1999,41(10):1086-1089.
    [40] 汪道涌.黄巨富.骆爱玲.李佳格.董明理.杜洪善.锰、铬和钼重组液及其与部分金属原子簇钼铁蛋白重组的比较研究[J].植物学报,1998,40(1):62-167.
    [41] (a)Huang J-F,Dong Z-G,Wang D-Y,LünY-B,zhang H-F,Wang Y-P,Han Y,Dai X-H.Growth of the crystals of nitrogenase MnFe protein[J].Acta Bot.Sin.,2001,43(4):375-379;(b)黄巨富.汪道涌.董志刚.汪志平.张华峰.吕玉兵.许祥明.赵颖.含锰固氮酶组分Ⅰ蛋白的纯化和特性[J].植物学报,2001,43(9):918-922;(c)Zhao JF,Liu HL,zhou HN,Wang ZP, Zhao Y,Bian SM, Li SX, Bi RC, Huang JF. Crystal Growth and Characterization of Residual Bacterioferritin in Partially Purified Nitrogenase CrFe Protein solution from a Mutant UW3 of Azotobacter vinelandii [J]. Acta Bot. Sin., 2004,46(11): 1331-1337.
    [42] (a) Zhao Y, Zhao J-F, LüY-B, Wang Z-P, Wang Y-P, Huang J-F. Crystallization of Nitrogenase MoFe protein from a mutant nifE deleted strain of Azotobacter vinelandii [J]. Acta Bot. Sin.,2003, 45(4): 427-431; (b) Zhao Y, Lii Y-B, Zhao J-F, Zhou J-X, Qian Z-X, Wang Y-P, Huang J-F. Crystallization of Nitrogenase MoFe protein (NifB-Av1) from a nifB mutated strain UW45 of Azotobacter vinelandii [J]. Acta Bot. Sin., 2003, 45(7): 820-824; (c) LuY-B, Zhao Y, Zhao J-F, Dai X-H, Cang H-X, Wang Y-P, Huang J-F. Growth of large single crystals of nitrogenase CrFe protein and MnFe protein [J]. Acta Bot. Sin., 2003, 45(3): 289-294; (d) Zhang H-F, Wang Y-P, LüY-B, Zhao Y, Dai X-H, Dong Z-G, Huang J-F. Crystalline growth of nitrogenase CrFe protein [J]. Acta Bot. Sin., 2002,44(4): 400-404.
    [43] Howard JB, Davis R, Moldenhauer B, Cash VL, Dean DR. Fe-S cluster ligands are the only Cysteines required for nitrogenase Fe-protein activities [J]. J. Biol. Chem., 1989, 264: 11270-11274.
    [44] Dean DR, Jacobson MR. Biochemical genetics of nitrogenase. In Biological nitrogen fixation (Eds. Stacey G, Burns RH & Evans HJ), New York: Chapman and Hall, 1992, pp763-834.
    [45] Schlessmann JL, Woo D, Joshua-Tor L, Howard JB, Rees DC, Conformational variability in structures of the nitrogenase iron proteins from Azotobacter Vinelandii and Clostridium pasteurianum [J]. J. Mol. Biol., 1998, 280: 669-685.
    [46] Jacobson MR, Cantwell JS, Dean DR. A hybrid Azotobacter vinelandii-Clostridium pasteurianum nitrogenase iron protein that has in vivo and in vitro catalytic activity [J]. J. Biol. Chem., 1990, 265: 19429-19433.
    [47] (a) Kim J, Woo D, Rees D C, X-ray crystal structure of the nitrogenase molybdenum-iron protein from Clostridim pasteurianum at 3.0 A resolution [J]. Biochemistry, 1993, 32: 7104-7115; (b) Jang SB, Seefeldt LC, Peters JW, Modulating the midpoint potential of the Fe_4S_4 cluster of the nitrogenase Fe protein [J]. Biochemistry, 2000, 39: 641-648; (c) Adman E, Watenpaugh, Jensen LH. NH(?)S Hydrogen bonds in Peptococcus Aerogenes ferredoxin, Clostridium pasteurianum rubredoxin, and Chromatium high potential iron protein [J]. Proc. Nat. Acad. Sci. USA, 1975, 72: 4854-4858.
    
    [48] Kim J, Rees DC. Nitrogenase and biological nitrogen fixation [J]. Biochemistry, 1994, 33: 389-397.
    
    [49] Burgess BK, Lowe DJ. Mechanism of molybdenum nitrogenase [J]. Chem. Rev., 1996, 96: 2983-3011.
    
    [50] Watt GD, Reddy KRN. Formation of an all ferrous Fe_4S_4 cluster in the iron protein component of Azotobacter vinalandii nitrogenase [J]: J. Inorg. Biochem., 1994, 53: 281-294.
    
    [51] (a) Angove HC, Yoo SJ, Burgess BK, Munck E. Mossbauer and EPR evidence for an all-ferrous Fe_4S_4 cluster with 5 = 4 in the Fe protein of nitrogenase [J]. J. Am. Chem. Soc, 1997, 119: 8730-8731; (b) Angove HC, Yoo SJ, Munck E, Burgess BK. An all-ferrous state of the Fe protein of nitrogenase. Interaction with nucleotides and electron transfer to the MoFe protein [J]. J.Biol. Chem., 1998, 273: 26330-26337; (c) Musgrave KB, Angove HC, Burgess BK, Hedman B, Hodgson KO. All-ferrous titanium(III) citrate reduced Fe protein of nitrogenase: An XAS study of electronic and material structure [J]. J. Am. Chem. Soc, 1998, 120: 5325-5326; (d) Yoo SJ, Angove HC, Burgess BK, MUnck E, Peterson J. Magnetic circular dichroism study of the all-ferrous Fe_4S_4 cluster of the Fe-protein of Azotobacter vinelandii nitrogenase [J]. J. Am. Chem. Soc, 1998, 120: 9704-9705; (e) Yoo SJ, Angove HC, Burgess BK, Hendrich MP, MUnck E. Mossbauer and integer-spin EPR studies and spin-coupling analysis of the Fe_4S_4~0 cluster of the Fe protein from Azotobacter vinelandii nitrogenase [J]. J. Am. Chem. Soc, 1999, 121: 2534-2545; (f) Yoo SJ, Angove HC, Papaefthymiou V, Burgess BK, MUnck E. Mossbauer study of the MoFe protein of nitrogenase from Azotobacter vinelandii using selective ~(57)Fe enrichment of the M-centers [J]. J. Am. Chem. Soc, 2000, 122: 4926-4936.
    
    [52] Strop P, Takahara PM, Chiu HJ, Angove HC, Burgess BK, Rees DC, Crystal structure of the all-ferrous Fe_4S_4~0 form of the nitrogenase iron protein from Azotobacter Vinelandii [J]. Biochemistry, 2001, 40: 651-656.
    
    [53] (a) Erickson JA, Nyborg AC, Johnson JL, Truscott SM, Gunn A, Nordmeyer FR, Watt GD. Enhanced efficiency of ATP hydrolysis during nitrogenase catalysis utilizing reductants that form the all-ferrous redox state of the Fe protein [J]. Biochemistry, 1999, 38: 14279-14285; (b) Nyborg AC, Erickson JA, Johnson JL, Gunn A, Truscott SM, Watt GD. Reaction of Azotobacter vinelandii nitrogenase using Ti(III) as reductant [J]. J. Inorg. Biochem., 2000, 78: 371-381; (c) Nyborg AC, Johnson JL, Gunn A. Evidence for a two-electron transfer using the all-ferrous Fe protein during nitrogenase catalysis [J]. J. Biol. Chem., 2000, 275: 39307-39312.
    
    [54] Guo M, Sulc F, Ribbe MW, Farmer PJ, Burgess BK. Direct assessment of the reduction potential of the Fe_4S_4~(1+/0) couple of the Fe protein from Azotobacter vinelandii [J]. J. Am. Chem. Soc, 2002, 124: 12100-12101.
    
    [55] Lanzilotta WN, Ryle JM, Seefeldt LC. Nucleotide hydrolysis and protein conformationalchanges in Azotobacter vinelandii nitrogenase iron protein: Defining the function the aspartate 129 [J]. Biochemistry, 1995, 34: 10713-10723.
    
    [56] Lanzilotta WN, Seefeldt LC. Changes in the midpoint potentials of the nitrogenase metal centers as a result of iron protein-molybdenum-iron protein complex formation [J]. Biochemistry, 1997, 36: 12976-12983.
    [57] (a) Dos Santos PC, Dean DR, Hu Y, Ribbe MW. Formation and insertion of the nitrogenase iron-molybdenum cofactor [J]. Chem. Rev., 2004, 104: 1159-1173; (b) Ludden PW, Rangaraj P, Rubio LM. Biosynthesis of iron-molybdenum and iron-vanadium cofactors of the nif- and vnf-encoded nitrogenase. In Catalysts For Nitrogen Fixation: Nitrogenases, Relevant Chemical Models And Commercial Processes (Eds. Smith BE, Richards RL & Newton WE). Kluwer Academic Publishers, 2004, pp219-253; (c) Rubio LM, Ludden PW. Maturation of nitrogenase: A biochemical puzzle [J]. J. Bacteriol., 2005, 187: 405-414.
    
    [58] Joerger RD, Wolfinger ED, Bishop PE. The gene encoding dinitrogenase reductase 2 is required for expression of the second alternative nitrogenase from Azotobacter vinellandii [J]. J. Bacteriol., 1991, 173: 4440-4446.
    
    [59] (a) Ioannidis I, Buck M, Nucleotide sequence of the Klebsiella pneumoniae nifD gene and predicted amino acid sequence of the a-subunit of the nitrogenase MoFe protein [J]. Biochem. J., 1987, 247: 287-291; (b) Ioannidis I, Wang SZ, Chen JS, Johnson JL. Distinct structural features of the a and (J subunits of nitrogenase molybdenum-iron protein of Clostridium pasteurianum: An analysis of amino acid sequences [J]. Biochemistry, 1988, 27: 2800-2810.
    
    [60] Yamane T, Weininger MS, Mortenson LE, Rossmann MG Molecular symmetry of the MoFe protein of nitrogenase. Structural homology/ nitrogen fixation/ X-ray crystallography [J]. J. Biol. Chem., 1982, 257: 1221-1223.
    
    [61] (a) Rees DC, Tezcan FA, Haynes CA, Walton MY, Andrade S, Einsle O, Howard JB. Structural basis of biological nitrogen fixation [J]. Phil. Trans R. Soc. A, 2005, 363: 971-984; (b) Rees DC, Howard JB. Nitrogenase: standing at the crossroads [J]. Curr. Opin. Chem. Biol., 2000, 4: 559-566; (c) Howard JB, Rees DC. Structural basis of biological nitrogen fixation [J]. Chem. Rev., 1996, 96: 2965-2982.
    
    [62] Zimmermann R, Munck E, Brill WJ, Shah VK, Henzl MT, Rawlings J, Orme-Johnson WH. Nitrogenase X: Mossbauer and EPR studies on reversibly oxidized MoFe protein from Azotobacer vinelandii OP: nature of the iron centers [J]. Biochim. Biophys. Acta, 1978, 537: 185-207.
    
    [63] Surerus KK, Hendrich MP, Christie PD, Mossbauer and integer-spin EPR of the oxidixed P-clusters of nitrogenase: P~(ox) is a non-kramers system with a nearly degenerate ground doublet [J]. J. Am. Chem. Soc, 1992, 114: 8579-8590.
    
    [64] Vichitphan K. Azotobacter vinelandii Nitrogenase: Effect of Amino-Acid Substitutions at the αGln-191 Residue of the MoFe Protein on Substrate Reduction and CO Inhibition, PhD thesis, Virginia Polytechnic Institute and State University, 2001.
    
    [65] (a) Schindelin N, Kisker C, Sehlessman JL, Howard JB, Rees DC, Structure of ADP-AIF_4~- stabilized nitrogenase complex and its implications for signal transduction [J]. Nature, 1997, 387: 370-376. (b) Chiu HJ, Peters JW, Lanzilotta WN, Ryle MJ, Seefeldt LC, Howard JB, Rees DC, MgATP-bound and nucleotide-free structures of a nitrogenase protein complex between the Leu 127 A-Fe-protein and the MoFe-protein [J]. Biochemistry, 2001, 40: 641-650.
    
    [66] (a) Peters JW, Fisher K, Newton WE, Dean DR. Involvement of the P-cluster in intramolecular electron transfer with the nitrogenase MoFe protein [J]. J. Biol. Chem., 1995, 270: 27007-27013; (b) Ma L, Brosius A, Burgess BK. Construction of a form of the MoFe protein of nitrogenase that accepts electrons from the Fe protein but does not reduce substrate [J]. J. Biol. Chem., 1996, 271: 10528-10532; (c) Lanzilotta WN, Seefeldt LC. Electron transfer from the nitrogenase iron protein to the [8Fe-(7/8)S] cluster of the molybdenum-iron protein [J]. Biochemistry, 1996, 35: 16770-16776; (d) Chan JM, Christiansen J, Dean DR, Seefeldt LC. Spectroscopic evidence for changes in the redox state of the nitrogenase P-cluster during turnover [J]. Biochemistry, 1999, 38: 5779-5785.
    [67] Lanzilotta WN, Christiansen J, Dean DR, Seefeldt LC. Evidence for couple electron and proton in the Fe_8S_7 cluster of nitrogenase [J]. Biochemistry, 1998, 37: 11376-11384.
    [68] Smith BE. Nitrogenase reveals its inner secrets [J]. Science, 2002, 297: 1654-1655.
    [69] Yang TC, Maeser NK, Laryukhin M, Lee HI, Dean DR, Seefeldt LC, Hoffman BM. The interstitial atom of the nitrogenase FeMo-cofactor: ENDOR and ESSEM evidence that it is not a nitrogen [J]. J. Am. Chem. Soc, 2005, 127: 12804-12805.
    [70] (a) Orme-Johnson WH, Hamilton WD, Jones TL, Tso MY, Burris RH, Shah VK, Brill WJ. Electron paramagnetic resonance of nitrogenase and nitrogenase components from Clostridium pasteurianum W5 and Azotobacter vinelandii OP [J]. Proc. Natl. Acad. Sci. USA, 1972, 69: 3142-3145; (b) Palmer G, Multani JS, Cretney WC, Zumft WG, Mortenson LE. Electron paramagnetic resonance studies on nitrogenase I. The properties of molybdoferredoxin and azoferredoxin [J]. Arch. Biochem. Biophys., 1972, 153: 325-332; (c) Smith BE, Lowe DJ, Bray RC. Nitrogenase of Klebsiella pneumoniae: Electron paramagnetic-resonance studies on the catalytic mechanism [J]. Biochem. J., 1972, 130: 641-643.
    [71] Lee HI, Hales BJ, Hoffman BM. Metal-ion valencies of the FeMo cofactor in CO-inhibited and resting state nitrogenase by ~(57)Fe Q-band ENDOR [J]. J. Am. Chem. Soc, 1997, 119: 11395-11400.
    [72] Lovell T, Li J, Liu T, Case DA, Noodleman L. FeMo cofactor of nitrogenase: A density functional study of states MN, MOX, MR, MI [J]. J. Am. Chem. Soc, 2001, 123: 12392-12410.
    [73] Lovell T, Li J, Liu T, Case DA, Noodleman L. Structural, spectroscopic, and redox consequences of a central ligand in the nitrogenase MoFe cofactor [J]. J. Am. Chem. Soc, 2003, 125: 8377-8383.
    [74] Lindahl PA, Papaefthymiou V, Orme-Johnson WH, Munck E. Mossbauer studies of solid thionin-oxidized MoFe protein of nitrogenase [J]. J. Biol. Chem., 1988, 263: 19412-19418.
    [75] Huynh BH, Henzl MT, Christner MT, Zimmerman R, Orme-Johnson WH, Munck E. Nitrogenase XII. Mossbauer studies of the MoFe protein from clostridium pasteurianum W5 [J]. Biochim. Biophys. Acta, 1980, 623: 124-138.
    [76] Bell J, Dunford AJ, Hollis E, Henderson RA. The role of Mo atoms in nitrogen fixation: Balancing substrate reduction and dihydrogen production [J]. Angew. Chem. Int. Ed., 2003, 42:1149-1152.
    [77] Zheng LM, White RH, Dean DR. Purification of the Azotobacter vinelandii nifV-encoded homocitrate synthase [J]. J. Bacteriol., 1997, 179: 5963-5966.
    [78] (a) McLean PA, Smith BE, Dixon RA. Nitrogenase of Klebsiella pneumoniae nifV mutants [J]. Biochem. J., 1983, 211: 589-597; (b) Hawkes TR, McLean PA, Smith BE. Nitrogenase from nifV mutants of Klebsiella pneumoniae contains an altered form of the iron-molybdenum cofactor [J]. Biochem. J., 1984, 217: 317-321.
    [79] (a) Hoover TR, Imperial J, Ludden PW, Shah VK. Homocitrate cures the NifV~- phenotype in Klebsiella pneumoniae [J]. J. Bacteriol., 1988, 170: 1978-1979; (b) Madden MS, Paustian TD, Ludden PW, Shah VK. Effects of homocitrate, homocitrate lactone, and fluorohomocitrate on nitrogenase in NifV~- mutants of Azotobacter vinelandii [J]. J. Bacteriol., 1991, 173:5403-5405.
    
    [80] Hoover TR, Imperial J, Ludden PW, Shah VK. Homocitrate is a component of the iron-molybdenum cofactor of nitrogenase [J]. Biochemistry, 1989, 28: 2768-2771.
    
    [81] (a) Hoover TR, Imperial J, Liang J, Ludden PW, Shah VK. Dinitrogenase with altered substrate specificity results from the use of homocitrate analogues for in vitro synthesis of the iron-molybdenum cofactor [J]. Biochemistry, 1988, 27: 3647-3652; (b) Imperial J, Hoover TR, Madden MS, Ludden PW, Shah VK. Substrate reduction properties of dinitrogenase activated in vitro are dependent upon the presence of homocitrate or its analogues during iron-molybdenum cofactor synthesis [J]. Biochemistry, 1989, 28: 7796-7799; (c) Madden MS, Kindon ND, Ludden PW, Shah VK. Diastereomer-dependent substrate reduction properties of a dinitrogenase containing 1-fluorohomocitrate in the iron-molybdenum cofactor [J]. Proc. Natl. Acad. Sci. USA, 1990, 87: 6517-6521; (d) Schrauzer GN, Palmer JG The chemical evolution of a nitrogenase model, XXIV. Correlational analysis of effects of organic acids on in vitro MoFe-protein substrate reduction activities [J]. Z. Naturforsch. B, 2001,56: 1354-1359.
    
    [82] (a) Liang J, Madden M, Shah VK, Burris RH. Citrate substitutes for homocitrate in nitrogenase of a nifV mutant of Klebsiella Pneumoniae [J]. Biochemistry, 1990, 29: 8577-8581; (b) Mayer SM, Gormal CA, Smith BE, Lawson DM. Crystallographic analysis of the MoFe protein of nitrogenase from a nifV mutant of Klebsiella pneumoniae identifies citrate as a ligand to the molybdenum of iron molybdenum cofactor (FeMo-co) [J]. J. Biol. Chem., 2002, 277: 35263-35266.
    
    [83] (a) Gronberg KLC, Gormal CA, Smith BE, Henderson RA. A new approach to identifying substrate binding sites on isolated FeMo-cofactor of nitrogenase [J]. J. Chem. Soc, Chem. Commun., 1997, 713-714; (b) Gronberg KLC, Gormal CA, Durrant MC, Smith BE, Henderson RA. Why R-homocitrate is essential to the reactivity of FeMo-Cofactor of nitrogenase: studies on nifV~-extracted FeMo-cofactor [J]. J. Am. Chem. Soc, 1998, 120: 10613-10621.
    
    [84] Hughes DL, Ibrahim SK, Pickett CJ, Querne G, Laouenen A, Talarmin J, Queiros A, Fonseca A. On carboxylate as a leaving group at the active site of Mo nitrogenase [J]. Polyhedron, 1994,13:3341-3348.
    
    [85] (a) Igarashi RY, Seefeldt LC. Nitrogen fixation: The mechanism of the Mo-dependent nitrogenase [J]. Crit. Rev. Biochem. Mol. Biol., 2003, 38: 351-384; (b) Christiansen J, Dean DR, Seefeldt LC, Mechanistic features of the Mo-containing nitrogenase [J]. Annu. Rev. Plant Physiol. Plant Mol. Biol., 2001, 52: 269-295; (c) Igarashi RA, Seefeldt LC. The mechanism of Mo-dependent nitrogenase: Thermodynamics and kinetics. In Catalysts For Nitrogen Fixation: Nitrogenases, Relevant Chemical Models And Commercial Processes (Eds. Smith BE, Richards RL & Newton WE). Kluwer Academic Publishers, 2004, pp97-140.
    
    [86] Schmid B, Einsle O, Chiu HJ, Willing A, Yoshida M, Howard JB, Rees DC, Biochemical and structural Characterization of the Crosslinked Complex of Nitrogenase: Comparison to the ADP-AlF_4~- Stabilized Structure [J]. Biochemistry, 2002,41: 15557-15560.
    
    [87] (a) Tezcan FA, Kaiser JT, Mustafi D, Walton MY, Howard JB, Rees DC. Nitrogenase complexes: Multiple docking sites for a nucleotide switch protein [J]. Science, 2005, 309: 1377-1380. (b) Dixon R, Kahn D. Genetic regulation of biological nitrogen fixation [J]. Nat.Rev. Microbiol., 2004, 2: 621-631.
    [88] Thorneley RNF, Lowe DJ. Kinetics and mechanism of the nitrogenase enzyme system.In Molybdenum Enzymes (Eds. Spiro TG), 1985, pp 221-284.
    [89] Dilworth MJ. Assay methods for products of nitrogenase action on substrates. In Catalysts For Nitrogen Fixation: Nitrogenases, Relevant Chemical Models And Commercial Processes (Eds. Smith BE, Richards RL & Newton WE). Kluwer Academic Publishers, 2004, pp 55-76.
    [90] Barney BM, Yang T-C, Igarashi RY, Dos Santos PC, Laryukhin M, Lee H-I, Hoffman BM,Dean DR,Seefeldt LC. Intermediate trapped during nitrogenase reduction of N(?)N,CH_3-N=NH, and H_2N-NH_2 [J]. J. Am. Chem. Soc, 2005, 127: 14960-14961.
    [91] Thorneley RNF, Eady RR, Lowe DJ. Biological nitrogen fixation by way of an enzyme-bound dinitrogen-hydride intermediate [J]. Nature, 1978,272:557-558.
    [92] (a) Orme-Johnson WH. Nitrogenase structure: where to now? [J]. Science, 1992, 257:1639-1640;
    (b) Deng HB, Hoffmann R. How N_2 might be activated by the FeMo-cofactor innitrogenase [J]. Angew. Chem. Int. Ed., 1993, 32: 1062-1065;
    (c) Tsai KR, Wan HL. On thestructure-function relationship of nitrogenase M-cluster and P-cluster pairs [J]. J. Cluster Sci.,1995,6:485-501;
    (d) 万慧霖.黄静伟.张凤章.周朝晖.张泓图.许良树.蔡启瑞.化学探针方法研究固氮酶M-族和P-族对的结构与功能关系[J].厦门大学学报(自然科学版),1996,35:890-899;
    (e) 吴新涛.卢嘉锡.固氮酶活性中心网兜模型研究的回顾和前瞻[J].中国科学,1995,40:577-581;
    (f) Dance I. Calculated details of a mechanism for conversion of N_2 to NH_3 at the FeMo cluster of nitrogenase [J]. J. Chem. Soc, Chem. Comm., 1997, 165-166;
    (g) Zhong S-J, Liu C-W. Possible binding modes for dinitrogen activation by the FeMo cofactor in nitrogenase [J]. Polyhedron, 1997, 16: 653-661;
    (h) Stavrev KK, Zerner MC. Studies on the hydrogenation steps of the nitrogen molecule at the Azotobacter vinelandii nitrogenase [J]. Int. J. Quantum Chem., 1998, 70: 1159-1168;
    (i) Siegbahn PEM, Westerberg J, Sevensson M, Crabtree RH. Nitrogen fixation by nitrogenases: A quantum chemical study [J]. J. Phys. Chem. B, 1998, 102: 1615-1623;
    (j) Rod TH, Norskov JK. Modeling the nitrogenase FeMo cofactor [J]. J. Am. Chem. Soc, 2000, 122: 12751-12763;
    (k) Schimpl J, Petrilli HM, Blochl PE. Nitrogen Binding to the FeMo-Cofactor of Nitrogenase [J]. J. Am. Chem. Soc, 2003, 125: 15772-15778;
    (l) Cao ZX, Zhou ZH, Wan HL, Zhang Q, Thiel W. Density functional calculations on the binding of dinitrogen to the FeFe cofactor in Fe-only nitrogenase: FeFeco(μ_6-N_2) as intermediate in nitrogen fixation [J]. Inorg. Chem., 2003, 42: 6986-6988;
    (m) Dance I. The consequences of an interstitial N atom in the FeMo cofactor of nitrogenase [J]. J. Chem. Soc, Chem. Comm., 2003, 324-325;
    (n) Huniar U, Ahlrichs R, Coucouvanis D. Density functional theory calculations and exploration of a possible mechanism of N_2 reduction by nitrogenase [J]. J. Am. Chem. Soc, 2004, 126: 2588-2601.
    [93] Seefeldt LC, Dance IG, Dean DR. Substrate interactions with nitrogenase: Fe versus Mo [J].Biochemistry, 2004, 43: 1401-1409.
    [94] (a) Pickett CJ. The Chart cycle and the mechanism of enzymic reduction of molecular nitrogen [J]. J. Biol. Inorg. Chem., 1996, 1: 601-606; (b) Szilagyi RK, Musaev DG,Morokuma K. Theoretical studies of biological nitrogen fixation. I. Density functional modeling of the Mo-site of the FeMo-cofactor [J]. Inorg. Chem., 2001, 40: 766-775; (c) Durrant MC. An atomic-level mechanism for molybdenum nitrogenase. Part 1. Reduction of dinitrogen [J]. Biochemistry, 2002, 41: 13934-13945; (d) Cao ZX, Zhou ZH, Wan HL, Zhang QN. Enzymatic and catalytic reduction of dinitrogen to ammonia: Density functional theory characterization of alternative molybdenum active sites [J]. Int. J. Quantum Chem., 2005, 103: 344-353.
    [95] Simpson FB, Burris RH. A nitrogen pressure of 50 atmospheres does not prevent evolution of hydrogen by nitrogenase [J]. Science, 1984,224: 1095-1097.
    [96] Chatt J. Chemistry relevant to the biological fixation of Nitrogen. In Nitrogen Fixation (Eds. Stewart WDP), 18th Ann. Proc. Phytochem. Soc.Eur., Academic Press, London, 1980, pp1-18.
    [97] (a) Li JL, Burris RH. Influence of pN_2 and pD_2 on HD formation by various nitrogenases [J].Biochemistry, 1983, 22: 4472-4480; (b) Jensen BB, Burris RH. Effect of high pN_2 and high pD_2 on NH3 production, H_2 evolution, and HD formation by nitrogenases [J]. Biochemistry,1985,24: 1141-1147.
    [98] Bulen WA, Burns RC, Lecomte JR. Nitrogen Fixation: Hydrosulfite as Electron Donor with Cell-Free Preparations of Azotobacter vinelandii and Rhodospirillum rubrum [J]. Proc. Natl.Acad Sci.USA, 1965, 53, 532-539.
    [99] Liang J, Burris RH. Hydrogen burst associated with nitrogenase-catalyzed reactions [J]. Proc.Natl. Acad Sci.USA, 1988, 85: 9446-9450.
    [100] Hwang JC, Chen CH, Burris RH. Inhibition of nitrogenase-catalyzed reductions [J].Biochim. Biophys. Acta, 1973,292: 256-70.
    [101] 张振水.吴柏和.李季伦.固氮酶催化的放H_2反应[J].微生物学报,1993,33:320-330.
    [102] 赵德华.固氮酶催化N_2和H~+还原的机制[M].中国农业大学博士学位论文,2004.
    [103] (a)黄静伟.陈灿和.张凤章.林种玉.张鸿图.万惠霖.N_2键合在固氮酶M-簇的笼内的一个可能证据[J].高等学校化学学报,1996,17:760-763;(b)Fisher K,Dilworth MJ,Kim C-H, Newton WE. Azotobacter vinelandii nitrogenase containing altered MoFe Proteins with substitution in the FeMo-cofactor environment: Effect on the catalyzed reduction of acetylene and ethylene [J]. Biochemistry, 2000, 39: 2970-2979; (c) Benton PM,Christiansen J, Dean DR, Seefeldt LC. Stereospecificity of acetylene reduction catalyzed by nitrogenase [J]. J. Am. Chem. Soc, 2001, 123: 1822-1827; (d) Han J, Newton W E.Differentiation of acetylene-reduction sites by stereoselective proton addition during Azotobacter vinelandii nitrogenase-catalyzed C_2D_2 reduction [J]. Biochemistry, 2004, 43:2947-956;(e)赵德华.李季伦.肺炎克氏杆菌固氮酶双突变株的构建及其对底物还原的特性[J].科学通报,2004,49:1512—1518.2947-2956;(e)赵德华.李季伦.肺炎克氏杆菌固氮酶双突变株的构建及其对底物还原的特性[J].科学通报,2004,49:1512-1518.
    [104] Barriere F, Durrant MC, Pickett CJ. Chemical models, theoretical calculations, and the reactivity of isolated iron-molybdenum cofactor. In Catalysts For Nitrogen Fixation:Nitrogenases, Relevant Chemical Models And Commercial Processes (Eds. Smith BE,Richards RL & Newton WE). Kluwer Academic Publishers, 2004, pp 161-199.
    [105] Leigh GJ. Protonation of coordinated dinitrogen [J]. Acc. Chem. Res., 1992, 25: 177-181.
    [106] (a) Heinekey DM, Oldham Jr WJ. Coordination chemistry of dinitrogen [J]. Chem. Rev.,1993, 93: 913-926; (b) Hidai M, Mizobe Y. Recent advances in the chemistry of dinitrogen complexes [J]. Chem. Rev., 1995, 95: 1115-1133; (c) Hidai M. Chemical nitrogen fixation by molybdenum and tungsten complexes [J]. Coord. Chem. Rev., 1999, 185-186: 99-108; (d) Shaver MP, Fryzuk MD. Activation of molecular nitrogen: coordination, cleavage and functionalization of N2 mediated by metal complexes [J]. Adv. Synth. Catal., 2003, 345:1061-1076; (e) Fryzuk MD. Activation and functionalization of molecular nitrogen by metal complexes [J]. Chem. Record, 2003, 3: 2-11; (f) Mackay BA, Fryzuk MD. Dinitrogen coordination chemistry: On the biomimetic borderlands [J]. Chem. Rev., 2004, 104: 385-401; (g) Smith JM, Sadique AR, Cundari TR, Rodgers KR, Lukat-Rodgers G,Lachicotte RJ, Flaschenriem CJ, Vela J, Holland PL. Studies of low-coordinate iron dinitrogen complexes [J]. J. Am. Chem. Soc, 2006, 128: 756-769.
    [107] Chatt J, Pearman AJ, Richards RR. Conversion of dinitrogen in its molybdenum and tungsten complexes into ammoia and possible relevance to the nitrogenase reaction [J]. J.Chem. Soc, Dalton Trans., 1977, 1852-1860.
    [108] (a) Yandulov DV, Schrock RR. Catalytic reduction of dinitrogen to ammonia at a single molybdenum center [J]. Science, 2003, 301: 76-78; (b) Yandulov DV, Shrock RR,Rheingold AL, Ceccarelli C, Davis WM. Synthesis and reactions of molybdenum triamidoamine complexes containing hexaisopropylterphenyl substituents [J]. Inorg. Chem.,2003, 42: 796-813; (c) Yandulov DV, Shrock RR. Studies relevant to catalytic reduction of dinitrogen to ammonia by molybdenum triamidoamine complexes [J]. Inorg. Chem., 2005,44: 1103-1117.
    [109] (a) Studt F, Tuczek F. Energetics and mechanism of a room-temperature catalytic process for ammonia synthesis (Shrock Cycle): comparison with biological nitrogen fixation [J]. Angew.Chem. Int. Ed., 2005, 44: 5639-5642; (b) Neese F. The Yandulov/Schrock cycle and the nitrogenase reaction: pathways of nitrogen fixation studied by density functional theory [J].Angew. Chem. Int. Ed., 2006, 45: 196-199.
    [110] Burns RC, Holsten RD, Hardy RWF. Isolation by crystallization of the Mo-Fe protein of Azotobacter nitrogenase [J]. Biochem. Biophys. Res. Comm., 1970, 39: 90-99.
    [111] Stiefel EI. Proposed molecular mechanism for the action of molybdenum in enzymes:Coupled proton and electron transfer [J]. Proc. Natl. Acad. Sci. USA, 1973, 70: 988-992.
    [112] (a) Sellmann D, Sutter J. In quest of competitive catalysts for nitrogenases and other metal sulfur enzymes [J]. Acc. Chem. Res., 1997, 30: 460-469; (b) Sellmann D, Utz J, Blum N,Heinemann FW. On the function of nitrogenase FeMo cofactor and the competitive catalysts: Chemical principles, structural blue-prints, and the relevance of iron sulfur complexes for N_2 fixation [J]. Coord. Chem. Rev., 1999, 190-192: 607-627.
    [113] (a)蔡启瑞.林硕田.万惠霖.固氮酶活性中心的研究和酶催化机理[J].厦门大学学报(自然科学版),1979,18:30-44;(b)Tsai KR.Development of a model of nitrogenase active center and mechanism of nitrogenase catalysis. In Nitrogen Fixation, Vol. 1 (Eds. Newton WE & Orme-Johnson WH).University Park Press:Baltimore.1980,pp 373-387;(c)厦门大学固氮研究组.酶催化和非酶催化固氮成氨[J].厦门大学学报(自然科学版),1982,21:424-442.
    [114] Lu JX. Composite "String Bag" cluster model for the active center of nitrogenase. In Nitrogen Fixation, Vol. 1 (Eds. Newton WE & Orme-Johnson WH). University Park Press:Baltimore. 1980, pp 343-371.
    [115] Gramer SP, Hodgson KO, Gillum WO, Mortenson LE. The molybdenum site of nitrogenase.Preliminary structural evidence from x-ray absorption spectroscopy [J]. J. Am. Chem. Soc,1978, 100: 3398-3407.
    [116] Teo BK,Averill BA. A new cluster model for the FeMo-cofactor of nitrogenase [J]. Biochem.Biophys. Res. Comm.,1979, 88: 1454-1461.
    [117] Christon G,Hagen KS, Holm RH. Synthesis, structure, and properties of [Co_8S_6(SC_6H_5)_8]~(4-),containing an octanuclear Co_8S_6 rhombic dodecahedron related to that of cobalt pentlandite[J].J.Am.Chem.Soc,1982, 104: 1744-1745.
    [118] Orme-Johnson WH.186~(th) ACS annual meeting, Washington DC, 1983,No.301.
    [119] Challen PR,Koo SM, Kim CG,Dunham WR,Coucouvanis D. Nitrogenase substrates as intercluster bridging units between the molybdenum atoms in doubly bridged, double cubanes. The synthesis and characterization of the [MoFe_3S_4Cl_2(Cl_4cat)]_2(μ_2-S)(μ_2-L)]~(n-) anions (L=N_2H_4,n=4; L= CN~-,n=5)[J].J.Am.Chem. Soc, 1990, 112:8606-8607.
    [120] Lyons EM, Thiel T.Characterization of nifB,nifS,and nifU genes in the cyanobacterium Anabaena variabilis:NifB is required for the vanadium-dependent nitrogenase [J].J Bacteriol., 1995, 177(6): 1570-1575.
    [121] Allen RM, Chatterjee R,Ludden PW, Shah VK. Incorporation of iron and sulfur from NifB cofactor into the iron-molybdenum cofactor of dinitrogenase [J]. J Biol.Chem., 1995,270(45): 26890-26896.
    [122] Brigle KE, Weiss MC, Newton WE, Dean DR. Products of the iron-molybdenum cofactor-specific biosynthetic genes, nifE and nifN, are structurally homologous to the products of the nitrogenase molybdenum-iron protein genes, nifD and nifK [J]. J Bacteriol.,1987, 169(4): 1547-1553.
    [123] Roll JT, Shah VK, Dean DR, Roberts GP. Characteristics of NIFNE in Azotobacter vinelandii strains. Implications for the synthesis of the iron-molybdenum cofactor of dinitrogenase [J]. J Biol. Chem., 1995, 270(9): 4432-4437.
    [124] Downs DM, Ludden PW, Shah VK. Synthesis of the iron-molybdenum cofactor of nitrogenase is inhibited by a low-molecular-weight metabolite of Klebsiella pneumoniae [J].J Bacteriol., 1990, 172(10): 6084-6089.
    [125] (a) Paustian TD, Shah VK, Roberts GP. Apodinitrogenase: purification, association with a 20-kilodalton protein, and activation by the iron-molybdenum cofactor in the absence of dinitrogenase reductase [J]. Biochemistry, 1990, 29: 3515-3522;
    (b) Tal S, Chun TW,Gavini N, Burgess BK. The delta nifB (or delta nifE) FeMo cofactor-deficient MoFe protein is different from the delta nifH protein [J].J Biol. Chem., 1991, 266(16): 10654-10657;
    (c) Allen RM, Homer MJ, Chatterjee R,Ludden PW, Roberts GP, Shah VK. Dinitrogenase reductase and MgATP-dependent maturation of apodinitrogenase from Azotobacter vinelandii [J].J Biol Chem., 1993, 268(31): 23670-23674;
    (d) Hawkes TR,Smith BE.Purification and characterization of the inactive MoFe protein (NifB-Kpl) of the nitrogenase from nifB mutants of Klebsiella pneumoniae [J]. Biochem. J., 1983, 209: 43-50;
    (e) Homer MJ,Paustian TD, Shah VK, Roberts GP. The nifY product of Klebsiella pneumoniae is associated with apodinitrogenase and dissociates upon activation with the iron-molybdenum cofactor [J]. J Bacteriol., 1993, 175(15): 4907-4910;
    (f) Homer MJ,Dean DR, Roberts GP. Characterization of the gamma protein and its involvement in the metallocluster assembly and maturation of dinitrogenase from Azotobacter vinelandii [J]. J Biol. Chem., 1995, 27(42): 24745-24752;
    (g) White TC, Harris GS,Orme-Johnson W.Electrophoretic studies on the assembly of the nitrogenase molybdenum-iron protein from the Klebsiella pneumoniae nifD and nifK gene products [J]. J Biol. Chem., 1992, 267(33): 24007-24016; (h) Ribbe MW, Burgess BK. The chaperone GroEL is required for the final assembly of the molybdenum-iron protein of nitrogenase [J]. Biochemistry, 2001, 98(10): 5521-5525; (i) Rubio LM, Rangaraj P, Homer MJ, Roberts GP, Ludden PW. Cloning and mutational analysis of the γ gene from Azotobacter vinelandii defines a new family of proteins capable of metallocluster binding and protein stabilization [J]. J Biol. Chem., 2002, 277(16): 14299-14305.
    
    [126] (a) Govezensky K, Greener T, Segal G, Zamir A. Involvement of GroEL in m/gene regulation and nitrogenase assembly [J]. J bacteriol., 1991, 173(20): 6339-6346; (b) Govezensky D, Bochkareva ES, Zamirh A, Girshovich AS. Chaperonins as potential gene regulatory factors. In vitro interaction and solubilization of NifA, the nif transcriptional activator, with GroEL [J]. J Biol. Chem., 1994,269(19): 14003-14006.
    
    [127] Corbett MC, Hu YL, Fay AW, Ribbe MW, Hedman B, Hodgson KO, Structural insights into a protein-bound iron-molybdenum cofactor precursor [J]. Proc. Natl. Acad. Sci. USA, 2006, 1238-1243.
    
    [128] Newton WE, Gheller SF, Feldman BJ, Dunham WR, Schultz FA, Isolated iron-molybdenum cofactor of nitrogenase exists in multiple forms in its oxidized and semi-reduced states [J]. J. Biol. Chem., 1989, 264: 1924-1927.
    
    [129] Conradson SD, Burgess BK, Newton WE, Hodgson KO, McDonald JW, Rubinson JF, Gheller SF, Mortenson LE, Adams MWW, Mascharak PK, Armstrong WA, Holmle RH, Structural insights from the Mo K-Edge X-ray absorption near edge structure of the iron-molybdenum protein of nitrogenase and its iron-molybdenum cofactor by comparison with synthetic Fe-Mo-S clusters [J]. J. Am. Chem. Sci., 1985, 107: 7935-7940.
    
    [130] Liu. QT, Huang LG, Wang LL, Kang BS, Lu JX. First successful synthesis of single MoFe_3S_4 cubane-type cluster compound by spontaneous self assembly reaction-synthesis and crystal structure of (Et4N)[ MoFe_3S_4Mo(Et_2dtc)_5]·(CH_3CN) [J]. Chinese J. Struct. Chem., 1983,2:291-293.
    
    [131] (a) AI-Ahmad SA, Salifoglou A, Kanatzidis MG, Dunham WR, Coucouvanis D, Octanuclear heterometallic clusters with rhombic dodecahedral cores. The synthesis, structural characterization, and properties of the {Fe_6S_6(p-RPhO)_6[M(CO)_3]_2}~(n-) clusters (M = Mo, n = 3, R = Me, OMe, NMe; M = W, n = 3, R = Me; M = Mo, n= 4, R = Me, OMe, COMe). Precursors for synthetic analogues for the Fe/Mo/S site in nitrogenase [J]. Inorg. Chem., 1990, 29: 927-938; (b) Coucouvanis D, Salifoglou A, Kanatzidis MG, Dunham WR, Simopoulos A, Kostikas A synthesis, structural Characterization, and electronic properties of the [Fe_6S_6X_6(M(CO)_3)_2]~(n-) anions (M = Mo, w; n = 3, 4; x = c1, Br, I). Heteronuclear clusters of possible structural relevance to the Fe/Mo/S center in nitrogenase [J]. Inorg.Chem., 1988, 27: 4066-4077; (c) Eldredge PA,Bryan RF, Sinn E, Averill BA, The [MoFe_6S_6(CO)_(16)]~(2-) Ion: A new model for the FeMo-cofactor of nitrogenase [J]. J. Am. Chem. Sci., 1988, 110: 5573-5575; (d) Eldredge PA, Bose KS, Barber DE, Bryan RF, Sinn E, Rheingold A, Averill BA, Synthesis and structures Of the [MoFe_6S_6(CO)_(16)]~(2-) [MoFe_4S_3(CO)_(13)(PE_3)]~(2-) and [Mo_2Fe_2S_2(CO)_(12)]~(2-) ions: high-nuclearity Mo-Fe-S clusters as potential precursors to models for the FeMo-Cofactor of nitrogenase [J]. Inorg. Chem., 1991, 30: 2365-2375.
    
    [132] Wright DW, Chang RT, Mandal SK, Armstrong WH, Orme-Johnson WH. A novel vanadium(V) homocitrate complex: synthesis, structure, and biological relevance of [K_2(H_2O)_5] [(VO_2)_2(R,S-homocitrate)_2]·H_2O [J]. J. Biol. Inorg. Chem., 1996, 1: 143-151.
    
    [133] Li DM, Xu JQ, Li ZC, Xing YH, Wang RZ, Liu SQ, Sun HR, Wang TG Preparation and characterization of a novel complex of molybdenum(V) with homocitrate, K_5(NH_4)[Mo_2O_2S_2(C_7H_6O_7)_2]·4H_2O [J]. Synth. React. Inorg. Met. Org. Chem., 2000, 30: 319-333.
    
    [134] Zhou ZH, Hou SY, Cao ZX, Tsai KR, Chow YL, Syntheses, spectroscopies and structures of molybdenum(VI) complexes with homocitrate [J]. Inorg. Chem., 2006,45: 8447-8451.
    
    [135] (a) Cruywagen JJ, Van de water RF, Complexation between molybdenum(VI) and citrate: a potentiometric and calorimetric investigation [J]. Polyhedron, 1986, 5: 521-526; (b) Cruywagen JJ, Kruger L, Rohwer EA. Complexation of tungsten(VI) with citrate [J]. J. Chem. Soc. Dalton Trans., 1991, 1727-1731; (c) Burojevic S, Shweky I, Bino A, Summers DA, Thompson R. Synthesis, structure and magnetic properties of an asymmetric dinuclear oxocitratovanadate(IV) complex [J]. Inorg. Chim. Acta, 1996, 251: 75—79; (d) Abrahamson HB, Rezvani AB, Brushmiller JG Photochemical and spectroscopic studies of complexes, of iron(III) with citric acid and other carboxylic acids [J]. Inorg. Chim. Acta, 1994, 226: 117-127; (e) Kiss T, Buglyo P, Sanna D, Micera G, Decock P, Dewaele D. Oxovanadium(IV) complexes of citric and tartaric acids in aqueous solution [J]. Inorg. Chim. Acta, 1995, 239: 145-153; (f) Samoutus A, Kanas A, Dudek M, Grybos R, Hodorowicz E. 1:1 Molybdenum(VI) citric acid complexes [J]. Transition Met. Chem., 1991, 16: 495-499; (g) Cruywagen JJ, Rohwer EA, Vandewater RF. Molybdenum(VI) complex formation. Equilibria and thermodynamic quantities for the reactions with malate [J]. Polyhedron, 1997, 16: 243-251; (h) Cruywagen JJ, KrUgen L, Rohwer EA. Tungsten(VI) complex formation. Equilibria and thermodynamic quantities for the reactions with malate [J]. J. Chem. Soc, Dalton Trans., 1997, 1925-1930; (i) Cruywagen JJ, Heyns JBB, Rohwer EA. Molybdenum(VI) complex formation. Part 4. Equilibria and thermodynamic quantities for the reactions with tartrate in 1.0 mol dm~(-3) sodium chloride [J]. J. Chem. Soc. Dalton Trans., 1990, 1951-1956; 0) Cruywagen JJ, Kruger L, Rohwer EA. Molybdenum(VI) and tungsten(VI) complex-formation. Part 5. The reaction with lactate in 1.0 mol dm"3 sodium chloride medium [J]. J. Chem. Soc, Dalton Trans., 1993, 105-109; (k) Cruywagen JJ, Rohwer EA, Equilibria and thermodynamic quantities for the reactions of molybdenum(VI) and tungsten(VI) with mandelate (a-hydroxybenzeneacetate) [JJ. J. Chem. Soc Dalton Trans., 1995, 3433-3438.
    
    [136] Zhou ZH, Deng YF, Cao ZX, Zhang RH, Chow YL, Dimeric dioxomolybdenum(VI) and oxomolybdenum(V) complexes with citrate at very low pH and neutral conditions [JJ. Inorg. Chem., 2005, 44: 6912-6914.
    
    [137] Zhou ZH, Wan HL, Tsai KR. Syntheses and spectroscopic and structural characterization of molybdenum(VI) citrato monomeric raceme and dimer, K_4[MoO_3(cit)]·2H_2O and K-4[(MoO_2)_2O(Hcit)_2]·4H_2O [JJ. Inorg. Chem., 2000, 39: 59-64.
    
    [138] Zhou XH, Xing YH, Xu JQ, Li DM, Wang RZ, Liu SQ, Zeng QX, Molybdenum(VI)-oxygen complex containing citrate ligand: synthesis and characterization of K_6[(MoO_2)_2O(cit)_2]·5H_2O [J]. Solid State Science, 1999, 189-198.
    
    [139] Zhou ZH, Wan HL, Tsai KR. Molybdenum(VI) complex with citric acid: synthesis and structural characterization of 1:1 ratio citrato molybdate K_2Na_4[(MoO_2)_2O(cit)_2]·5H_2O [J]. Polyhedron, 1997, 16:75-79.
    [140] Zhou ZH, Wan HL, Tsai KR. Bidentate citrate with free terminal carboxyl groups, syntheses and characterization of citrato oxomolybdate(Ⅵ) and oxotungstate(Ⅵ), △/△-Na_2[MO_2(H_2cit)_2].3H_2O(M=Mo or W) [J]. J. Chem. Soc, Dalton Trans., 1999, 4289-4290.
    [141] Alcock NW, Dudek M, Grybo(?) R, Hodorowicz E, Kanas A, Samotus A. Complexation between molybdenum(Ⅵ) and citrate-structural characterization of a tetrameric complex, K_4[(MoO_2)_4O_3(cit)_2].6H_2O [J]. J. Chem. Soc, Dalton Trans., 1990, 707-711.
    [142] Nassimbeni LR, Niven ML, Cruywagen JJ, Heyns JBB. Complexation between molybdenum(VI) and citrate: crystal and molecular structure of [Mo_4O_(11)(citrate)_2](Me_3N(CH_2)_6NMe_3)_2.12H_2O[J]. J. Crystallogr. Spectrosc.Res., 1987, 17:373-382.
    [143] 李冬梅.徐吉庆.含柠檬酸配体的钼硫簇合物的合成与晶体结构的测定[J].高等学校化学学报,2000,21(10):1464-1467.
    [144] Xu JQ, Zhou XH, Zhou LM, Wang TG,Huang XY, Averill BA. The first binuclear Mo-S cluster compound containing citrate ligands, K_5(NH4)[Mo_2O_(μ-S)_2(C_6H_4O_7)_2]·CH_3OH·5H_2O, characterized by X-ray single crystal structure determination [J]. Inorg. Chim. Acta, 1999,285: 152-154.
    [145] Li DM, Xing YH, Li ZC, Xu JQ, Song WB, Wang TG, Yang GD, Hu NH, Jia HQ, Zhang HM, Synthesis and characterization of binuclear molybdenum-polycarboxylate complexes with sulfur bridges [J]. J. Inorg. Biochem., 2005, 99: 1602-1610
    [146] Xing YH, Xu HQ, Sun HR, Li DM, Xing Y, Lin YH, Jia HQ. A new dinuclear molybdenum(V)-sulfur complex containing citrate ligand: synthesis and characterization of K_(2.5)Na_2NH_4[Mo_2O_2S_2(cit)_2].5H_2O[J]. Eur. J. Sol. State Inorg., 1998, 35 (10-11): 745-756.
    [147] (a) Zhou ZH, Yan WB, Wan HL, Tsai KR, Wang JZ, Hu SZ. Metal-hydroxycarboxylate interactions: Syntheses and structures of K_2[VO_2(C_6H_6O_7)]_2.4H_2O and (NH_4)2[VO_2(C_6H_6O_7)]_2.2H_2O[J]. J. Chem. Crystallogr., 1995, 25: 807-811; (b) Wright DW, Humiston PA, Orme-Johnson WH, Davis WM. A unique coordination mode for citrate and a transition metal: K_2[VO_2(C_6H_6O_7)]_2.4H_2O [J]. Inorg. Chem., 1995, 34: 4194-4197.
    [148] Zhou ZH, Wan HL, Hu SZ, Tsai KR, Syntheses and structures of the potassium-ammonium dioxocitratovanadate(Ⅴ) and sodium oxocitratovanadate(Ⅳ) dimers [J]. Inorg. Chim. Acta, 1995,237: 193-197.
    [149] Tsaramyrsi M, Kavousanaki D, Raptopoulou CP, Terzis A, Salifoglou A, Systematic synthesis, structural characterization, and reactivity studies of vanadium(Ⅴ)-citrate anions [VO_2(C_6H_6O_7)]_2~(2-), isolated from aqueous solutions in the presence of different cations [J]. Inorg. Chim. Acta, 2001, 320: 47-59
    [150] Zhou ZH, Zhang H, Jiang YQ, Lin DH, Wan HL, Tsai KR, Complexation between vanadium(Ⅴ) and citrate: spectroscopic and structural characterization of a dinuclear vanadium(Ⅴ) complex [J]. Trans. Metal Chem., 1999, 24: 605-609,
    [151] Kaliva M, Giannadaki T, Salifoglou A, Raptopoulou C P, Terzis A, A New Dinuclear Vanadium(Ⅴ)-Citrate Complex from Aqueous Solutions. Synthetic, Structural, Spectroscopic, and pH-Dependent Studies in Relevance to Aqueous Vanadium(Ⅴ)-Citrate Speciation [J]. Inorg. Chem. 2002, 41: 3850-3858
    [152] Kalivaa M, Raptopoulou C P, Terzis A, Salifoglou A, Systematic studies on pH-dependent transformations of dinuclear vanadium(Ⅴ)-citrate complexes in aqueous solutions A
    perspective relevance to aqueous vanadium(Ⅴ)-citrate speciation [J]. J. Inorg. Biochem.,2003,93: 161-173.
    [153] 周朝晖.缪建英.万惠霖.含质子柠檬酸钒(Ⅴ)配合物中间体的合成和晶体结构[J].高等学校化学学报,1997,18:11-14.
    [154] Zhou ZH, Wan HL, Tsai KR, Synthesis and crystal structure of sodium ammonium dimeric(citrato)dioxovanadium(Ⅴ) Na_2(NH_4)_4[VO(cit)]_2-6H_2O [J]. Chinese Science Bulletin, 1995,40: 749-752.
    [155] Tsaramyrsi M, Kaliva M, Salifoglou A, Raptopoulou CP, Terzis A, Tangoulis V, Giapintzakis J. Vanadium()-citrate complex interconversions in aqueous solutions. A pH-dependent synthetic, structural, spectroscopic, and magnetic study [J]. Inorg. Chem., 2001, 40:5772-5779.
    [156] Burojevic S, Shweky I, Bino A, Summers DA, Thompson RC, Synthesis, structure and magnetic properties of an asymmetric dinuclear oxocitratovanadate(Ⅳ) complex [J]. Inorg.Chim. Acta, 1996,251: 75-79.
    [157] Velayutham M, Varghese B, Subramanian S, Magneto-Structural Correlation Studies of A Ferromagnetically Coupled Dinuclear Vanadium(Ⅳ) Complex. Single-Crystal EPR Study [J]. Inorg. Chem., 1998, 37: 1336-1340.
    [158] Zhou ZH, Wan HL, Hu SZ, Tsai KR, Synthesis and structure of sodium-potassium oxocitratovanadium(Ⅳ) dimmer [J]. Chinese J. Struct. Chem., 1995, 14: 337-341.
    [159] Llopis E, Ramirez JA, Domenech A, Cervilla A. Tungsten(Ⅵ) complexes with citric acid (H_4cit). Structural characterisation of Na_6[{WO_2(cit)}_2O]·10H_2O[J]. J. Chem. Soc. Dalton Trans., 1993,1121-1124.
    [160] Wang G, Zhou ZH, Zhang H, Ye JL, Wan HL. Synthesis, spectroscopic properties and structural characterization of sodium potassium citrato oxotungstate(Ⅵ) dimmer [J].Chinese J. Struct. Chem., 2000, 19: 181-186.
    [161] Zhang H, Zhao H, Jiang YQ, Hou SY, Zhou ZH, Wan HL. pH- and mol-ratio dependent tungsten(Ⅵ)-citrate speciation from aqueous solutions: syntheses, spectroscopic properties and crystal structures [J]. Inorg. Chim. Acta, 2003, 351: 311-318.
    [162] Knobler CB, Wilson AJ, Hider RN, Jensen IW, Penfold BR, Robinson WT, Wilkins CJ.Molybdenum(Ⅵ) complexes with malic acid: their inter-relationships, and the crystal structure of dicesium bis[(S)-malato(2-)]-cis-dioxomolybdate(Ⅵ)-water(1/1) [J]. J. Chem. Soc, Dalton Trans., 1983, 1299-1303.
    [163] Zhou ZH, Yan WB, Wan HL, Tsai KR. Synthesis and characterization of homochiral polymeric S-malato molybdate(VI): toward the potentially stereospecific formation and absolute configuration of iron-molybdenum cofactor in nitrogenase [J]. J. Inorg. Biochem.,2002,90: 137-143.
    [164] Zhou ZH, Yan WB, Wan HL, Tsai KR. Complexation of molybdenum(VI) with R- and S-malic acid, the crystal structure of (NH_4)_4[(MoO_2)4O_3(R-mal)_2]-6H_2O [J]. Chinese J. Struct.Chem., 1995,14:255-260.
    [165] Wu CD, Lu CZ, Liu JC, Zhuang HH, Huang JS, A new heterometalate anion [GdMo_6(CH_3CHOCOO)_6O_(15)]~(3-) with a nine-coordinate gadolinium encapsulated at the center [J]. J. Chem. Soc, Dalton Trans., 2001, 3202-3204.
    [166] Robinson WT, Wilkins CJ. The crystal-structure of a di(tetramethylammonium)-bis[R,R-tartrato(2-)]-cis-dioxomolybdate(Ⅵ),(NMe_4)_2[MoO_2(C_4H_4O_6)_2]·EtOH·1.5H_2O, with comments on tartrate coordination [J]. Transition. Met. Chem., 1986, 11: 86-89.
    [167] Cotton FA, Barnard TS, Daniels LM, Murillo CA, First water soluble Mo_2~(4+) compounds spanned by four a-hydroxycarboxylate anions [J]. J. Inorg. Chem. Comm., 2002, 5:527-532.
    [168] Zhou ZH, Hou SY, Cao ZX, Wan HL, Ng SW, Syntheses, crystal structures and biological revelence of glycolato and S-lactato molybdates [J]. J. Inorg. Biochem., 2004, 98: 1037-1044.
    [169] Huang JL, Zhou KJ, Lu JX, Crystal and molecular structure of dipotassium tris(hydroxyacetato)vanadyl(Ⅳ) monohydrate [J]. Chinese. J. Struct. Chem., 1984, 3: 57-60.
    [170] Biagioli M, Strinna-Erre L, Micera G, Panzanelli A, Zema M. Molecular structure, characterization and reactivity of dioxo complexes formed by vanadium(Ⅴ) with a-hydroxycarboxylate ligands [J]. Inorg.Chim. Acta, 2000, 310: 1-9.
    [171] Hati S, Batchelor RJ, Einstein FWB, Tracey AS, Vanadium(Ⅴ) complexes of a-hydroxycarboxylic acid in aqueous solution [J]. Inorg. Chem., 2001, 40: 6258-6265.[172] Schwendt P,(?)va(?)(?)rek P, Kuchta L, Marek J, A new coordination mode for the tartrato ligand. Synthesis of vanadium(Ⅴ) oxo peroxo tartrato complexes and the X-ray crystal structure of K_2[{VO(O_2)(L-tartH_2)}_2(μ-H_2O)]-5H_2O [J]. Polyhedron, 1998, 17: 2161-2166.
    [173] (a) Zhou ZH, Wang GF, Hou SY, Wan HL, Tsai KR. Tungsten-malate interaction. Synthesis, spectroscopic and structural studies of homochiral S-malato tungstate(VI), A-Na_3[WO_2H(S-mal)_2] [J]. Inorg. Chim. Acta, 2001, 314: 184-188; (b) Hou SY, Yan WB, Ma ZJ, Liao XL, Zhou ZH, Wan HL, Syntheses, characterization and stereochemistry of S-and R, S-hydrogenmalato dioxotungsten(Ⅵ) [J]. J. Coord. Chem., 2003, 56: 133-139.
    [174] Butcher RJ, Powell HKJ, Wilkins CJ, Yong SH. New amino-acid complexes of molybdenum-(Ⅴ) and -(Ⅵ) [J]. J. Chem. Soc. Dalton Trans., 1976, 356-359.[175] Xing YH, Xu JQ, Li DM, Sun HR, Bu WM, Ye L, Yang GD, Fan YG Syntheses and structure of a molybdenum cysteinato complex with sulphur bridges, K_2[Mo_2O_2S_2(cys)_2]·4H_2O·CH_3OH [J]. Syn. React. Inorg. Met., 1998, 24: 1493-1503.
    [176] Delbaere LT, Prout CK. The X-ray crystal and molecular structure of a molybdenum(Ⅴ)-L-Histidine Complex Mo_2O_4(L-histidine)_·3H_2O[J]. Chem. Commun., 1971, 162-162.
    [177] Demadis KD, Coucouvanis D. Syntheses and structural characterization of a new class of double cubanes that contain MoFe_3S_4 subunits and molybdenum-coordinated, bridging mercapto-carboxylate ligands: effective catalysts for the reduction of hydrazine to ammonia [J]. Inorg. Chem., 1994, 33: 4195-4197.
    [178] Demadis KD, Coucouvanis D, Synthesis, structural characterization, and properties of new single and double cubanes containing the MoFe_3S_3 structural unit and molybdenum-bound polycarboxylate ligands. Clusters with a molybdenum-coordination environment similar to that in the iron molybdenum cofactor of nitrogenase [J]. Inorg. Chem., 1995, 34: 436-438.
    [179] (a) Tuczek F. Electronic structure and spectroscopic properties of molybdenum and tungsten N_2, NNH, NNH_2 and NNH_3 complexes with diphosphine co-ligands: insights into the end-on terminal reduction pathway of dinitrogen [M]. Advances in Inorganic Chemistry,2004,56:27-53;(b)金夕.曹泽星.张乾二.氮分子与过渡金属中心钼、铁、钒、相互作用的理论研究[J].高等化学学报,2005,126:1522-1526;(c)Reiher M,HeSS BA, Quantum chemical investigation into the problem of biological nitrogen fixation: sellmann-type metal-sulfur model complexes [M]. Advances in Inorganic Chemistry, 2004, 56: 55-100; (d) Tuczek F, Horn KH, Lehnert N, Vibrational spectroscopic properties of molybdenum and tungsten N-2 and N2Hx complexes with depe coligands: comparison to dppe systems and influence of H-bridges [J]. Coord. Chem. Rev., 2003, 245: 107-120; (e) Cao, ZX, Zhou, ZH, Wan, HL, Zhang, QR, Thiel, W. Density functional calculations on the binding of dinitrogen to the FeFe Cofactor in Fe-only nitrogenase: FeFe-co(μ_6-N_2) as intermediate in nitrogen fixation [J]. lnorg. Chem., 2003,42: 6986-6988.
    [180] (a) 邵美成.鲍林规则与键价理论[M].北京:高等教育出版社,1993;(b) Urusov Vs.Semi-empirical groundwork of the bond-valence model [J]. Acta Cryst., 1995, B51: 641-649; (c) Brown ID, Altermatt D. Bond-Valence parameters obtained from a systematic analysis of the inorganic crystal structure database [J]. Acta. Cryst, 1985, B41: 244-247.
    [181] 陈明旦.周朝晖.胡盛志.与钼氧化态线性相关的键价参数[J].科学通报,2002,5:349-352.
    [182] Hu SZ, Zhou ZH, The correlation between metal oxidation state and bond valence parameters for M-0 bonds (M = V, Fe and Cu). A simple method to search for the metal oxidation-state independent parameter pairs [J]. Z. Kristallogr., 2004,219: 614-620.
    [183] (a) Madden MS, Paustian TD, Ludden PW, Shah VK. Effects of Homocitrate, Homocitrate lactone, and fluorohomocitrate on nitrogenase in nifV mutants of Azotobacter vinelandii [J]. J. Bacteriol., 1991, 173, 5403-5405; (b) Palmer JG, Doemeny PA, Schrauzer GN. The chemical evolution of a nitrogenase model, XXIII. The nature of the active site and the role of homocitric acid in MoFe-nitrogenase [J]. Z. Naturforsch. B, 2001, 56: 386-393; (c) Schrauzer GN, Palmer JG The chemical evolution of a nitrogenase model, XXIV. Correlational analysis of effects of organic acids on in vitro MoFe-protein substrate reduction activities [J]. Z. Naturforsch. B, 2001, 56: 1354-1359; (d) Madden MS, Kindon ND, Ludden PW, Shah VK. Diastereomer-dependent substrate reduction properties of a dinitrogenase containing 1-fluorohomocitrate in the iron-molybdenum cofactor [J]. Proc. Natl. Acad. Sci. USA, 1990, 87: 6517-6521.
    [184] Bencini A, Gatteschi D, EPR of Exchange Coupled Systems, Springer Verlag, 1990.
    [185] Rodriguez-Cuamatzi P,Arillo-Flores OI, Bernal-Uruchurtu MI, H(?)pfl H, Theoretical and Experimental Evaluation of Homo- and Heterodimeric Hydrogen-Bonded Motifs Containing Boronic Acids, Carboxylic Acids, and Carboxylate Anions: Application for the Generation of Highly Stable Hydrogen-Bonded Supramolecular Systems [J]. Cryst. Growth Des., 2005, 5: 167-175.
    [186] Nishizawa M, Hirotsu K, Ooi S, Saito K, A mixed valence binuclear complex of vanadium(IV) and vanadium(V). X-Ray crystal structure of (NH_4)_3[V_3O_3(nitrotriacetate)_2]·3 H_2O [J]. Chem. Comm., 1979, 707-709.
    [187] (a) Li ZC, Xu JQ, An Improved synthesis of homocitrate [J]. Molecules, 1998, 3: 31-34. (b) Chen HB, Chen LY, Huang PQ, Zhang HK, Zhou ZH, Tsai KR, Expeditious biomimetically-inspired approaches to racemic homocitric acid lactone and per-homocitrate [J]. Tetrahedron, 2007, 63: 2148-2152.
    [188] Kovalevsky AY, Gembicky M, Novozhilova IV, Coppens P, Solid-State Structure Dependence of the Molecular Distortion and Spectroscopic Properties of the Cu(I) Bis(2,9-dimethyl-l,10-phenanthroline) Ion [J]. Inorg. Chem., 2003, 42: 8794-8802.
    [189] Aghabozorg H, Motyeian E, Aghajani Z, Ghadermazi M, Gharamaleki JA, Piperazinium aquabis(oxalato)oxidovanadate(Ⅳ) dehydrate [J]. Acta Crystallogr., 2007, E63: m1754-m1755.
    [190] Fu YL, Ren JL, Ng SW, Aqua(oxalato-κ~2O,O')oxo(1,10-phenanthroline-κ~2N,AN') vanadium(Ⅳ) [J]. Acta Crystallogr., 2004, E60: ml584-ml586.
    [191] Gronberg KLC, Gormal CA, Durrant MC, Smith BE, Henderson RA, Why R-Homocitrate Is Essential to the Reactivity of FeMo-Cofactor of Nitrogenase: Studies on NifV-Extracted FeMo-Cofactor [J]. J. Am. Chem. Soc, 1998, 120: 10613-10621.
    [192] Birnbaum A, Cotton FA, Dori Z, Kapon M, Marler D, Reisner GM, Schwotzer W, M3X13 type of equilateral-triangular metal atom cluster compound with several unprecedented features: [Mo_3(μ_3-CH_3C)(μ_2-Br)_3(η~2,μ_2-CH_3CO_2)_3(H_2O)_3]ClO_4·4H_2O [J]. J. Am. Chem. Soc, 1985, 107:2405-2410.
    [193] Sokolov MN, Gushchin AL, Naumov DY, Gerasko OA, Fedin VP, Cluster Oxalate Complexes [M_3(μ_3-Q)(μ_2-Q_2)_3(C_2O_4)_3]~(2-) and [Mo_3(μ_3-Q)(μ_2-Q)_3(C_2Q_4)_3(H_2O)_3]~(2-) (M = Mo, W; Q=S, Se): Mechanochemical Synthesis and Crystal Structure [J]. Inorg. Chem., 2005, 44:2431-2436.
    [194] Ghosh P, D'Cruz OJ, Narla RK, Uckun FM, Apoptosis-inducing Vanadocene Compounds against Human Testicular Cancer [J]. Clinical Cancer Res., 2000, 6(4):1536-1545.
    [195] (a) Evangelou A, Karkabounas S, Kalpouzos G, Malamas M, Liasko R, Stefanou D, Vlahos AT, Kabanos TA, Comparison of the therapeutic effects of two vanadium complexes administered at low doses on benzo[a]pyrene-induced malignant tumors in rats [J]. Cancer Letters, 1997, 119: 221-225; (b) Ghosh P, Ghosh S, D'Cruz OJ, Uckun FM, Structural and biological characterization of a novel spermicidal vanadium(Ⅳ) complex: Bis(π-cyclopentadienyl)-N,N-diethyl dithiocarbamato vanadium(Ⅳ) tetrafluoro borate,[VCp_2(DeDtc)](BF_4) [J]. J. Inorg. Biochem., 1998, 72: 89-98.
    [196] Krejsa CM, Nadler SG, Esselstyn JM, Kavanagh TJ, Ledbetter JA, Schieven GL, Role of Oxidative Stress in the Action of Vanadium Phosphotyrosine Phosphatase Inhibitors [J]. J. Biol. Chem., 1997,272: 11541-11549.
    [197] Lee SC, Holm RH, The clusters of nitrogenase: synthetic methodology in the construction of weak-field clusters [J]. Chem. Rev., 2004, 104: 1135-1158.
    [198] George SJ, Igarashi RY, Xiao YM, Hernandez JA, Demuez M, Zhao DH, Yoda Y, Ludden PW, Rubio LM, Cramer SP, Extended X-ray absorption fine structure and nuclear resonance vibrational spectroscopy reveal that NifB-co, a FeMo-co precursor, comprises a 6Fe core with an interstitial light atom [J]. J. Am. Chem. Soc, 2008, 130: 5673-5680.
    [199] (a) Shoji M, Koizumi K, Kitagawa Y, Yamanaka S, Okumura M, Yamaguchi K, Ohki Y, Sunada Y, Honda M, Tatsumi K, Theory of chemical bonds in metal loenzymes V: Hybrid-DFT studies of the inorganic Fe_8S_7 core [J]. Int. J. Quantum Chem., 2006, 106: 3288-3302; (b) Ohki Y, Ikagawa Y, Tatsumi K, Synthesis of new Fe_8S_7 clusters: A topological link between the core structures of P-cluster, FeMo-co, and FeFe-co of nitrogenases [J]. J. Am. Chem. Soc, 2007, 129: 10457-10465.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700