用户名: 密码: 验证码:
Ⅰ.基于包结络合作用的光控可逆自组装 Ⅱ.微波促进下芳基卤代物与亚磺酸钠反应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超分子化学是以分子为构筑单元,以分子间非共价键为基础,以分子形成的有序聚集体为研究对象的“分子以上层次”的化学。超分子化学中的核心问题是分子自组装,这是指构筑基元借助于分子间力自发地形成有序结构。构筑基元可以是无机分子,有机小分子,高分子,以及生物大分子等。在分子自组装的多种驱动力中,主一客体包结络合作用占有重要的地位,环糊精(Cyclodextrin)是第二代主体化合物的代表,其空腔可以包结多种分子,它已被深入研究。
     近年来我们课题组建立了一种构建聚合物胶束的非嵌段共聚物路线,由此可采用均聚物对作为组装单元,这样连接聚集体胶束的壳和核层的作用力是氢键而不是化学键,这种方法形成的就是“非共价键接胶束”(NCCM)。用来构筑NCCM的驱动力通常为氢键、疏水相互作用或范德华力等等,本论文在此基础上开展,将环糊精-偶氮苯的包结络合作用引入到我组大分子自组装的研究中,论文可分为以下几个方面:第一部分:我们通过合理的设计,通过四步反应,合成了带有偶氮苯基的一系列疏水小分子。在选择性溶剂中通过在特定温度下将疏水小分子缓慢注入在α-、β-环糊精的水溶液,我们成功实现了胶束化。通过动态光散射,透射电镜,扫描电镜等表征,我们发现该胶束具有薄壁空心球形态,大小约为200nm。我们接着用一定强度的紫外光对囊泡进行了照射,而胶束并没有消失,在用电镜观察胶束的形态时我们发现空心结构消失,同时观察到产生许多实心的无规聚集体。在光散射实验中,我们发现胶束尺寸和大小分布发生的明显变化。通过对机理的研究,我们认为是由于偶氮分子由反式转变为顺式后从环糊精的空腔中脱离,从而破坏了两亲性小分子组装体,导致了胶束的解离,形成无规聚集。而后,我们用可见光对胶束进行照射,紫外一可见光谱表明:偶氮分子由顺式变为反式。通过动态光散射测试,我们发现胶束的尺寸和分布均发生了可逆的变化。接着,我们把样品制备在铜网上用透射电镜观察了胶束,发现胶束薄壁呈囊泡结构,壁厚约为10nm符合双层膜模型。从而我们认为可见光使偶氮分子由顺式变为反式后,偶氮重新进入环糊精空穴组成双亲性分子,在水中原位组装形成了囊泡。我们成功实现了基于非共价作用光控可逆的囊泡—无规聚集的转化。
     第二部分内容是对前面工作的扩展。我们设计合成枝状分子扇片为组装单元,修饰上偶氮基团后形成疏水部分。共合成了一代至三代三种偶氮苯基枝状分子:G1-Azo、G2-Azo、G3-Azo。接着通过对β-环糊精的修饰,在主面上引入单取代的对甲苯磺基后,乙二胺胺解得到EDA-CD,与2-异丙酰氯反应得到环糊精的ATRP引发剂,与单体NIPAM发生ATRP聚合合成了端基为β-环糊精的PNIPAM,作为亲水部分。在THF中能溶解G1-Azo和端基为β-环糊精的PNIPAM。将一定浓度的混合液注入水中发现形成胶束。通过动态光散射的研究,我们发现胶束的粒径大约在150~200nm,颗粒大小以及分散度随着溶液浓度的增大呈有规律的变化。此外我们通过原子力显微镜(AFM)和透射电镜等表征方法确定颗粒呈薄壁囊泡结构。我们认为是偶氮小分子进入了环糊精的空腔,而端基为β-环糊精的PNIPAM是亲水性的,因此形成非共价作用的双亲性分子。然而Dendron的扇片分子之间的相互作用能够在水中发生自组装形成薄壁双分子囊泡结构,界面由PNIPAM的作用而稳定。接着我们分别用紫外和可见光照射胶束,实现了胶束结构由囊泡到实心球的转变。在此工作中我们成功实现了基于非共价作用的嵌段聚合物的合成,并通过光照射实现了光控可逆的囊泡—无规聚集的转化。
     在第三部分工作中我主要介绍基于包结络合作用的光控可逆枝状分子的合成研究。近年来,具有规则构型的树枝状分子的研究逐渐成为有机化学、高分子化学以及材料化学等领域的热点。而目前还没有文献报道通过超分子包结络合作用行成的具有规则构型的树枝状分子。通过有机反合成分析,我们设计了两种单体(A,B)。单体A是由一分子偶氮苯和两分子的β-环糊精构成;单体B是由一分子金刚烷和两分子α-环糊精构成。在水溶液中β-环糊精和金刚烷能形成稳定包结络合物,α-环糊精更易于和偶氮苯进行包结络合。因此形成ABAB交替的基于包结络合的枝状分子。在紫外光照射下由于偶氮的顺反异构变化可以使枝状分子解离,形成光控可逆的基于包结络合作用的枝状分子。合成过程比较复杂,还有部分尚未完成。
     第四部分工作主要是微波促进的二芳基砜以及芳基烷基砜的合成方法研究。我们发现在微波辐照下,带有强吸电子基团的卤代烷烃能与亲核试剂甲亚磺酸钠,苯亚磺酸钠发生S_NAR型亲核取代反应,生成芳基烷基砜和二芳基砜。通过反应条件筛选我们得到了优化的反应条件,拓展底物合成了17种砜类化合物。和以往的合成方法相比,微波促进的反应大大降低了反应时间(由16小时降为10分钟),产率也有所提高。在对甲亚磺酸钠与邻氟苯腈的反应中我们发现了新的关环反应,并提出了其可能的反应机理。
Supramolecular chemistry is based on the non-covalent interaction between moleculars.Molecular self-assembly,which is the most important area in suprachemistry, means spontaneous building-up of complex structures via intermolecular interaction, from various building blocks including inorganic and organic molecules and macromolecules.Etc.The host-guest inclusion plays an important role among all kinds of driving forces leading to self-assembly.Cyclodextrins(CD) is one of the most important host molecules in supramolecular chemistry and have been fully researched.
     In recent years,our group has developed "block-copolymer-free" strategies to fabricate polymeric micelles using polymer pairs as building blocks.These novel approaches result in noncovalently connected micelles(NCCM),in which intermolecular specific interactions(hydrogen bonding and hydrophobic interaction etc.) rather than chemical bonding exist between the shell and core.Being a substantial progress in the studies on NCCMs,in this dissertation we prepared micelles utilizing inclusion complexation between CDs and azobenzene.The dissertation is consisted of following parts.
     Firstly,we synthesized a series of azobenzene containing hydrophobic small molecules via four-step organic synthesis.In the selected solvents,we successfully constracted micelles by adding the hydrophobic molecule solution toα-、β-CD ware solution at certain temperature.TEM,DLS,SEM studies were carried out to confirm bilayer vesicle structure of aggregates which has average diameter of 200nm.When the aggregates were irradiated by certain intensity of UV light,the morphology of aggregates changed.TEM images showed that the bilayer structure converted to irregular aggregates. Following DLS measurements unfolded the obvious change in both particle scale and PDI index.The research on the mechanism of self-assembly tells us that the conformation of azobenzene will shift from trans to cis being irradiated by UV,which will exclude from CD cavity results in disassembly of vesicle formed irregular aggregates.When employing Visible light to irradiate UV-irradiated aggregates,we found that the transformation of Azobenzene group from cis to trans make the morphology of the aggregates changed from irregular aggregates to bilayer vesicles,whose shell have the average thickness of 10nm.We succesfully constracted NCCM via inclusion complexation and realized reversible conversion between vesicles and irregular aggregates with light stimuli.
     The second part of my work is the extension of previous work.We synthesized dendrons with Azo head groups as hydrophobic building blocks.We have succefully synthesized three kinds of Azo-dendrons with different generations G1-Azo、G2-Azo、G3-Azo.Then we modifiedβ-CD at 6-position and obtained mono-substituted OTs-CD. We successfully prepared EDA-CD using Mono-OTs-CD and ethane-1,2-diamine as reactant,the product can further react with 2-chloropropanoyl chloride formβ-CD ATRP initiator.Theβ-CD ATRP initiator can initiate the ATRP polymerization with monomer NIPAM,and formedβ-CD-PNIPAM as hydrophilic part.We found that THF can dissloved bothβ-CD-PNIPAM and G1-Azo.While the combined mixture ofβ-CD-PNIPAM and G1-Azo in THF were injected into water,micelle formed immediately.DLS measurements were employed to investigate the micelle solution and found that the average diameter of aggregates is 150~200nm and both the particle scale and PDI value would change with the increase of the concentration of the mixture solution.AFM and TEM were carried out and confirmed the morphology of the aggregates should be bilayer vesicle.In our opinion,the noncovalent inclusion complexation is the driving force to impel the Azobenzene part of G1-Azo into the cavity ofβ-CD,and formed amphiphilic molecule by noncovalent interaction.The interaction between dendrons can self-assemble to form bilayer vesicle and the structure can be stabilized by the hydrophilic PNIPAM.Subsequently we used UV and Vis light to irradiate the micelle respectively and realized the reversible change between hollow sphere to solid aggregates.In short,we have successfully synthesized block copolymer with noncovalent interaction and achieved reversible conversion between vesicles to irregular aggregates by light stimuli.
     The third part of my work is mainly focus on the synthesis research on the dendrimer built by noncovalent interactions.In recent years,dendrimers became the research interest in organic,macromolecular and material chemistry.However the dendrimers built up by inclusion complexations have not been reported yet.In our work, we designed two kinds of monomer A and B as building blocks.The monomer A consisted of one azobenzene and twoβ-CD;while The monomer B consisted of one adamantane and twoα-CD.Adamantane can be included inβ-CD easily and azobenzene is prone to be enclosed in the cavity ofα-CD in water.The noncovalent alternate dendrimer molecule can be formed by adding A and B respectively in water.The UV and Vis light irradiation would make the dendrimer molecule reversibly disassembly and assembly.The organic synthesis work is still in progress.
     The fourth part of my work is search on the microwave assisted synthesis of di arylsulfones and Aryl-alkyl sulfones.The microwave assisted coupling reaction of electrondeficient aryl halides with sulfinic acid salts through SNAr-based addition reactions to form diarylsulfones and Aryl-alkyl sulfones.By screened conditions,we synthesized 17 derivatives with high yield and shorten the reaction time from 16 hours to 10 minutes compared to the direct heating method.In the reaction using sodium methanesulfinate and 2-fluorobenzonitrile as reactant,we had discovered new product, and put forward the mechanism.
引文
[1].Armstrong,R.W.,Beau,J.M.,Cheon,S.H.,Christ,W.J.,Fujioka,H.,Ham,W.H.,Hawkins,L.D.,Jin,H.,Kang,S.H.,Kishi,Y.,Martininelli,M.J.,McWhorter Jr.,W.W.,Mizuno,M.,Nakata,M.,Stutz,A.E.,Talamas,F.X.,Taniguchi,M.,Tino,J.A.,Ueda,K.,Uerishi,Jun-ichi,White,J.B.,Yonaga,M.J.Am.Chem.Soc.,1989,111,7530.
    [2].江明,A.艾森伯格,刘国军,张希等著;大分子自组装,科学出版社,2006,第1章,第4章。
    [3].Dan,N.,Safran,S.Self-assembly in mixtures of diblock copolymers.Macromolecules.,1994,27(20),5766.
    [4].Koneripalli,N.,Levicky,R.,Bates,F.S.,Matsen,M.W.,Satija,S.K.,Ankner,J.,Kaiser,H.Ordering in blends of diblock copolymers.Macromolecules.,1998,31(11),3498.
    [5].Park,S.,Cho,D.,Ryu,J.,Kwon,K.,Lee,W.,Chang,T.Fractionation of individual blocks of block copolymers prepared by anionic polymerization into fractions exhibiting three different morphologies.Macromolecules.,2002,35(15),5974.
    [6].Bates,F.S.,Fredrickson,G.H.Block copolymer thermodynamics:theory and experiment.Annu.Rev.Phys.Chem.,1990,41,525.
    [7].Halperin,A.,Tirrell,M.,Lodge,T.P.Tethered chains in polymer microstructures.Adv.Polym.Sci.,1992,100,31.
    [8].Zhang,L.,Eisenberg,A.,Multiple morphologies and characteristics of crew-cut micelle-like aggregates of polystyrene-b-poly(acrylic acid) diblock copolymers in solution.Science,1995,268(5218),1728.
    [9].Robb,I.D.,Specialist Surfactants.London,Blackie Academic and Professional,1997.
    [10].Evans,D.F.,Wennerstrom,H.,The Colloidal Domain:Where Physics,Chemistry,Biology,and Technology Meet.New York.Wiley-VCH,1998.
    [11].Holmberg,K.,Jonsson,B.,Kronberg,B.,Lindman,B.,Surfactants and Polymers in Aqueous Solution.West Sussex.Wiley,2003.
    [12].Cameron,N.S.,Corbierre,M.K.,Eisenberg,A.,1998 E.W.R Steacie award lecture asymmol/letric amphiphilic block copolymers in solution: a morphological wonderland. Can. J. Chem., 1999, 77(8), 1311.
    [13]. Choucair, A., Eisenberg, A., Control of amphiphilic block copolymer morphologies using solution conditions. Eur. Phys. J. E., 2003, 10(1), 37.
    [14]. Lim, S. P., Eisenberg, A., Preparation of block copolymer vesicles in solution. J. Polym. Sci. B: Polym. Phys., 2004,42(6): 923.
    [15]. Shen, H., Eisenberg, A. Block length dependence of morphological phase diagrams of the ternary system of PS-b-PAA/dioxane/H_2O. Macromolecules., 2000,33(7), 2561.
    [16]. Shen, H., Eisenberg, A. Morphological phase diagram for a ternary system of block copolymer PS_(310)-b-PAA_(52)/dioxane/H_2O. J. Phys. Chem. B., 1999, 103(44),9476.
    [17]. Yu, Y., Zhang, L., Eisenberg, A. Morphogenic effect of solvent on crew-cut aggregates of amphiphilic diblock copolymers. Macromolecules., 1998, 31(4),1144.
    [18]. Desbaumes, L., Eisenberg, A., Single-solvent preparation of crew-cut aggregates of various morphologies from an amphiphilic diblock copolymer. Langmuir., 1999,15(1), 36.
    [19]. Zhang, L., Eisenberg, A., Morphogenic effect of added ions on crew-cut aggregates of polystyrene-6-poly(acrylic acid) block copolymers in solutions. Macromolecules., 1996, 29(27), 8805.
    [20]. Burke, S. E., Eisenberg, A., Effect of sodium dodecyl sulfate on the morphology of polystyrene-b-poly(acrylic acid) aggregates in dioxane-water mixtures. Langmuir., 2001, 17(26), 8341.
    [21]. Chen D. Y., Jiang M., Strategies for constructing polymeric micelles and hollow spheres in solution via specific intermolecular interactions. Acc. Chem. Res., 2005,38, 499.
    [22]. Liu S. Y., Jiang M., Liang H. J., Wu C, Intermacromoleclar complexs due to specific interactions Formation of micellelike structure from hydrogen bonding graft-like complex in seledctive solvent. Polymer., 2000,41, 8697.
    [23]. Wang M., Zhang G. Z., Chen D. Y., Jiang M., Liu S. Y., Noncovalently connected polymeric micelles based on a homoolymer pair in solutions. Macromolecules., 1999, 34, 7172.
    [24]. Duan H, Chen D, Jiang M., Gan W, Li S., Wang M., Gong J., Self-Assembly of Unlike Homopolymers into Hollow Spheres in Nonselective Solvent. J. Am. Chem.Soc, 2001, 123(48), 12097.
    [25]. Kuang M., Duan H. W., Wang J., Chen D. Y., Jiang M., A novel approach to polymeric hollow nanospheres with stabilized structure. Chem Commun., 2003, (4),496.
    [26]. Yuan X. F., Jiang M., Zhao H. Y., Wang M., Zhao Y, Wu C, Noncovalently connected polymeric micelles in aqueous medium. Langmuir., 2001,17, 6122.
    [27]. Zhang Y.W., Jiang M., Zhao J. X., Zhou J., Chen D. Y, Hollow spheres from shell cross-linked, noncovalently connected micelles of carboxyl-terminated polybutadiene and poly(vinyl alcohol) in water. Macromolecules., 2004, 37, 1537.
    [28]. Wang J., Jiang M., Polymeric self-assembly into micelles and hollow spheres with multiscale cavities driven by inclusion complexation. J. Am. Chem. Soc, 2006,128(11), 3703.
    
    [29]. Topp M. D. C, Dijkstra P. J., Talsma H., Feijen J., Thermosensitive Micelle- Forming Block Copolymers of Poly(ethylene glycol) and Poly(N- isopropylacrylamide). Macromolecules., 1997, 30(26), 8518.
    [30]. Motokawa R., Morishita K., Koizumi S., Nakahira T., Annaka M., Thermosensitive diblock copolymer of poly (N-isopropylacrylamide) and poly (ethylene glycol) in water: polymer preparation and solution behavior. Macromolecules., 2005, 38(13), 5748.
    [31]. Arotcarena M., Heise B., Ishaya S., Laschewsky A., Switching the inside and the outside of aggregates of water-soluble block copolymers with double thermoresponsivity. J. Am. Chem. Soc, 2002, 124(14), 3787.
    [32]. Martin T. J., Prochazka K., Munk P., Webber S. E., pH-dependent micellization of poly(2-vinylpyridine)-block-poly(ethylene oxide). Macromolecules., 1996, 29(18),6071.
    [33]. Butun V., Billingham N. C, Armes S. P., Unusual aggregation behavior of a novel tertiary amine methacrylate-based diblock copolymer: Formation of micelles and reverse micelles in aqueous solution. Journal of the American Chemical Society 1998, 120(45), 11818.
    [34]. Yao X. M., Chen D. Y., Jiang M., Formation of PS-b-P4VP/formic acid coreshell micelles in chloroform with different core densities. Journal of Physical Chemistry B., 2004, 108(17), 5225.
    [35]. Peng H. S., Chen D. Y., Jiang M., Self-assembly of formic acid/polystyreneblock-poly(4-vinylpyridine) complexes into vesicles in a low-polar organic solvent chloroform. Langmuir., 2003, 19(26), 10989.
    [36]. Peng H. S., Chen D. Y., Jiang M., Self-assembly of perfluorooctanoic acid (PFOA) and PS-b-P4VP in chloroform and the encapsulation of PFOA in the formed aggregates as the nanocrystallites. Journal of Physical Chemistry B., 2003, 107(45), 12461.
    [37]. Kataoka K., Togawa H., Harada A., Yasug K., Matsumoto T., Katayose S., Spontaneous formation of polyiom complex micelles with narrow distribution from antisense oligonucleotide and cationic block copolymer in physiological saline. Macromolecules., 1996, 29, 8556.
    [38]. Wang G, Tong X., Zhao Y., Preparation of azobenzene-containing amphiphilic diblock copolymers for light-responsive micellar aggregates. Macromolecules., 2004,37(24), 8911.
    [39]. Wu C, Niu A. Z., Leung L. M., Lam T. S., Preparation of narrowly distributed stable and soluble polyacetylene block copolymer nanoparticles. J. Am. Chem. Soc,1999, 121(9), 1954.
    [40]. Chen D.Y., Peng H.S., Jiang M., A novel one-step approach to core-stabilized nanoparticles at high solid contents, Macromolecules., 2003, 36, 2576.
    [41]. Peng H.S., Chen D.Y., Jiang M., A One-Pot Approach to the Preparation of Organic Core-Shell Nanoobjects with Different Morphologies. Macromolecules.,2005, 38, 3550.
    [42]. Thurmond, K. B., Kowalewski, T., Wooley, K. L., Water-soluble knedel-like structures: The preparation of shell-cross-linked small particles. J. Am. Chem. Soc, 1996,118,7239.
    [43]. Liu X. Y., Jiang M., Yang S., Chen D. Y., Yang C, Wu K., Micelles and hollow nanospheres based on epsiloncaprolactone-containing polymers in aqueous media. Angew. Chem. Int. Ed., 2002, 41, 2950.
    [44]. Zhang, Y. W., Jiang M., Zhao J. X., Wang, Z. X, Dou, H. J., Chen, D. Y. pH-Responsive core-shell particles and hollow spheres attained by macromolecular self-assembly.Langmuir.,2004,21,1531.
    [45].Zhang,Y.W.,Jiang M.,Zhao J.X.,Ren,X.W.,Chen,D.Y.,Zhang,G.Z.A novel route to thermo-sensitive polymeric coreshell aggregates and hollow spheres in aqueous media.Adv.Funct.Mater.,2004,15,695.
    [46].Wan S.,Jiang M.,Zhang G.Z.Dual Temperature- and pH-Dependent Self-Assembly of Cellulose-Based Copolymer with a Pair of Complementary Grafts Macromolecules.,2007,40(15),5552.
    [47].Liu X.K.,Jiang M.,Optical switching of self-assembly:micellization and micelle-hollow-sphere transition of hydrogen-bonded polymers.Angew.Chem.Int.Ed.,2006,45,3846.
    [48].刘育,张衡益,李莉,王浩等著;纳米超分子化学-从合成受体到功能组装体,化学工业出版社,2004,第1章,第3章。
    [49].Connors,K.A.The Stability of Cyclodextrin Complexes in Solution.Chem.Rev.,1997,97,1325.
    [50].Funasaki,N.,Yodo,H.,Hada,S.,Neya,S.Bull.Chem.Soc.Jpn.,1992,65,1323.
    [51].Junquea,E.,Tardajos,G.,Aicart,E.J.Colloid Interface Sci.1993,158,388.
    [52].Gomez-Orellana,I.,Hallen,D.Thermochim.Acta.1993,221,183.
    [53].Hamai,S.Bull.Chem.Soc.Jpn.1982,55,2721.
    [54].Buvari,A.,Szejtli,J.,Barcza,L.Acta Chim.Acad.Sci.Hung.1982,110,51.
    [55].Kobayashi,N.,Saito,R.,Hino,H.,Hino,Y.,Ueno,A.,Osa,T.J.Chem.Soc.,Perkin Trans.2.1983,1031.
    [56].Suzuki,M.,Sasaki,Y.Chem.Pharm.Bull.1984,32,832.
    [57].Herkstroeter,W.,Martic,P.A.,Farid,S.J.Chem.Soc.Perkin Trans.2.,1984,1453.
    [58].Hirai,H.,Yoshima,N.,Uenoyama,S.Bull.Chem.Soc.Jpn.1985,58,1156.
    [59].Connors,K.A.,Rosanske,T.W.J.Pharm.Sci.1980,69,173.
    [60].Connors,K.A.,Pendergast,D.D.J.Am.Chem.Soc.1984,106,7607.
    [61].Connors,K.A.,Paulson,A.,Yoledo-Velasquez,D.J.Org.Chem.1988,53,2023.
    [62].Tee,O.S.,Du,X.X.J.Org.Chem.1988,53,1837.
    [63]. Park, J. W., Song, H. J. J. Phys. Chem. 1989, 93, 6454.
    
    [64]. Herkstroeter, W. G., Martic, P. A., Farid, S. J. Am. Chem. Soc. 1990, 112, 3583.
    
    [65]. Kusumoto, Y. Chem. Phys. Lett. 1987, 136, 535.
    
    [66]. Munoz de la Pena, A., Ndou, T., Zung, J. B., Warner, I. M. J. Phys. Chem. 1991,95, 3330.
    [67]. Schuette, J. M., Ndou, T. T., Munoz de la Pena, A., Mukandan, S., Warner, I. M. J. Am. Chem. Soc. 1993, 115,292.
    
    [68]. Schuette, J. M, Warner, I. M. Anal. Lett. 1994, 27, 1175.
    [69]. Hamai, S. Bull. Chem. Soc. Jpn. 1989, 62,2763.
    [70]. Kano, K., Takenoshita, I., Ogawa, T. Chem. Lett. 1982, 321.
    [71]. Patonay, G., Fowler, K., Shapira, A., Nelson, G., Warner, I. M. J. Inclusion Phenom. 1987, 5,717.
    
    [72]. Nelson, G., Patonay, G., Warner, 1. M. J. Inclusion Phenom. 1988, 6,277.
    [73]. Hamai, S. J. Phys. Chem. 1989,93,2074.
    [74]. Hashimoto, S. Thomas, J. K. J. Am. Chem. Soc. 1985, 107,4655.
    [75]. Giorgi, J. B., Tee, O. S. J. Am. Chem. Soc. 1995, 117, 3633.
    [76]. Mikhail, V. R., Yoshihisa, I. Complexation Thermodynamics of Cyclodextrins. Chem. Rev. 1998,98, 1875.
    [77]. Mcmullan, R. K., Saenger, W., Fayyos, J., Mootz, D. Cabohydr. Res., 1973, 31,37.
    [78]. Makedonopoulou, S., Mavridis, I.M., Yannakopoulou, K. Organisation of long aliphatic monocarboxylic acids in beta-cyclodextrin channels: crystal structures of the inclusion complexes of tridecanoic acid and (Z)-tetradec-7-enoic acid in beta-cyclodextrin. Chem Commun., 2004, (19), 2133.
    [79]. Li G., Mcgown, L. B. Molecular Nanotube Aggregates of Beta-cyclodextrins and Gamma-cyclodextrins linked by diphenylhexatrienes. Science., 1994, 264,(5156), 249.
    [80]. Nijhuis, C. A., Huskens, J., Reinhoudt, D. N. Binding control and stoichiometry of ferrocenyl dendrimers at a molecular printboard. J. Am. Chem. Soc, 2004, 126,12266.
    [81], Banerjee, I. A., Yu Lingtao., Matsui, H. Application of host-guest chemistry in nanotube-based device fabrication: photochemically controlled immobilization of azobenzene nanotubes on patterned a-CD monolayer/Au substrates via molecular recognition. J. Am. Chem. Soc, 2003, 125, 9542.
    [82]. Zhang L., Wu Y., Brunsveld, L. A synthetic supramolecular construct modulating protein assembly in cells. Angew. Chem. Int. Ed. 2007,46, 1798.
    [83]. Ogino H. J. Am. Chem. Soc, 1981, 103, 1303.
    [84]. Harada A., Li J, Kamachi M. Chem. Commun., 1997, 1413.
    [85]. Murakami, H., Kawabuchi, A., Kotoo, K., Kunitake, M., Nakashima, N. A light-driven molecular shuttle based on a rotaxane. J. Am. Chem. Soc, 1997, 119,7605.
    
    [86]. Harada A. Coord. Chem. Rev., 1996, 148, 113.
    [87]. Harada A., Li J., Kamachi M. Chem. Lett., 1993,237.
    [88]. Wenz G, Keller B. Angew. Chem. Int. Ed., 1992,31,197.
    [89]. Harada A., Li J, Kamachi M. Nature., 1992, 356, 325.
    [90]. Liu Y, Zhao Y L, Zhang H Y, Song H B. Angew. Chem. Int. Ed. 2003,42, 3260.
    [91]. Miyauchi M., Harada A. Construction of supramolecular polymers with alternating β-,α-cyclodextrin units using conformational change induced by competitive guests. J. Am. Chem. Soc, 2004, 126, 11418.
    [92]. Ogoshi T., Chujo Y. Synthesis of organic-inorganic polymer hybrids by means of host-guest interaction utilizing cyclodextrin. Macromolecules., 2003, 36, 654.
    [93]. Ogoshi T., Takashima Y., Yamaguchi H., Harada A. Chemically-responsive sol-gel transition of supramolecular single-walled carbon nanotubes (SWNTs) hydrogel made by hybrids of SWNTs and cyclodextrins. J. Am. Chem. Soc, 2007,129,4878.
    
    [94]. Buleier, E., Wehner, W., Volgtle, F. Synthesis, 1978,155.
    [95]. Vander, M. A., Van, L. P. W., Wade, N. M., Brandes, R. A. C. Adv. Mater. 1993,5,466.
    [96]. Tomalia, D. A., Padias, A., Hall, H. K. Polym. Prepr. (Am. Chem. Soc. Div. Polym. Chem.) 1989, 30, 119.
    
    [97]. Heat, H., Shahlai, K. J. Am. Chem. Soc. 1990, 112, 7638.
    [98]. Miller, T. M., Neenan, T. X., Zayas, R., Blair, E. J. Am. Chem. Soc. 1992, 114,1108.
    [99]. Adronov, A., Frechet, J. M. J. Chem. Commun. 2000, 1701.
    [100]. Kawa, M., Frechet, J. M. J. Chem. Mater. 1998, 10, 286.
    
    [101]. Liu, M., Kono, K., Frechet, J. M. J. J. Controlled Release., 2000, 65, 121.
    
    [102]. Haensler, J., Szoka, F. C. Jr. Bioconjugate Chem., 1993,4, 372.
    
    [103]. Tang, M., Redemann, C. T., Szoka, F. C. Jr. Bioconjugate Chem., 1996, 7, 703.
    
    [104]. Tang, M. X., Szoka, F. C. Gene Ther., 1997,4, 823.
    
    [105]. Bielinska, A., Kukowska-Latallo, J. F., Johnson, J., Tomalia, D. A., Baker, J. R. Jr. Nucleic Acids Res. 1996, 24,2176.
    [106]. Reuter, J. D., Myc, A., Hayes, M. M., Gan, Z., Roy, R., Qin, D., Yin, R., Piehler, L. T., Esfand, R., Tomalia, D. A., Baker, J. R. Jr. Bioconjugate Chem. 1999, 10, 271.
    [107]. Malik, N., Wiwattanapatapee, R., Klopsch, R., Lorenz, K., Frey, H., Weener, J. W., Meijer, E. W., Paulus, W., Duncan, R. J. Controlled Release., 2000, 65, 133.
    [108]. Liu, M., Frechet, J. M. J. Pharm. Sci. Technol. Today., 1999,2, 393.
    [109]. Wiwattanapatapee, R., Carreno-Gomez, B., Malik, N., Duncan, R. Pharm. Res. 2000,17,991.
    [110]. Janson et al. Encapsulation Of Guest Molecules Into A Dendritic Box. Science 1994, 266, 1226.
    [111]. Janson et al. The Dendritic Box: Shape-Selective Liberation of Encapsulated Guests. J. Am. Chem. Soc. 1995,117,4417.
    [112]. Frankamp B. L., Boal A. K., Rotello V. M., Controlled interparticle spacing through self-assembly of Au nanoparticles and poly(amidoamine) dendrimers. J. Am. Chem. Soc. 2002,124, (51), 15146.
    [113]. Frankamp B. L, Boal A. K., Tuominen M. T., Rotello V. M., Direct control of the magnetic interaction between iron oxide nanoparticles through dendrimer-mediated self-assembly. J. Am. Chem. Soc. 2005, 727,(27), 9731.
    [114]. Knecht M. R., Garcia-Martinez J. C, Crooks R. M. Synthesis, characterization, and magnetic properties of dendrimer-encapsulated nickel nanoparticles containing <150 Atoms, Chem. Mater., 2006, 75,(21), 5039.
    [115]. Lesniak W., Bielinska A. U., Sun K., Janczak K. W., Shi X. Silver/dendrimernanocomposites as biomarkers: fabrication, characterization, in vitro toxicity, and intracellular detection. Nano Lett., 2005, 5,(11), 2123.
    [116]. Joan W. J. Knapen, Alexander W. van der Made, Janine C. de Wilde, Piet W. N. M. van Leeuwen, Peter Wijkens, David M. Grove & Gerard van Koten, Homogeneous catalysts based on silane dendrimers functionalized with arylnickel(II) complexes. Nature, 1994, 372, 659.
    [117]. Astruc D., et al. Dendritic Catalysts and Dendrimers in Catalysis. Chem. Rev.2001,101,2991.
    [118]. Reek J. N. H., et al. Dendrimers as Support for Recoverable Catalysts and Reagents. Chem. Rev. 2002, 102, 3717-3756.
    [119]. G. Eric Oosterom, Joost N. H. Reek, Paul C. J. Kamer, Piet W. N. M. van Leeuwen. Transition Metal Catalysis Using Functionalized Dendrimers. Angew. Chem. Int.Ed. 2001,40, 1828.
    [120]. Hoover N. N., Auten B. J., Chandler B. D., Tuning supported catalyst reactivity with dendrimer-templated Pt-Cu nanoparticles, J. Phys. Chem. B., 2006, 110,(17),8606.
    [121]. Hawker C. J., Frechet J. M. J., Preparation of polymers with controlled molecular architecture, a new convergent approach to dendritic macromolecules. J. Am. Chem. Soc, 1990, 112,21, 7638.
    [122]. Hawker C. J., Frechet J. M. J., A new convergent approach to monodisperse dendritic macromolecules. J. Chem. Soc, Chem. Commun. 1990, 1010.
    [123]. Ihre H., Hult A., Frechet J. M. J., Gitsov I. Double-Stage Convergent Approach for the Synthesis of Functionalized Dendritic Aliphatic Polyesters Based on 2,2-Bis(hydroxymethyl)propionic Acid. Macromolecules., 1998, 31, 4061.
    [124]. Zeng F., Zimmerman S. C, Rapid Synthesis of Dendrimers by an Orthogonal Coupling Strategy. J. Am. Chem. Soc. 1996, 118, 5326.
    [125]. Cho B. K., Jain A., Nieberle J., Mahajan S., Wiesner U., Gruner S. M., Tulrk S., Raider H. J. Synthesis and Self-Assembly of Amphiphilic Dendrimers Based on Aliphatic Polyether-Type Dendritic Cores. Macromolecules., 2004, 37, 4227.
    [126]. Zeng X.B., Ungar G, Liu Y. S., et al. Supramolecular dendritic liquid quasicrystals. Nature., 2004,428(6979), 157.
    [127]. Percec V., Ahn C. H., Ungar G, et al. Controlling polymer shape through the self-assembly of dendritic side-groups. Nature., 1998, 391(6663), 161.
    [128]. Ungar G, Liu Y. S., Zeng X. B., et al. Giant supramolecular liquid crystal lattice. Science., 2003, 299(5610), 1208.
    [129]. Smith D. K., Dendritic supermolecules-towards controllable nanomaterials. Chem. Commun., 2006, 34.
    [130]. Zimmerman S. C, Zeng F. W., Reichert D. E. C, Kolotuchin S. V. Self-Assembling Dendrimers. Science, New Series., 1996, 271, 5252,1095.
    [131]. (a) Huck W. T. S., Hulst R., Timmerman P., van Veggeland, S. C., Reinhoudt D. N., Angew. Chem., Int. Ed. Engl, 1997, 36, 1006. (b) Freeman A. W., Vreekamp R.,Frechet J. M. J, Abstr. Am. Chem. Soc. (PMSE), 1997,214, 128.
    [132]. (a) Driffield M., Goodall D. M, Smith D. K., Org. Biomol. Chem., 2003,1, 2612.(b) Dykes G. M., Smith D. K., Seeley G. J., Angew. Chem., Int. Ed., 2002,41, 3254.
    [133]. Kawa M, Frechet J. M. J., Chem. Mater., 1998, 10, 286.
    [134]. Love C. S., Chechik V., Smith D. K. Brennan C., J. Mater. Chem., 2004, 14,919.
    [135]. Joester D., Losson M., Pugin R., Heinzelmann H., Walter E., H. P. Merkle H. P. Diederich F., Angew. Chem., Int. Ed., 2003,42,1486.
    [136]. Gitsov I., Frechet J. M. J., Solution and solid-state properties of hybrid linear-dendritic block copolymers. Macromolecules, 1993, 26,6536.
    [137]. Gitsov I., Frechet J. M. J., Wooley K. L., Hawker C. J., Synthesie and properties of novel linear-dendritic block copolymer. Reactivity of dendritic macromolecules toward linear polymers. Macromolecules, 1993,26, 5621.
    [138]. Gillies E. R., Jonsson T. B., Frechet J. M. J., Stimuli-responsive supramolecular assemblies of linear-dendritic copolymers. J. Am. Chem. Soc, 2004, 126, 11936.
    [139]. Phuong M., Nguyen., Hammond P. T., Amphiphilic Linear-Dendritic Triblock Copolymers Composed of Poly(amidoamine) and Polypropylene oxide) and Their Micellar-Phase and Encapsulation Properties. Langmuir., 2006, 22,7825.
    [140]. Percec V., Dulcey A. E., Balagurusamy V. S. K., Miura Y., Smidrkal J., Peterca M., Nummelin S., Edlund U., Hudson S. D., Heiney P. A., Duan H., Magonov S. N., Vinogradov S. A. Self-assembly of amphiphilic dendritic dipeptides into helical pores. Nature., 2004,430, 764.
    [141]. Hecht S., Frechet J. M. J. Dendritic Encapsulation of Function: Applying Nature's Site Isolation Principle from Biomimetics to Materials Science. Angew. Chem. Int. Ed. 2001,40, 74.
    [142]. van Hest J. C. M., Delnoye D. A. P., Baars M. W. P. L., van Genderen M. H. P., Meijer E. W., Polystyrene-Dendrimer Amphiphilic Block-Copolymers With A Generation-Dependent Aggregation.Science,1995,268,1592.
    [143].van Hest J.C.M.,Delnoye D.A.P.,Baars M.W.P.L.,Elissen-Roman C.,van Genderen M.H.P.,Meijer E.W.Polystyrene-poly(propylene imine) dendrimers:Synthesis,characterization,and association behavior of a new class of amphiphiles.Chem.Eur.J.,1996,2,1616.
    [144].童林荟,申宝剑等著;超分子化学研究中的物理方法,科学出版社,2004,第3章。
    [145].何曼君,陈维孝,董西侠等编;高分子物理,复旦大学出版社,1990,第四章。
    [146].童林荟著,环糊精化学—基础与应用,科学出版社,2001,第二章。
    [147].J.W.Steed,J.L.Atwood著,赵耀鹏,孙震 译,超分子化学,化学工业出版社,2006,第5章
    [1]Wang J.,Jiang M.,Polymeric self-assembly into micelles and hollow spheres with multiscale cavities driven by inclusion complexation.J.Am.Chem.Soc.,2006,128(11):3703-3708.
    [2]Murakami H.,Kawabuchi A.,Kotoo K.,Kunitake M.,Nakashima N.,A Light-Driven Molecular Shuttle Based on a Rotaxane.J.Am.Chem.Soc.,1997,119,7605-7606.
    [3]Falvey P.,Lim C W.,Darcy R.,Revermann T.,Karst U.,Giesbers M.,Marcelis A.,Lazar A.,Coleman A.,Reinhoudt D N.,Ravoo B J.,Bilayer Vesicles of Amphiphilic Cyclodextrins:Host Membranes That Recognize Guest Molecules Chem.Eur.J.2005,11,1171-1180.
    [4]Ravoo B J.,Jacquier J C.,Wenz G.,Molecular Recognition of Polymers by Cyclodextrin Vesicles.Angew.Chem.Int.Ed.2003,42,2066-2070.
    [5]Tomatsu I.,Hashidzume A.,Harada A.,Contrast Viscosity Changes upon Photoirradiation for Mixtures of Poly(acrylicacid)-Based r-Cyclodextrin and Azobenzene Polymers.J.Am,Chem.Soc.,2006,128,2226-2227.
    [6]Tomatsu I.,Hashidzume A.,Harada A.,Cyclodextrin-Based Side-Chain Polyrotaxanewith Unidirectional Inclusion in Aqueous Media.Angew.Chem.Int.Ed.2006,45,4605-4608.
    [7]童林荟著,环糊精化学-基础与应用,科学出版社,2001,第二章。
    [8]Percec,V.;Tomazos,D.;Heck,J.;Blackwell,H.;Ungar,G.Self-assembly of Taper-shaped Monoesters of Oligo(ethylene Oxide) with 3,4,5-Tris(n-dodecan -1-yloxy)benzoic Acid and of their Polymethacrylates into Tubular Supramolecular Architectures Displaying a Columnar Hexagonal Mesophase.J.Chem.Soc.Perkin Trans.2.1994,1,31-44.
    [9]Wang Y P.,Ma N.,Wang Z Q.,Zhang X.,Angew.Chem.Int.Ed.2007,46,2823-2826.
    [10]Lahav M.,Ranjit K T.,Katz E.,Willner I.,Chem.Commun.1997,259-260.
    [11]Liu Z.,Jiang M.,Reversible aggregation of gold nanoparticles driven by inclusion complexation.Journal of Materials Chemistry.2007,17(40),4249-4254.
    [1]. Grayson S. M., Frechet J. M. J. Convergent Dendrons and Dendrimers: from Synthesis to Applications. Chem. Rev., 2001, 101, 3819.
    [2]. Zeng F. W., Zimmerman S. C, Dendrimers in Supramolecular Chemistry: From Molecular Recognition to Self-Assembly. Chem. Rev., 1997, 97,1681.
    [3]. Gitsov I., Frechet J. M. J., Solution and solid-state properties of hybrid linear-dendritic block copolymers. Macromolecules., 1993,26, 6536.
    [4]. Gitsov I., Frechet J. M. J., Wooley K. L., Hawker C. J., Synthesie and properties of novel linear-dendritic block copolymer. Reactivity of dendritic macromolecules toward linear polymers. Macromolecules., 1993,26, 5621.
    [5]. Yang M, Wang W., Yuan F., Zhang X.W.,. Li J. Y, Liang F. X, He B. L., Minch B., Wegner G, Soft vesicles formed by diblock codendrimers of poly(benzylether) and poly(methallyl dichloride). J. Am. Chem. Soc, 2005,127,15107.
    [6]. Park C, Lee I. H., Lee S., Song Y, Rhue M., Kim C. Cyclodextrin-covered organic nanotubes derived from self-assembly of dendrons and their supramolecular transformation. PNAS., 2006,103, 5,1199.
    [7]. Xie D., Jiang M ., Zhang G. Z., Chen D. Y. Hydrogen-bonded dendronized polymers and their self-assembly in solution. Chemistry-A European Journal,2007,13,12,3346.
    [8]. Hawker C. J., Frechet J.M.J., Preparation of polymers with controlled molecular architecture. A new convergent approach to dendritic macromolecules. J. Am. Chem. Soc. 1990,112,7638.
    
    [9]. Heskins, J. Macromol. Sci, Chem. 1968, A2, 1441.
    [10]. Schild H. G. Prog. Polym. Sci. 1992,17,163.
    [11]. Chen G, Hoffman A. S. Nature (London) 1995, 373,49.
    [12]. Hay D. N. T., Rickert P. G., Seifert S., Firestone M. A. J. Am. Chem. Soc.2004, 126, 2290.
    
    [13]. Fujishige S., Kubota K., Ando I. J. Phys. Chem. 1989, 93, 3311.
    [14]. Schild H. G, Tirrell D. A. J. Phys. Chem. 1990, 94,4352.
    [15]. Cho E. C, Lee J., Cho K. Macromolecules., 2003, 36, 9929.
    [16]. (a) Matyjaszewski K., Xia J. Chem. Rev. 2001, 101, 2921. (b) Kamigaito M., Ando T., Sawamoto M. Chem. Rev. 2001, 101, 3689.
    [17].Xia Y.,Yin X.,Burke N.,Stolver H.,Thermal Response of Narrow-Disperse Poly(N-isopropylacrylamide) Prepared by Atom Transfer Radical Polymerization.Macromolecules.,2005,38,5937.
    [18].Liu Y.Y.,Fan X.D.,Gao L.,Synthesis and Characterization of β-Cyclodextrin Based Functional Monomers and its Copolymers with N-isopropylacrylamide.Macromol.Biosci.2003,3,715.
    [19].Ciampolini M.,Nard N.,Five-Coordinated High- Spin Complexes of Bivalent Cobalt,Nickel,and Copper with Tris(2 - dime thylaminoe thyl)amine.Inorganic Chemistry.,1966,5,1.
    [20].Teodorescu M.,Matyjaszewski K.Atom transfer radical polymerization of (meth)acrylamides Macromolecules.,1999,32,15.
    [21].殷敬华,莫志深主编;现代高分子物理学,科学出版社,2001年,第十五章.
    [1]. Seebach D., Herrmann G. F., Lengweiler U. D., Bachmann B. M, Amrein W.Angew. Chem. 1996, 108, 2969; Angew. Chem. Int. Ed Engl., 1996, 35, 2795.
    [2]. Tang M. X., Redemann C. T., Szoka F. C. Jr. Bioconjugate Chem., 1996, 7, 703.
    [3]. Patri A. K., Kukowska-Latallo J. F., Baker J. R. Jr. Adv. Drug Delivery Rev., 2005,57,2203.
    [4]. (a) Emanuele A., Attwood D., Adv. Drug Delivery Rev., 2005, 57,2147. (b) Smith D. K. Chem. Commun., 2006, 34.
    [5]. (a) Haag R., Kratz R Angew. Chem., 2006, 118, 1218. Angew. Chem. Int. Ed, 2006,45,1198.
    [6]. William C, Katarina B., Maurice R. Cyclodextrin-adamantanecarboxylate inclusion complexes: studies of the variation in cavity size. J. Phys. Chem., 1985,89(2), 326.
    [7]. Takahashi K., Hattori K., Toda R Monotosylated a- and P-cyclodextrins prepared in an alkaline aqueous solution. Tetrahedron Letters., 1984,25, 31, 3331.
    [8]. Melton L. D., Slessor K. N. Synthesis of monosubstituted cyclohexaamyloses. Carbohyd. Res., 1971, 18,29.
    [9]. Hamasaki K., Ikeda H., Nakamura A., Ueno A., Toda R, Suzuki I., Osa T. Fluorescent Sensors of Molecular Recognition. Modified Cyclodextrins Capable of Exhibiting Guest-Responsive Twisted Intramolecular Charge Transfer Fluorescence. J. Am. Chem. Soc., 1993, 115, 5035.
    1.(a) Jones,T.;Webber,S.E.;Varney,M.D.;Reddy,M.R.;Lewis,K.K.;Kathardekar,V.;Mazdiyasni,H.;Deal,J.;Nguyen,D.;Welsh,K.M.;Webber,S.;Johnston,A.;Matthws,D.A.;Simith,W.W.;Janson,C.A.;Bacquet,R.J.;Howland,E.F.;Booth,C.L.J.;Hemnann,S.M.;Ward,R.W.;White,J.;Bartlett,C.A.;Morse,C.A.J.Med.Chem.1997,40,677.
    (b)Sun,Z.Y.;Botros,E.;Su,A.D.;Kim,Y.;Wang,E.;Baturav.N.Z.;Kwon,C.H.J.Med.Chem.2000,43,4160.
    2.Schank,K.In The Chemistry of Sulfones and Sylfoxides;Patai,S.;Rappoport,Z.;Stirling,C.J.M.;Eds,Wiley:New york 1988;Chapter 7.
    3.Williams,T.M.;Ciccarone,T.M.;MacTough,S.C.;Rooney,C.S.;Balani,S.K.;Condra,J.H.;Emini,E.A.;Goldman,M.E.;Greemlee,W.J.;Kauffman,L.R.;O'Brien,J.A.;Sardana,V.V.;Schleif,W.A.;Theoharides,A.D.;Anderson,P.S.J.Med.Chem.1993,36,1291.
    4.Prasit,P.;Wang,Z.;Brideau,C.;Chan,C.C.;Charleson,S.;Cromlish,W.;Ethier,D.;Evans,J.F.;Ford-Hutchison,A.W.;Gauthier,J.Y.;Gordon,R.;Guay,J.;Gresser,M.;Kargman,S.;Kennedy,B.;Leblanc,Y.;Leger,S.;Mancini,J.;O'Neill,G.P.;Ouellet,M.;Percival,M.D.;Perrier,H.;Riendeau,D.;Rodger,L;Tagari,P.;Therien,M.;Vickers,P.;Wong,E.;Xu,L.J.;Young,R.N.;Zamboni,R.Bioorg.Meal Chem.Lett.1999,9,1773.
    5.Ulman,A.;Urankar,E.J.Org.Chem.1989,54,4691.
    6.Gilman,H.;Beaber,N.J.;Myers,C.H.J.Am.Chem.Soc.1925,47,2047.
    7.Barschers,W.H.Can.J.Chem.1976,54,3056.
    8.(a)Marquie,J.;Laporie,A.;Dubac,J.;Rogues,N;Desmurs,J.R.J.Org.Chem.2001,66,421.
    (b) Susheel,J.N.;Harjani,J.R.;Salunkhe,M.M.J.Org.Chem.2001,66,8616.
    9.Suzuki,H.;Abe,H.Tetrahedron Lett.1995,36,6239.
    10.Zhu,W.;Ma,D.J.Org.Chem.2005,70,2696.
    11.Baskin,J.M.;Wang,Z.Org.Lett.2002,4,4423.
    12.Beaulieu,C.;Guay,D.;Wang,Z.;Evans,D.A.Tetrahedron Lett.2004,45,3233.
    13.(a) Cachi,S.;Fabrizi,G.;Goggiamani,A.;Parisi,L.M.Org.Lett.2002,4,4719.
    (b) Cachi,S.;Fabrizi,G.;Goggiamani,A.;Parisi,L.M.;Bemini,R.J.Org.Chem.2004,69,5608.
    14.Gedye,R.;Smith,F.;Westaway,Ali,K.H.;Baldisera,L.;Laberge,L.;Rousell,J.Tetrahedron Lett.1986,27,279.
    15.Giguere,R.J.;Bray,T.L.;Duncan,S.M.;Majetich,G.Tetrahedron Lett.1986,27,4945.
    16.李峰,博士学位论文,微波促进下的交叉偶联反应和喹唑啉酮类化合物的合成及应用.[D].上海:复旦大学,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700