用户名: 密码: 验证码:
PTP1B抑制剂的制备与构效关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蛋白酪氨酸磷酸酶1B(protein tyrosine phosphatase, PTP1B)是蛋白酪氨酸磷酸酶(protein tyrosine phosphatases, PTPs)家族中的一个经典的非受体型酪氨酸磷酸酶,在胰岛素信号通路中起着重要的负调控作用,是目前公认的一个新颖的糖尿病和肥胖症治疗靶点。寻找PTP1B的高活性抑制剂对糖尿病和肥胖症治疗有着重要的应用前景。
     双-(2,3-二溴-4,5-二羟基苯基)-甲烷(BDDPM)是从松节藻醇提物中分离鉴定出的溴酚类化合物,体外活性筛选发现,它具有极强的蛋白酪氨酸磷酸酶1B(PTP1B)抑制活性(IC_(50)=2.4μmol/L)。采用高脂饮食-链脲佐菌素诱导的大鼠模型(STZ-DM)对富含BDDPM的松节藻醇提物进行动物实验,发现中、高剂量组同样表现出惊人的活性,降糖效果优于阳性对照临床药物文迪雅,并呈剂量依赖性。于是拟采用STZ-DM大鼠模型对单一组分BDDPM进行药理、药效学等体内降糖活性研究,但体内动物实验需要30g以上BDDPM,所以首先要解决药源的问题。本文尝试从天然海藻提取分离和化学合成两种途径来解决BDDPM制备的问题。
     首先本文尝试从松节藻中提取分离BDDPM的制备方法。通过正相硅胶色谱、凝胶Sephadex LH-20色谱和重结晶等纯化手段分离纯化目标化合物BDDPM,并借助IR,MS和NMR等技术确定了其化学结构。最终从常温风干的50kg松节藻干样品中分离得到7.8g BDDPM。由于松节藻藻体构成复杂,给分离纯化BDDPM带来极大困难,致使分离纯化过程耗费大量时间和金钱;并且原材料松节藻的采集也易受季节和原料短缺等自然因素的影响。所以,从天然海藻中分离纯化的方法不适宜用于BDDPM的制备。
     本文的重点是对BDDPM(4e)的化学合成途径进行研究。本文通过5步合成法(Friedel-Craftz酰基化反应、苯环逐级溴代、羰基还原、羟基脱保护)成功地合成了BDDPM,合成总产率为23.6%。同时本文采用上述合成路线获得了四个系列共计20个溴酚系列衍生物(4e为目标产物BDDPM,其余19个为溴酚系列衍生物),其中10个为新化合物。合成的20个化合物经1H NMR、13C NMR、MSEI和IR进行了结构鉴定。合成的20个化合物在体外活性筛选中均表现出不同程度的PTP1B抑制活性,其中合成的目标产物4e具有与天然分离纯化获得的BDDPM同等效率的PTP1B抑制作用。
     另外,通过比较四个系列化合物PTP1B抑制活性间的差异,对此类溴酚化合物的构效关系作了初步分析,结果表明:1.羰基官能团的存在会明显降低此类化合物的PTP1B抑制率;2.化合物中的羟基官能团被甲氧基保护后,PTP1B抑制活性会得到一定程度的加强;3.化合物苯环上溴原子取代基数目增多时,其PTP1B抑制率也会随之增强。但是,筛选结果中也有少部分化合物的PTP1B抑制作用与上述规则相违背。因此,本文总结的初步构效关系还需要进一步的实验研究加以验证。
     最后本文通过化学合成的方法,经过5步反应成功地制备出了30g BDDPM,为后续的药理、药效学研究奠定了基础。
Protein tyrosine phosphatase 1B(PTP1B), as a typical non-receptor type member of the family of PTPs(protein tyrosine phosphatases, PTP), is a key element in the negative regulation of insulin signaling pathway,and also has been a novel drug target for diabetes and obesity.Discovery for highly effective inhibitors of PTP1B has a promising application in diabetes and obesity therapy.
     Bis-(2,3-dibromo-4,5-dihydroxy-phenyl)-methane (BDDPM) is a natural bromophenol with significant inhibition against PTP1B (IC_(50)=2.4μmol/L), which was isolated from the ethanol extract of red algae Rhodomela confervoides. In vivo anti-hypoglycemic effects on streptozotocin-diabetes in male Wistar rats (STZ-DM) fed with high fat diet revealed that the STZ-DM treated with medium-dose and high-dose algae ethanol extract showed remarkable reductions in fasting blood glucose as compared with the STZ-DM control. So it is necessary to develop BDDPM pharmacological study in vivo, however, above 30g BDDPM is needed. Thus, in this thesis two medthods extraction from algae and total organic synthesis were evaluated to the prepartion of BDDPM.
     Firstly, 7.8g BDDPM was isolated from EtOAc-soluble portion of 50kg red alga R. confervoides by chromatography including normal phase silica gel, Sephadex LH-20 gel and recrystallization. Then its structure was elucidated by spectroscopic methods including IR, MS and NMR. The results revealed that it is too hard to isolate BDDPM from R. confervoides, which contains too much constituent which makes separation and purification process of BDDPM taking a lot of money and time. In additon, the collection of raw material is easily affected by natural, noncontrollable factors, such as shortage of raw materials. So this method is not suitable for the preparation of BDDPM.
     Secondly, in this thesis starting from the readily accessible materials, a linear sequence of five steps (Friedel-Crafts acylation, Bromine reaction、Carbonyl reduction, Demethylation) was designed and applied to synthesize the targeting compound BDDPM in 23.6% overall yield. Moreover, the synthesized target compound shown nearly the same PTP1B inhibitory activity as the natural ingredients and all the other synthesized compounds demonstrated moderate to good PTP1B inhibitory activity in colorimetric assay.
     In addition by comparing of PTP1B inhibition of four series compound, the preliminary structure-activity relationship of the screened compounds were revealed. First, the existence of carbonyl functional group on such compounds signifcantly lower rate of their PTP1B inhibition. Second, in the majority of those compounds, when the hydroxy functional groups to be protected by methoxy group their PTP1B inhibitory activity strengthening at a certain degree. Third, the presence of one or more bromines on the benzyl ring is benefite to PTP1B inhibitory activity and the increasing of bromine number on benzyl ring could obviously upgrade potency of PTP1B inhibitory activity. However, in this thesis it is not obvious to see a structure–activity pattern of selective compounds; more analogues need to be prepared further.
     Finally, 30g BDDPM was successfully synthesized by five steps, which laid foundation for further pharmaceutical research.
引文
[1] Ostman, A., Bohmer, F. D. Regulation of receptor tyrosine kinase signaling by protein tyrosine phosphatases. Trends Cell. Biol, 2001, 11: 258-266.
    [2] Tonks, N. K., Diltz, D. C., Fischer, E. H. Demonstration that the leukocyte common antigen (CD45) is a protein tyrosine phosphatase. Biochemistry. 1988, 27(24): 8695–8701.
    [3] Johnson, T.O., Ermolieff, J., Jirouesk, M.R., et al. Probing acid replacements of thiophene PTP1B inhibitors. Nat. Rev.Drugdisc, 2002, 1: 696-709.
    [4] Ahmad, F., Azevedo, J. L., Goldstein, B. J., et al. Alterations in skeletal muscle protein-tyrosine phosphatase activity and expression in insulin-resistant human obesity and diabetes. J Clin. Invest., 1997, 100: 449-458.
    [5] Ahmad, F., Considine, R.V., Goldstein, B.J., et al. Improved sensitivity to insulin in obese subjects following weight loss is accompanied by reduced protein-tyrosine phosphatases in adipose tissue. Metabolism, 1997, 46(10): 1140-1145.
    [6] Egawa, K., Maegawa, H., Kashiwagi, A., et al. Protein-tyrosine Phosphatase-1B Negatively Regulates Insulin Signaling in L6 Myocytes and Fao Hepatoma Cells. J. Biol. Chem,. 2001, 276(13): 10207-10211.
    [7] Ahmad, F., Li, P.M., Goldstein, B.J., et al. Osmotic Loading of Neutralizing Antibodies Demonstrates a Role for Protein-tyrosine Phosphatase 1B in Negative Regulation of the Insulin Action Pathway. J. Biol. Chem., 1995, 270: 20503-20508.
    [8] Elchebly, M., Payette, P., Michaliszyn, E., et al. Increased Insulin Sensitivity and Obesity Resistance in Mice Lacking the Protein Tyrosine Phosphatase-1B Gene. Science, 1999, 283(5407): 1544-1548.
    [9] Klaman, L. D., Boss, O., Peroni, O. D., et al. Increased Energy Expenditure, Decreased Adiposity, and Tissue-Specific Insulin Sensitivity in Protein-Tyrosine Phosphatase 1B-Deficient Mice. Mol.Cell. Biochem., 2000, 20(15): 5479-5489.
    [10]Wang, X. Y., Bergdahl, K., Heijbel, A.,et al. Analysis of in vitro interactions of protein tyrosine phosphatase 1B with insulin receptors. Mol. Cell. Endo., 2001, 173(1~2): 109-119.
    [11]Goldstein, B., Ahmad, F., Ding, W., et al. Regulation of the insulin signalling pathway bycellular protein-tyrosine phosphatases. Mol.Cell. Biochem., 1998, 182(1~2): 91-99.
    [12]Ukkola, O., Santaniemi, M. Protein tyrosine phosphatase 1B: a new target for the treatment of obesity and associated co-morbidities. J. Inter. Med., 2002, 251(6): 467-47.
    [13]Bleyle, L. A., Yun, P., Ellis, C., et al. Dissociation of PTPase Levels from Their Modulation of Insulin Receptor Signal Transduction. J. Cell Signal., 1999, 11: 719-725.
    [14]Bleasdale, J. E., Derek, O., Barbara, J. P., et al. Small Molecule Peptidomimetics Containing a Novel Phosphotyrosine Bioisostere Inhibit Protein Tyrosine Phosphatase 1B and Augment Insulin Action. Biochem., 2001, 40, 5642-5654.
    [15]Liu, G. Technology evaluation: ISIS-113715, Isis. Curr. Opin. Mol. Ther., 2004, 6(3): 331-336.
    [16]Geary, R.S., Bradley, J. D., et al. Lack of pharmacokinetic interaction for ISIS-113715. Clin. Pharmacokinet, 2006, 45(8): 789-801.
    [17]Pilch, P. F., Bergenhem, N. Pharmacological targeting of adipocytes/fat metabolism for treatment of obesity and diabetes. Mol. Pharmacol., 2006, 70(3): 779-85.
    [18]Moretto, A. F., Kirincich, S. J., Xu, W. X. et al. Bicyclic and tricyclic thiophenes as protein tyrosine phosphatase 1B inhibitors. Bioorg. Med. Chem. 2006, 14(7): 2162-2177.
    [19]Wan, Z.-K., Lee, J., Xu, W. et al. Monocyclic thiophenes as protein tyrosine phosphatase1B inhibitor: Capturing interactions with Asp48. Bioorg. Med. Chem. Lett., 2006, 16(18): 4941-4945.
    [20]Puius, Y. A., Zhao, Y., Sullivan, M., et al. Identification of a second aryl phosphate-binding site in protein tyrosine phosphatase1B: A paradigm for inhibitor design. Proc Natl Acad Sci., 1997, 94(25): 13420-13425.
    [21]Iversen, L. F., Andersen, H. S., Moller, K. B. et al. Steric hindrance as a basis for structure-based design of selective inhibitors of protein tyrosine phosphatases. Biochemistry, 2001, 40(49): 14812-14820.
    [22]Wilson, D. P., Wan, Z.-K., Xu, W.-X. et al. Structure-based optimization of protein tyrosine phosphatase1B inhibitors: From the active site to the second phosphotyrosine binding site. J. Med. Chem., 2007, 50(19): 4681-4698.
    [23]Wan, Z.-K., Follows, B., Kirincich, S. et al. Preparation of substituted thiophene inhibitors of protein tyrosine phosphatase 1B for treating diabetes and related diseases. Bioorg. Med.Chem. Lett., 2007, 17(10): 2913-2920.
    [24]Yue, E. W., Wayland, B., Douty, B. et al. Isothiazolidinone heterocycles as inhibitors of protein tyrosine phosphatases: Synthesis and structure-activity relationships of a peptide scaffold. Bioorg. Med. Chem. 2006, 14(17): 5833-5849.
    [25]Ala, P. J., Gonneville, L., Hillman, M. et al Structural insights into the design of non-peptidic isothiazolidinone-containing inhibitors of protein tyrosine phosphatase 1B. J. Biol. Chem., 2006, 281(49): 38013-38021.
    [26]Combs, A. P., Zhu, W., Crawley, M. L. et al. Potent benzimidazole sulfonamide protein tyrosine phosphatase 1B inhibitors containing the heterocyclic (S)-isothiazolidinone phosphotyrosine mimetic. J. Med. Chem., 2006, 49(13): 3774-3789.
    [27]Sparks, R. B., Polam, P., Zhu, W. et al. Benzothiazole (S)-isothiazolidinone derivatives as protein tyrosine phosphatase 1B inhibitors. Bioorg. Med. Chem. Lett., 2007, 17(3), 736-740.
    [28]Barnes, D., Coppola, G. M., Stams, T., Topiol, S. W. (Novartis AG). 1-Orthofluorophenyl-substituted 1,2,5-thiadiazolidinone derivatives as PTPase inhibitors and their preparation, pharmaceutical compositions and use in the treatment of diseases. WO 2007067612.
    [29]Barnes, D., Bebernitz, G. R., Coppola, G. M. et al. (Novartis AG). 1,2,5-Thiadiazolidine derivatives useful for treating conditions mediated by protein tyrosine phosphatases (PTPase) and their preparation and pharmaceutical compositions. WO 2007067613.
    [30]Barnes, D., Coppola, G. M., Damon, R. E. et al. (Novartis AG). 1,1,3-Trioxo-1,2,5-thiadiazolidines as PTPase inhibitors and their preparation, pharmaceutical compositions and use in the treatment of diseases. WO 2007067614.
    [31]Barnes, D., Bebernitz, G. R., Coppola, G. M. et al. (Novartis AG). Thiazolidinone compounds as protein tyrosine phosphatase inhibitors and their preparation, pharmaceutical compositions and use in the treatment of diseases. WO 2007067615.
    [32]Guertin, K. R., Setti, L., Qi, L. et al. Identification of a novel class of orally active pyrimido[5,4-3][1,2,4]triazine-5,7-diaminebased hypoglycemic agents with protein tyrosine phosphatase inhibitory activity. Bioorg. Med. Chem. Lett., 2003, 13(17): 2895-2898.
    [33]Shaver, A., Ng, J. B., Hall, D. A., et al Insulin mimetic peroxovanadium complexes: Preparation and structure of potassium oxodiperoxo(pyridine-2-carboxylato)vanadate(V), K2[VO(O2)2(C5H4NCOO)].2H2O, and potassium oxodiperoxo(3-hydroxypyridine-2- carboxylato)vanadate(V), K2[VO(O2)2(OHC5H3NCOO)].3H2O, and their reactions with cysteine.. Inorg. Chem. 1993, 32: 3109-3113.
    [34]Mahadev, K., Wu, X., Zilbering, A., et al. Hydrogen peroxide generated during cellular insulin stimulation is integral to activation of the distal insulin signaling cascade in 3T3-L1 adipocytes. J. Biol. Chem., 2001, 276(52): 48662-48669.
    [35]Berthel, S. J., Cheung, A. W. H., Kim, K., et al. (F. Hoffmann-La Roche AG). Aminoquinazolines compounds. WO 2006050843.
    [36]Berthel, S. J., Cheung, A. W. H., Kim, K., et al. (F. Hoffmann-La Roche AG). Pyrido[2,3-D]pyrimidine-2,4-diamine compounds as PTP1b inhibitors. WO 2007009911.
    [37]Swinnen, D., Jorand-LeBrun C., Gerver, P., et al. (Applied Research Systems ARS Holding N.V.). 1,1’-(1,2-Ethynediyl)bisbenzene derivatives as PTP1b inhibitors. WO 2005097773.
    [38]Van Zandt, M. C., Fang, H., Hu, S., et al. (Inst. Pharmaceutical Discovery, LLC). Phenylalkanoic acids as protein tyrosine phosphatase inhibitors, their preparation, pharmaceutical compositions, and use in therapy. WO 2006050097.
    [39]Van Zandt, M.C., Fang, H., Hu, S., et al. (Inst. Pharmaceutical Discovery, LLC). Preparation of phenyl substituted carboxylic acids as inhibitors of protein tyrosine phosphatase 1B (PTP1B). WO 2006055625.
    [40]Whitehouse, D., Hu, S., Combs, K., et al. (Inst. Pharmaceutical Discovery, LLC). Preparation of heterocycle substituted carboxylic acids as PTP1B inhibitors. WO 2006055708.
    [41]Whitehouse, D., Hu, S., Van Zandt, M.C., et al. (Inst. Pharmaceutical Discovery, LLC). Preparation of substituted amino carboxylic acids. WO 2006055725.
    [42]Van Zandt, M.C., Whitehouse, D., Combs, K., et al. (Inst. Pharmaceutical Discovery, LLC). Preparation of substituted aromatic carboxylic acids as protein tyrosine phosphatase inhibitors. US 2006094747.
    [43]Petry, S., Baringhaus, K.-H., Tennagels, N. (sanofi-aventis Deutschland GmbH).Preparation of diphenylamine substituted salicylthiazoles as phosphotyrosine phosphatase 1B inhibitors for the treatment of diabetes. WO 2006007959.
    [44]Petry, S., Baringhaus, K.-H., Tennagels, N., et al. (sanofi-aventis Deutschland GmbH). Preparation of acylaminomethylhydroxybiphenylcarboxylic acids as phosphotyrosine phosphatase 1B inhibitors. WO 2006063697.
    [45]Wiesmann, C., Barr, K.J., Kung, J. et al. Allosteric inhibition of protein tyrosine phosphatase 1B. Nat. Struct. Mol. Biol., 2004, 11(8): 730-737.
    [46]Liang, Y., Cincotta, A. H. Int. J. Increased responsiveness to the hyperglycemic, hyperglucagonemic and hyperinsulinemic effects of circulating norepinephrine in ob/ob mice. Obes. Relat. Metab. Disord., 2001, 25(5): 698-704.
    [47]Ahima, R. S., Patel, H. R., Takahashi, N., et al. Appetite suppression and weight reduction by a centrally acting aminosterol. Diabetes, 2002, 51(7): 2099-2104.
    [48]Rao, M.N., Shinnar, A.E., Noecker, L.A. et al. Aminosterol from the dogfish shark Squalus acanthias. J. Nat. Prod., 2000, 63(5): 631-635.
    [49]Oantz, K. A., Hung, H.-L., Wolfe, H. R., et al. Trodusquemine (MSI-1436) inhibits protein tyrosine phosphatase 1B (PTP1B) and other targets to cause weight loss and improve insulin sensitivity. Obesity Peripher Cent Pathw Regul Energy Homeost (Jan 14-19, Keystone) 2007, Abst 220.
    [50]www.genaera.com
    [51]Cao, S. G., Caleb, F., Marni, B., et al. Halenaquinone and xestoquinone derivatives, inhibitors of Cdc25B phosphatase from a Xestospongia sp. Bioorg.med. chem., 2005, 13(4): 999–1003.
    [52]Na, M.-K., Hoang, D.-M., Njamen, D., et al. Inhibitory effect of 2-arylbenzofurans from Erythrina addisoniae on protein tyrosine phosphatase-1B. Bioorg.med. chem. Lett., 2007, 17(14): 3868–3871.
    [53]Na, M. K., Jang, J. P., et al. Protein Tyrosine Phosphatase-1B Inhibitory Activity of Isoprenylated Flavonoids Isolated from Erythrina mildbraedii. J. Nat. Prod., 2006, 69: 1572-1576
    [54]Cui, L., Ndinteh, D. T., Na, M. K., et al. Isoprenylated Flavonoids from the Stem Bark of Erythrina abyssinica. J. Nat. Prod., 2007, 70: 1039-1042
    [55]Na, M.-K., Won, K.-O., Young, H.-K., et al. Inhibition of protein tyrosine phosphatase 1B by diterpenoids isolated from Acanthopanax koreanum. Bioorg. med. chem. Lett., 2006, 16(11): 3061–3064.
    [56]Na, M.-K., Cui, L., Min, B.-S., et al. Protein tyrosine phosphatase 1B inhibitory activity of triterpenes isolated from Astilbe koreana. Bioorg. med. chem. Lett., 2006, 16(12): 3273–3276
    [57]Seo, C., Sohn, J. H., Park, S. M., et al. Usimines A?C, Bioactive Usnic Acid Derivatives from the Antarctic Lichen Stereocaulon alpinum. J. Nat. Prod., 2008, 71: 710–712
    [58]Seo, C., Chio, Y.-H., Sohn, J. H., Ohioensins F and G: Protein tyrosine phosphatase 1B inhibitory benzonaphthoxanthenones from the Antarctic moss Polytrichastrum alpinum. Bioorg.med. chem. Lett., 2008, 18(2): 772–775.
    [59]Seo, C., Yim, H. Y., Lee, H. K., et al. Stereocalpin A, a bioactive cyclic depsipeptide from the Antarctic lichen Stereocaulon alpinum. Tetrahedron Lett., 2008, 49: 29–31
    [60]Feng, Y. J., Anthony, R. C., Rama, A., et al. Vanillic Acid Derivatives from the Green Algae Cladophora socialis As Potent Protein Tyrosine Phosphatase 1B Inhibitors. J. Nat. Prod. 2007, 70: 1790–1792
    [61]Thuong, P. T., Lee, C. H., Dao, T. T., et al. Triterpenoids from the Leaves of Diospyros kaki (Persimmon) and Their Inhibitory Effects on Protein Tyrosine Phosphatase 1B. J. Nat. Prod. 2008, 71: 1775–1778
    [62]Choi, Y.-H., Sohn, J.-H., Lee, D., et al. Chejuenolides A and B, new macrocyclic tetraenes from the marine bacterium Hahella chejuensis. Tetrahedron Lett. 2008, 49: 7128–7131
    [63]Long, C., Phuong, T.-T., Hyun, S.-L., et al. Flavanones from the stem bark of Erythrina abyssinica. Bioorg. med. Chem., 2008, 16(24): 10356–10362
    [64]Wang, J.-D., Dong, M.-L., Zhang, W., et al. Chemical Constituents of Mangrove Plant Lumnitzera racemosa. Chin J Nat Med, 2006, 4(3): 185-187
    [65]Wang, J.-D., Dong, M.-L., Zhang, W., et al. Chemical Constituents of Mangrove Plant Aegiceras corniculatum. Chin J Nat Med, 2006, 4(4): 275-277
    [66]Huang, X.-C., Liu, H. L., Guo, Y.-W. Chemical Constituents of Marine Sponge Biemna fortis Topsent. Chin J Nat Med Sep. 2008, 6(5): 348-353
    [67]Mao, S.-C., Guo, Y.-W., Shen, X. Two novel aromatic valerenane-type sesquiterpenes fromthe Chinese green alga Caulerpa taxifolia. Bioorg. med. chem. Lett., 2006, 16(11): 2947–2950.
    [68]Huang, X.-C., Li, J., Li, Z.-Y., et al. Sesquiterpenes from the Hainan Sponge Dysidea septosa. J. Nat. Prod., 2008, 71: 1399–1403
    [69]Ma, M., Wang, S.-J., et al. Triterpenes with protein tyrosine phosphotase 1B inhibitory activity from Macaranga adenantha. Chinese Traditional and Herbal Drugs, 2006, 37 (8): 1128-1131
    [70]Wang, Y., Shang, X.-Y., Wang, S.-J., et al. Structures, Biogenesis, and Biological Activities of Pyrano[4,3-c]isochromen-4-one Derivatives from the Fungus Phellinus igniarius. J. Nat. Prod., 2007, 70: 296-299
    [1] Fan, X., Xu, N.-J., Shi, J.-G., et al. A new brominated phenylpropylaldehyde and its dimethyl acetal from red alga Rhodomela confervoids. Chin. Chem. Lett., 2003, 14(10): 1045-1047.
    [2] Fan, X., Xu, N.-J., Shi, J.-G., et al. Bromophenols from the red alga Rhodomela confervoids. J. Nat. Prod., 2003, 66(3): 455-458.
    [3] Fan, X., Xu, N.-J., et al A New poly Brominated Dibenzylphenol from Rhodomela confervoides. Chin. Chem. Lett., 2003, 14: 807-809.
    [4] Xu, N.-J., Fan, X., et al. Antibacterial bromophenols from the marine red alga Rhodomela confervoids. Phytochemistry, 2003, 62: 1221-1224.
    [5] Xu, X. L., Song, F. H., Wang S. J., et al. Dibenzyl bromophenols with diverse dimerization patterns from the brown alga Leathesia nana. J. Nat. Prod. 2004, 67(10): 1661-1666.
    [6] Xu, X. L., Fan, X., et al. Bromophenols from the brown alga Leathesia nana. Journal of Asian Natural Products Research, 2004, 6(3): 217-221.
    [7] Xu, X. L., Fan, X., et al. A-New Bromophenol from the Brown Alga Leathesia nana. Chin. Chem. Lett., 2004, 15(6): 661-663.
    [8] Zhao, J. L., Fan, X., Wang S. J., et al. Bromophenol derivatives from the red alga Rhodomela confervoides. J. Nat. Prod., 2004, 67: 1032-1035.
    [9] Liu, Q. W., Fan, X., Han, L. J., et al. Crystal structure of (5R, 10R)-2, 7-dibromo-3, 8-dihydroxy-5, 10-dimethoxy-5, 10-dihydrochromeno [5,4,3-ced] chromene sesquihydrate, C16H12Br2O6·15H2O. Zeitschrift fur Kristallographie-New Crystal Structures, 2005, 220(1): 25-26.
    [10]史大永,范晓,韩丽君.溴酚类化合物在制备治疗恶性肿瘤药物中的应用,中国专利200710014328.9.
    [11]史大永,韩丽君,范晓.溴酚化合物在制备治疗血栓性心脑血管疾病药物中的应用,中国专利200710014327.4.
    [12]史大永,范晓,韩丽君.海洋溴酚类化合物在制备治疗恶性肿瘤药物中的应用,中国专利200710015299.8.
    [13]史大永,韩丽君,范晓柳全文.两种溴酚类化合物在制备治疗恶性肿瘤药物中的应用,中国专利200710015296.4.
    [14]史大永,韩丽君,范晓.溴酚化合物在制备治疗T2DM和肥胖症药物中的应用,中国专利200710015297.9.
    [15]史大永,韩丽君,范晓等.海洋溴酚化合物在制备治疗血栓性心脑血管疾病药物中的应用,中国专利200710015298.3.
    [16]范晓,马成俊,韩丽君.溴酚类化合物在蛋白质酪氨酸磷酸酯酶抑制中的应用,中国专利200510046293.8.
    [1] Kurata, K., Amiya, T. Two New Bromophenols from the Red Alga, Rhodomela Larix. Chem. Lett., 1977, 6: 1435 [2) Kurata, K., Taniguchii, K., Takashima, K., et al. Feeding-deterrent bromophenols from Odonthalia corymbifera. Phytochemistry, 1997, 45: 485
    [3] Lee, H.-S., Lee, T.-H., Lee, J. H., et al. Inhibition of the Pathogenicity of Magnaporthe grisea by Bromophenols, Isocitrate Lyase Inhibitors, from the Red Alga Odonthalia corymbifera. J. Agric. Food Chem., 2007, 55: 6923-6928 [4) Xu, X.-L., Song, F.-H., Wang, S. -J., et al. Dibenzyl Bromophenols with Diverse Dimerization Patterns from the Brown Alga Leathesia nana. J. Nat. Prod., 2004, 67: 1661-1666
    [5] Xu, N.-J., Fan, X., Yan, X., et al. Antibacterial bromophenols from the marine red alga Rhodomela confervoides. Phytochemistry, 2003, 62: 1221-1224
    [6] Fan, X., Xu, N.-J., Shi, J.-G., et al. Bromophenols from the Red Alga Rhodomela confervoides. J. Nat. Prod., 2003, 66: 455-458
    [7] Zhao, J. L., Fan, X., Wang, S. J., et al. Bromophenol Derivatives from the Red Alga Rhodomela confervoides. J. Nat. Prod., 2004, 67: 1032-1035
    [8] Zhao, J. L., Ma, M., Wang, S. J., et al. Bromophenols Coupled with Derivatives of Amino Acids and Nucleosides from the Red Alga Rhodomela confervoides. J. Nat. Prod., 2005, 68: 691-694
    [9] Ma, M., Zhao, J. L., Wang, S. J., et al. Bromophenols Coupled with Methylγ-Ureidobutyrate and Bromophenol Sulfates from the Red Alga Rhodomela confervoides. J. Nat. Prod., 2006, 69: 206-210
    [10]Ma, M., Zhao, J. L., Wang, S. J., et al. Bromophenols Coupled with Nucleoside Bases and Brominated Tetrahydroisoquinolines from the Red Alga Rhodomela confervoides. J. Nat. Prod., 2007, 70: 337-341
    [1]兰州大学,复旦大学编.有机化学实验[M].第2版.北京:高等教育出版社, 1994.
    [2]北京大学化学系有机化学教研室.有机化学实验[M].北京大学出版社, 1990.
    [3]曾昭琼.有机化学实验[M].第3版.北京:高等教育出版社, 2000.
    [4]杜文双,潘莉,程卯生.伊托必利的合成工艺研究[J].沈阳药科大学学报, 2003, 20(4): 260-261
    [5] Marco, H., Beate N., Stammler H.-G., Kuck. D. 2,3,6,7,10,11-Hexamethoxytribenzo- triquinacene: Synthesis, Solid-State Structure, and Functionalization of a Rigid Analogue of Cyclotriveratrylene. Eur. J. Org. Chem., 2004, 2004: 2381-2397
    [6] Subhash, P., K., Edward, R. B. Preparation of novel 4-substituted 6-methoxy-, 6,7-dimethoxy-, and 6,7-(methylenedioxy)isochroman-3-ones. 2. J. Org. Chem., 1990, 55: 1471-1475
    [7] David, C. H., Mark B., Castrob, J. L. et al. Total syntheses of justicidin B and retrojusticidin B using a tandem Horner–Emmons–Claisen condensation sequence. Tetrahedron Lett., 2001, 42: 6973–6975
    [8] Paolo, B., Roberto, A., Antonella, O., et al. Regioselective halogenation of biphenyls for preparation of valuable polyhydroxylated biphenyls and diquinones. Tetrahedron, 2006, 62: 635–639
    [9] Thomas, O. A New Bromination Method for Phenols and Anisoles: NBS/HBF4·Et2O in CH3CN. J. Org. Chem., 1997, 62: 4504-4506
    [10]Florian, K., Schmalz, H.-G. Synthetic analogues of the antibiotic pestalone. Tetrahedron, 2003, 59: 7345–7355
    [11]钱佐国,孙明昆,林古革,等.邻羟基苯甲酸三溴苯酯的合成[J].精细化工, 1990, 1: 21-22
    [12]孙明昆,钱佐国,邢存章,等.水杨酸五溴苯酚酯的合成[J].山东轻工业学院学报, 1989, 3(4): 9-12
    [13]钱佐国,孙明昆,王燕君,等.溴素的有机化学:Ⅳ.单取代苯甲酸多溴代芳酯的合成[J].青岛海洋大学学报, 1995,25(1): 97-100
    [14]Shawn, P. M., James, L. C. A general asymmetric synthesis of (-)-.alpha.-dimethylretro- dendrin and its diastereomers. J. Org. Chem., 1993, 58: 4132-4138
    [15]Yamamura, S., Hajime, I., Yoshimasa, H. Biogenesis of ophiobolins. The origin of the oxygen atoms in the ophiobolins. Tetrahedron Lett., 1967, 8(35): 3361-3364
    [16]Huang, M. L. A Simple Modification of the Wolff-Kishner Reduction. J. Am. Chem. Soc., 1946, 68: 2487-2488.
    [17]Szmant, H. H., Harmuth, C. M. The Wolff-Kishner Reaction of Hydrazones. J. Am. Chem. Soc., 1964, 86: 2909-2914
    [18]邓喜玲,陈学敏,江发寿,等.丹参素的合成[J].中国医药工业杂志, 2005, 36(9): 523-524
    [19]Shimtsuchi, M., Kawamura, K., Akashi, T., et a1. Synthesis and Hypotensive Activity of Benzopyran Derivatives. Chem. Pharm. Bull., 1987, 35(2): 632-l541
    [20]冯柏成,潘鹏勇,唐林生.液晶中间体对溴正戊苯的合成[J].青岛科技大学学报, 2004, 25(4): 290-292
    [21]郭志雄,王荷芳,辛春伟,等.叶酸拮抗剂Alimm的合成[J].有机化学, 2006, 26(4): 546-550
    [22]张大永,华维一.苯溴马隆的合成及工艺改进[J].精细化工, 2002, 19(6): 329-331
    [23]徐宇伦,张龙,金鑫,等. HIV病毒抑制剂中间体3,5-二羟基戊苯(olivetol)的新合成方法[J].精细化工中间体, 2006, 36(1): 27-29
    [24]Siya, R., Leonard, D. S. Reduction of aldehydes and ketones to methylene derivatives using ammonium formate as a catalytic hydrogen transfer agent. Tetrahedron Lett., 1988, 29(31): 3741-3744
    [25]Gordon, W. 1-Keto-3-methyl-2-tetralylacetic Acid from Cyclizatoin ofβ-Carboxy-γ- methyl-σ-phenylvaleric Acid. J. Org. Chem., 1958, 23 (1): 133–135
    [26]Reginald, H. M., Lai, Y.-H. The neutral deoxygenation (reduction) of aryl carbonyl compounds with raney-nickel. an alternative to the clemmenson, wolf-kishner or mozingo (thioketal) reductions. Tetrahedron Lett., 1980, 21(27): 2637-2638
    [27]William, L. J., Sham, M. S., Sukhendu, B. M. Synthesis and redox properties of chromophore modified glycosides related to anthracyclines. et al. J. Org. Chem., 1982, 47 (22): 4304–4310
    [28]Daniel, M. K., Gordon W. G. A convenient synthesis of 3-acylindoles via Friedel Crafts acylation of 1-(phenylsulfonyl)indole. A new route to pyridocarbazole-5,11-quinones and ellipticine. J. Org. Chem., 1985, 50 (26): 5451–5457
    [29]Charles, T., West, S. J., Donnelly, A. K., et al. Silane reductions in acidic media. II. Reductions of aryl aldehydes and ketones by trialkylsilanes in trifluoroacetic acid. Selective method for converting the carbonyl group to methylene. J. Org. Chem., 1973, 38(15): 2675-2681
    [30]Vladimir G., Michael R., Sharonda B., et al A Novel B(C6F5)3-Catalyzed Reduction of Alcohols and Cleavage of Aryl and Alkyl Ethers with Hydrosilanes. J. Org. Chem., 2000, 65: 6179-6186
    [31]Vladimir, G., Michael R., Liu J.-X., et al. A Direct Reduction of Aliphatic Aldehyde, Acyl Chloride, Ester, and Carboxylic Functions into a Methyl Group. J. Org. Chem., 2001, 66: 1672-1675
    [32]Rama, D. Nimmagadda, Christopher, M. A novel reduction reaction for the conversion of aldehydes, ketones and primary, secondary and tertiary alcohols into their corresponding alkanes. Tetrahedron Lett., 2006, 47: 5755–5758
    [33]Latorya, D. H., Ja, K. H., Albert, J. F. Hypophosphorous acid–iodine: a novel reducing system.: Part 1: Reduction of diaryl ketones to diaryl methylene derivatives. Tetrahedron Lett., 2000, 41: 7817–7820
    [34]Kadali, S. S., Chang, C. C., Wang, W.–K., et al. Preparation and anti-HIV activities of retrojusticidin B analogs and azalignans. Bioorg. Med. Chem., 2004, 12: 4045–4054
    [35]Yuan, F. T., Chen, S., Cheng, Y. H., et al. A convenient synthesis of 6-demethoxycapillarisin. Chin. Chem. Lett., 2007, 18: 407-408
    [36]Stephen, T. R., Robert, G. F., Gregory, G., et al. Dopamine agonists related to 3-allyl-6-chloro-2,3,4,5-tetrahydro-1-(4-hydroxyphenyl)-1H-3-benzazepine-7,8-diol, 6-position modifications. J. Med. Chem., 1987, 30: 35-40
    [37]Zhu, X.–Z., Chen, C.–F. A Highly Efficient Approach to [4]Pseudocatenanes by Threefold Metathesis Reactions of a Triptycene-Based Tris[2]pseudorotaxane. J. Am. Chem. Soc., 2005, 127: 13158-13159
    [38]王世盛,赵伟杰,刘志广,等.白藜芦醇的化学合成研究[J].中国药物化学杂志, 2004,14(2): 91-93
    [39]Rasmusson, G. H., Reynolds, G. F., Steinberg, N. G., et al. Azasteroids: structure-activity relationships for inhibition of 5.alpha.-reductase and of androgen receptor binding. J. Med. Chem., 1986, 29: 2298-2315
    [40]John, L. N., Nandkishore, B., Hyman, B. N., et al. (.+-.)-3-Allyl-6-bromo-7,8- dihydroxy-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine, a new high affinity D1 dopamine receptor ligand: synthesis and structure-activity relationship. J. Med. Chem., 1991, 34: 3366-3371
    [41]David, A. S., Rosario, M. F., Bodnar, H. S., et al. Trends in Exchange Coupling for Trimethylenemethane-Type Bis(semiquinone) Biradicals and Correlation of Magnetic Exchange with Mixed Valency for Cross-Conjugated Systems. J. Am. Chem. Soc., 2003, 125: 11761-11771
    [42]Ananya, C., Chawla, H. M., Geeta, H., et al. Convenient synthesis of selectively substituted tribenzo[a,d,g]cyclononatrienes. Tetrahedron, 2005, 61: 12323–12329

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700