用户名: 密码: 验证码:
组分孔隙介质模型及其地震波传播理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代油气勘探的发展要求更多地了解地下介质的物性信息,包含地下介质物性信息的介质模型及其地震波传播理论是油气和水合物地震勘探的理论基础,其中孔隙介质模型及其地震波传播理论是当前油气和水合物勘探领域研究的热点。开展这方面的理论研究对于油气、水合物勘探具有理论意义和实用价值。
     孔隙介质模型及其地震波传播理论研究的核心内容就是建立孔隙介质的等效弹性性质与组分的弹性性质之间的关系模型。通过剖析前人的孔隙介质模型,本文发现多相孔隙介质的等效弹性性质就是组分的弹性性质加权叠加的结果,这个思想构成组分孔隙介质模型的理论基础。
     基于组分加权的建模思想和微观力学的一些原理,本文围绕组分孔隙介质模型及其地震波传播理论开展了一系列研究,主要包含以下一些内容:
     首先,基于线弹性各向同性组分孔隙介质模型的基本假设以及应力和应变组分关系方程,推导出等效弹性矩阵与组分弹性矩阵的组分关系方程以及等效弹性模量与组分弹性模量的组分关系方程;分析弹性模量的组分关系方程,指出组分加权系数是组分孔隙介质模型的核心内容;借鉴线弹性各向同性均匀固体单相介质的地震波传播理论研究的基本思路,提出线弹性各向同性组分孔隙介质的地震波传播理论。
     其次,结合组分模型的系数张量对角化条件与Hashin-Shtrikman弹性模量边界,提出四个新的等效弹性模量估算公式,弥补了Hashin-Shtrikman边界估算等效剪切模量的不足;对比组分模型与Biot-Gassmann方程,提出两个模型的转换关系以及流体饱和介质弹性模量的组分表达,指出框架弹性模量的组分加权系数的物理意义以及固结和非固结孔隙岩石的框架弹性模量组分模型表述的特点,并就饱水和饱气岩石以及流体替换问题的组分加权系数与孔隙度的关系进行讨论。再次,结合弹性模量组分关系方程与正交基函数理论,推导组分加权系数的正交条件;基于正交条件,提出组分加权系数为孔隙度二次多项式时正交组分加权系数的构造方法以及正交组分加权系数适用范围的拓展方法;结合临界孔隙度理论,提出一个基于两个状态分界点的组分模型实例;比较组分模型的计算结果与前人关于砂岩弹性模量的实验结果,证明了组分孔隙介质模型理论的合理性。最后,基于各向异性应力和应变组分关系方程,推导各向异性组分孔隙介质模型的弹性矩阵和弹性模量组分关系方程,并对弹性模量组分加权模式进行分析;参照Kelvin介质,提出弹性与黏弹性各向同性组分孔隙介质模型的对应规则,推导出黏弹性各向同性双相组分孔隙介质模型的本构方程和弹性模量组分关系方程,并讨论相速度、衰减因数和品质因子的组分表述。
     组分孔隙介质模型以组分加权的形式凸现了组分弹性性质对于宏观等效弹性性质的贡献,为研究孔隙介质与其组分之间的弹性性质关系模式提供了一个思路,也为解决海洋天然气水合物的储量估算问题奠定了一定的基础。
Understanding the elastic properties of underground rocks is the requirement of modern oil-gas seismic explorations, which are based on media models and seismic wave propagation theories concerning the elastic properties of subsurface rocks, in which the porous medium model, along with its seismic wave propagation theory, is concerned by many researchers in the field of oil-gas and hydrate explorations. Studies on this subject have great academic significance and applied value for the oil-gas and hydrate explorations.
     The object of these studies about the porous medium and its seismic wave propagation theory is to obtain the relationships of effective elastic properties between the porous medium and its constituents. With a comprehensive analysis of all the available literature on this subject, it can be found the effective elastic properties of the multi-phase porous medium is a summation of all constituents’elastic properties weighted by their corresponding weighting coefficients. Some researches on the constituent porous medium model and its seismic wave propagation theory are carried out based on this idea and some principles of micro-mechanics, and some key points of these studies are listed below.
     First, based on those assumptions of the linear elastic and isotropic constituent porous medium model, the constituent equation of effective elastic matrix and constituent elastic matrices, and also the constituent equations of effective elastic moduli and constituent elastic moduli are derived from the average stress and average strain relations between the porous medium and its constituents. Different expressions of the constituent equations of elastic moduli are presented and analyzed, and it can be found that the constituent weighting coefficient plays a very important role in the studies of the constituent model. The theory of seismic wave propagation in the constituent medium is derived on the basis of investigations of the basic points of the linear elastic and isotropic homogenous solid single-phase medium model and its seismic wave propagation theory.
     Second, combined the diagonalizing conditions of coefficient tensors of the constituent model with the Hashin-Shtrikman bounds, four new formulas of effective elastic modulus are derived to make up for the shortcomings of the Hashin-Shtrikman bounds in the estimation of the effective shear modulus. Based on some comparisons between the constituent model and the Biot-Gassmann equations, the constituent expressions of elastic moduli of a fluid-saturated multi-phase medium and its frame areobtained in order to find the physical meaning of the frame weighting coefficients and the feature of the frame moduli expressions of consolidated and unconsolidated porous rocks. Following the comparison it discusses the weighting coefficients of bulk moduli of rocks saturated with water or gas and the problem of fluid substitution.
     Third, the conditions fulfilled by orthogonal constituent weighting coefficients are derived after the theory of orthogonal basis functions is introduced into the constituent model. When these coefficients are quadratic functions of the porosity, specific constituent orthogonal weighting coefficients are derived from these orthogonal conditions along with a discussion about how to extend the applicable range of the constituent orthogonal weighting coefficients in the orthogonal coordinates. Based on the combination of the theory of critical porosity and the constituent model, it presents a specific example of the constituent model that includes two transforming points. The reasonability of above-mentioned theories is shown by comparison of theoretical calculations and measured data on effective elastic moduli of clean sandstone or sandstone analogs saturated with pure water.
     Last, Based on the average stress and strain relations between the anisotropic porous medium and its anisotropic or isotropic constituents, the constituent equation of effective elastic matrix and constituent elastic matrices, and the constituent equations of effective elastic moduli and constituent elastic moduli of the anisotropic constituent model are derived along with a discussion about the weighting pattern of elastic moduli. The correspondence principle between elastic and viscoelastic isotropic constituent porous medium model is derived on the basis of analyses of the Kelvin medium model, and then the constitutive equation and the constituent equations of elastic moduli, and constituent expressions of phase velocity, attenuation coefficient and quality factor are obtained with the aid of this principle.
     The weighting expressions of the constituent porous medium model in this paper clearly demonstrate the contribution of all constituents to the effective elastic properties of the porous medium, and this model not only provide an idea for the studies on elastic property patterns between the porous medium and its constituents, but also provide a foundation for solving the problem of storage estimation of marine gas hydrate.
引文
[1] Aki K, Richards R G. Quantitative seismology, Theory and methods. Vol. I. San Francisco: W. H. Freeman. 1980
    [2] Toks?z M N, Johnston D H. Seismic wave attenuation. Tulsa: SEG, 1981
    [3] Sheriff R E, Geldart L P. Exploration Seismology. London: Cambridge University Press, 1983
    [4] White J E. Underground sound: application of seismic waves. New York: Elsevier, 1983
    [5] Wang Z., Nur A. Seismic and acoustic velocities in reservoir rocks. Tulsa: SEG, 1988
    [6] Wang Z., Nur A. Seismic and acoustic velocities in reservoir rocks. Tulsa: SEG, 1992
    [7] Wang Z., Nur A. Seismic and acoustic velocities in reservoir rocks. Tulsa: SEG, 2000
    [8] Zimmerman R W. Compressibility of sandstones. New York: Elsevier, 1991
    [9] 何樵登, 熊维纲. 应用地球物理教程-地震勘探. 北京: 地质出版社, 1991
    [10] 布尔贝 T, 库索 O, 甄斯纳 B. 孔隙介质声学. 许云译. 北京: 石油工业出版社, 1994
    [11] 马在田. 走向 21 世纪的实用地震学. 地球物理学报, 1995, 38(4): 539~547
    [12] Mavko G, Mukerji T, Dvorkin J. The rock physics handbook. New York: Cambridge University Press, 1998
    [13] Wang Z. Fundamentals of seismic rock physics. Geophysics, 2000, 66(2): 398~412
    [14] 牛滨华, 孙春岩. 半空间介质与地震波传播. 北京: 石油工业出版社, 2002
    [15] 牛滨华, 孙春岩, 李明. 各向同性介质与地震波传播. 北京: 石油工业出版社, 2002
    [16] 牛滨华,孙春岩. 半空间均匀各向同性单相固体弹性介质与地震波传播. 北京: 地质出版社, 2005
    [17] 牛滨华,孙春岩. 半空间均匀各向同性单相固体黏弹性介质与地震波传播. 北京: 地质出版社, 2007
    [18] 牛滨华, 文鹏飞, 温宁, 等. 基于 BSR 的 AVO 正演估算水合物含量的方法的研究. 地球物理学报. 2006, 49(1): 143~152
    [19] Gassmann F. Ueber die Elastisit?l por?ser Medien. Vicrteljahrsschrift der Naturforschenden Gesellschaft in Zurich, 1951, 96: 1~21
    [20] Gassmann F. Elastic waves through a packing of spheres. Geophysics, 1951, 16, 673~685
    [21] Nolen-Hoeksema R C. Modulus-porosity relation, Gassmann’s equations, and the low frequency elastic-wave response to fluids, Geophysics, 2000, 65(5): 1355~1363
    [22] Han D, Batzle M L. Gassmann’s equation and fluid-saturation effects on seismic velocities, Geophysics, 2004, 69(2): 398~405
    [23] Batzle M L, Han D., Hofmann R.Fluid mobility and frequency-dependent seismic velocity—Direct measurements. Geophysics, 2006, 71(1):N1~N9
    [24] Brown R J S, Korringa J. On the dependence of the elastic properties of a porous rock on the compressibility of a pore fluid. Geophysics, 1975, 40, 608~616
    [25] Berryman J G, Milton G W. Exact results for generalized Gassmann’s equation in composite porous media with two constituents. Geophysics, 1991, 56(12): 1950~1960
    [26] Berryman J G. Origin of Gassmann’s equations. Geophysics, 1999, 64(5): 1627~1629
    [27] Carcione J M, Helle H B, Santos J E, et al. A constitutive equation and generalized Gassmann modulus for multimineral porous media. Geophysics, 2005, 70(2):N17~N26
    [28] Biot M A. Theory of Elasticity and Consolidated for a porous Anisotropic Solid: J. Appl. Phys., 1955, 26(2): 182~185
    [29] Biot M A. Theory of propagation of elastic waves in a fluid-saturated porous solid: Ⅰlow-frequency range. J. Acous. Soc. Am., 1956, 28(2): 168~178
    [30] Biot M A. Theory of propagation of elastic waves in a fluid-saturated porous solid: Ⅱhigher frequency range. J. Acous. Soc. Am., 1956, 28(2): 179~191
    [31] Biot M A, Willis D G. The elastic coefficients of the theory of consolidation. J. Appl. Mech., 1957, 24, 594~601
    [32] Biot M A. Mechanics of deformation and acoustic propagation in porous media: J. Appl. Phys., 1962, 33. 1482~1498
    [33] Biot M A. Generalized theory of acoustic propagation in porous dissipative media: J. Acous. Soc. Am., 1962, 34(9): 1254~1264
    [34] Chen Q, Nur A. Critical concentration models for porous materials. In: Corapcioglu M Y ed. Advance in porous media. Amsterdam: Elsevier, 1994, 169~308
    [35] 诸国桢, 郭宏智, 陈丽英. 流体饱和孔隙材料的 Biot 弹性常数的声学测量, 应用声学, 1998, 17(6):1~8
    [36] Geertsma J, Smit D C. Some aspects of elastic wave propagation in fluid saturated porous solids. Geophysics, 1961, 26(2): 169~181
    [37] Deresiewicz H, Rice J T. The effect of boundaries on wave propagation in a liquid-filled porous solid, III-Reflection of plane waves at a free plane boundary. Bull. Seis. Soc. Am., 1962, 52, 627~638
    [38] Deresiewicz H. The effect of boundaries on wave propagation in a liquid-filled porous solid, IV-Surface wave in a half-space. Bull. Seis. Soc. Am., 1962, 52, 627~638
    [39] Deresiewicz H, Rice J T. The effect of boundaries on wave propagation in a liquid-filled porous solid, V-Transmission across a plane interface. Bull. Seis. Soc. Am., 1964, 54, 409~416
    [40] Stoll R D. Sediments acoustics. Berlin: Springer, 1989
    [41] Han D. Effects of porosity and clay on wave velocities in sandstones and unconsolidated sediments. Ph.D. Thesis, Calif.: Stanford University, 1987
    [42] Winkler K W. Dispersion analysis of velocities and attenuation in Berea sandstone. J. Geophys. Res., 1985, 90, 6793~6800
    [43] Winkler K W. Estimation of velocity dispersion between seismic and ultrasonic frequencies. Geophysics, 1986, 51, 183~189
    [44] Wang Z., Nur A. Dispersion analysis of acoustics velocities in rocks. J. Acous. Soc. Am., 1990, 87, 2384~2395
    [45] Mavko G, Nur A. Wave attenuation in partially saturated rocks. Geophysics, 1979, 44, 161~178
    [46] Dvorkin J, Nur A. Dynamic poroelasticity: A unified model with the squirt and the Biot mechanisms. Geophysics. 1993, 58(4): 524~533
    [47] Dvorkin J, Mavko G, Nur A. Squirt flow in fully saturated rocks. Geophysics. 1995, 60(1):97~107
    [48] Denneman A I M, Drijkoningen G G, Smeulders D M J, et al. Reflection and transmission of waves at a fluid/porous-medium interface. Geophysics, 2002, 67(1): 282~291
    [49] Kelder O, Smeulders D. Observation of the Biot slow wave in water-saturated Nivelsteiner Sandstone. Geophysics, 1997, 62(2): 1794~1796
    [50] Mackenzie J K. The elastic constants of a solid containing holes. Proceeding of the physical society of London, 1950, B63, 2~11
    [51] Eshelby J D. The determination of the elastic field of an ellipsoidal inclusion and related problems. Proceeding of the physical society of London, 1957, A241, 376~396
    [52] Voigt W. Lehrbuch der Kristallphysik: B. G. Teubner, 1928
    [53] Reuss A. Berechnung der Fliessgrense von Mischkristallen auf Grund der Plastizit ¨atbedingung für Einkristalle: Zeitschrift für Angewandte Mathematik aus Mechanik, 1929, 9, 49~58
    [54] Hashin Z, Shtrikman S. A variational approach to the theory of the elastic behavior of multiphase materials. Journal of Mechanics and Physics Solids, 1963, 2, 127~140
    [55] Wood A B. A Textbook of Sound. New York: Macmillan, 1940
    [56] Hill R., A self-consistent mechanics of composite materials, Journal of Mechanics and Physics Solids, 1965, 13, 213~222
    [57] Wu T T. The effect of inclusion shape on the elastic moduli of a two-phase material. International Journal of Solids Structures, 1965, 2, 1~8
    [58] Korringa J, Brown R J S, Thompson D D, et al. Self-consistent imbedding and the ellipsoidal model for porous rocks. J. Geophys. Res., 1979, 84, B10, 5591~5598
    [59] Berryman J G. Mixtures theories for rock properties. In A Handbook of Physical Constants, Ahrens T J, ed. Washington : American Geophysical Union, 1995, 205~228
    [60] Kuster G T, Toks?z M N. Velocity and attenuation of seismic waves in two-phase media. Geophysics, 1974, 39, 587~618
    [61] Mukerji T, Berryman J, Mavko G, et al. Differential effective medium modeling of rock elastic moduli with critical porosity constraints. Geophysical Research Letters, 22(5):555~558
    [62] Mindlin R D. Compilance of elastic bodies in contact. J. Appl. Mech. ASME, 1949,16, 259~268
    [63] Digby P. The effective elastic moduli of porous rocks. J. Appl. Mech., 1981, 48, 803~808
    [64] Walton K. The effective elastic moduli of random packing of spheres. J. Appl. Phys. Solids, 1987, 35, 213~226
    [65] Dvorkin J, Nur A, Yin H. Effective properties of cemented granular material: Mechanics of Materials, 1994, 12, 207~217
    [66] Dvorkin J, Nur A. Elasticity of high porosity sandstones: theory for two North Sea data sets. Geophysics, 1996, 61, 1363~1370
    [67] Dvorkin J, Berryman J G, Nur A. Elastic moduli of cemented sphere packs. Mechanics of Materials, 1999, 31: 461~469
    [68] Dvorkin J, Prasad M, Sakai A, et al. Elasticity of marine sediments: Rock physics modeling. Geophysical Research Letters, 1999, 26, 1781~1784
    [69] Wyllie M R J, Gregory A R, Gardner L W. Elastic wave velocities in heterogeneous and porous media. Geophysics, 1956, 21, 41~70
    [70] Raymer L L, Hunt E R, Gardner J S. An improved sonic transit time to porosity transform: 21st Ann. Logging Symp. Trans., Soc. Prof. Well Log Analysts, paper P, 1980, 12. 641~644
    [71] Nur A, Mavko G, Dvorkin J, et al. Critical porosity: A key to relating physical properties to porosity in rocks. The Leading Edge, 1998, 17, 357~362
    [72] Nur A, Marion D, Yin H. Wave velocities in sediments, in Hovem J M, Richardson M D, Stoll R D. eds., Shear waves in marine sediments. Kluwer Academic Publishers, 1991
    [73] Castagna J P, Batzle M L, Eastwood R L. Relationship between compressional-wave and shear-wave velocities in clastic silicate rocks. Geophysics, 1985, 50, 571~581
    [74] Han D, Nur A, Morgan D. Effects of porosity and clay on wave velocities in sandstones. Geophysics, 1986, 51, 2093~2107
    [75] Krief M, Garat J, Stellingwerff J, et al. A petrophysical interpretation using the velocities of P and S waves (full-waveform sonic). The Log Analyst, 1990, 31, 355
    [76] Pickett G R. Acoustic character log and their application in formation evaluation. J. Petr. Tech. AIME, 1963, 15, 659~667
    [77] Murphy C A, Reischer A, Hsu K. Modulus decomposition of compressional and shear velocities in sand bodies. Geophysics, 1993, 58, 227~293
    [78] Knackstedt M A, Arns C H, Pinczewski W V. Velocity-porosity relationships 1: Accurate velocity model for clean consolidated sandstones. Geophysics, 2003, 68, 1822~1834
    [79] Arns C H, Knackstedt M A, Pinczewski W V. Accurate Vp/Vs relationships for dry consolidated sandstones. Geophys. Res. Lett., 2002, 29, art. 1202
    [80] Arns C H, Knackstedt M A, Pinczewski W V, et al. Computation of linear elastic properties from microtomographic images: Methodology and agreement between theory and experiment. Geophysics, 2002, 67, 1396~1405
    [81] Lee M W. Biot–Gassmann theory for velocities of gas hydrate-bearing sediments. Geophysics, 2002, 67(6): 1711~1719
    [82] 孙春岩,王宏语,牛滨华,等. 西沙海槽研究区天然气水合物地球化学勘探. 地球科学, 2004, 29(2): 135~140
    [83] 孙春岩, 牛滨华, 文鹏飞, 等. 海上 E 区天然气水合物地质、地震、地球化学特征综合研究与成藏远景预测. 地球物理学报, 2004, 47(6): 1076~1085
    [84] 宋海斌, 松林修, 吴能友, 等. 海洋天然气水合物的地球物理研究(Ⅰ): 岩石物性. 地球物理学进展, 2001, 16(2): 118~126
    [85] 宋海斌, 松林修, 杨胜雄, 等. 海洋天然气水合物的地球物理研究(Ⅱ): 地震方法. 地球物理学进展, 2001, 16(3): 110~118
    [86] 王宏语, 孙春岩, 黄永样, 等. 海上气态烃快速测试与西沙海槽天然气水合物资源勘查. 现代地质,2002 ,16 (2) :180~186
    [87] 孙春岩, 黄新武, 牛滨华. 天然气水合物地震似海底反射现象 AVO 正演模型研究. 现代地质, 2003, 17(3): 337~344
    [88] 孙春岩, 章明昱, 牛滨华. 天然气水合物微观模式及其速度参数估算方法研究. 地学前缘, 2003, 10(1): 191~198
    [89] 孙春岩, 章明昱, 牛滨华. 天然气水合物地震空白带现象正演模型研究. 地学前缘, 2002, 10(1): 199~204
    [90] 孙春岩, 黄新武, 章明昱, 等. 天然气水合物及其地球物理识别方法的研究进展. 现代地质, 2003, 17(2): 195~201
    [91] 马在田, 耿建华, 董良国, 等. 海洋天然气水合物的地震识别方法研究. 海洋地质与第四纪地质, 2002, 22(1):1~8
    [92] Miller J J, Lee M W, von Huene R. An analysis of a seismic reflection from the base of a gas hydrate zone, offshore Peru. AAPG Bull., 1991, 75, 910~924
    [93] Hyndman R D, Spence G D. A seismic study of methane hydrate marine bottom simulating reflectors. J. Geophys. Res., 1992, 97, 6683~6698
    [94] Wood W T, Stoffa P L, Shipley T H. Quantitative detection of methane hydrate through high-resolution seismic velocity analysis. J. Geophys. Res., 1994, 99, 9681~9695
    [95] Lee M W, Hutchinson D R, Collett T S, et al. Seismic velocities for hydrate bearing sediments using weighted equation. J. Geophys. Res., 1996, 101, 20347~20358
    [96] Lee M W. Biot–Gassmann theory for velocities of gas hydrate-bearing sediments. Geophysics, 2002, 67(6): 1711~1719
    [97] Lee M W. Elastic velocities of partially gas-saturated unconsolidated sediments. Marine and Petroleum Geology, 2004, 21, 641~650
    [98] Helgerud M B, Dvorkin J, Nur A, et al. Elastic-wave velocity in marine sediments with gas hydrates: Effective medium modeling. Geophys. Res. Lett., 1999, 26, 2021~2024
    [99] Guerin G, Goldberg D, Meltser A. Characterization of in situ elastic properties of gas hydrate-bearing sediments on the Blake Ridge. Journal of Geophysical Research, 1999, 104, 17781~17795.
    [100] Jacobsen M, Hudson J A, Minshull T A, et al. Elastic properties of hydrate-bearing sediments using effective medium theory. J. Geophys. Res., 2000, 105, 561~577
    [101] Ecker C, Dvorkin J, Nur A. Sediments with gas hydrates: Internal structure from seismic AVO. Geophysics, 1998, 63, 1659~1669
    [102] Ecker C, Dvorkin J, Nur A. Estimating the amount of gas hydrate and free gasfrom marine seismic data. Geophysics, 2000, 65(2): 1659~1669
    [103] Reister D B. Using measured velocity to estimate gas hydrates concentration, Geophysics, 2003, 68(3): 884~891
    [104] Zillmer M, Flueh E R, Petersen J. Seismic investigation of a bottom simulating reflector and quantification of gas hydrate in the Black Sea. Geophysical Journal International, 2005, 161, 662~678
    [105] Zillmer M, Reston T, Leythaeuser T, et al. Imaging and quantification of gas hydrate and free gas at the Storegga slide offshore Norway. Geophysical Research Letters, 2005, 32, L04308
    [106] Zillmer M. A method for determining gas-hydrate or free-gas saturation of porous media from seismic measurements. Geophysics, 2006, 71(3): N21~N32
    [107] Xu S, White R E. A new velocity model for clay-sand mixtures. Geophysical Prospecting, 1995, 43, 91~118
    [108] Blangy J P, Strandenes S, Moos D, et al. Ultrasonic velocities in sands-revisited: Geophysics,1993, 58, 344~356
    [109] Spencer J W, Cates M E, Thompson D D. Frame moduli of unconsolidated sands and sandstones. Geophysics, 1994, 59(9): 1352~1361
    [110] Gal D, Dvorkin J, Nur A. A physical model for porosity reduction in sandstones: Geophysics, 1998, 63, 454~459
    [111] Berryman J G. Critique of two explicit schemes for estimating elastic properties of multiphase composites. Mechanics of Materials, 1996, 22: 149~164
    [112] Katsube N. Estimation of effective elastic moduli for composites. Int. J. Solids Structures, 1995, 32(1): 79~88
    [113] Batzle M, Wang Z. Seismic properties of pore fluids. Geophysics, 1992, 57(11): 1396~1408
    [114] Hornby B E, Schwartz L M, Hudson J A. Anisotropic effective-medium modeling of the elastic properties of shales. Geophysics, 1994, 59(10): 1570~1583
    [115] Berge P A, Bonner B P, Berryman J G. Ultrasonic velocity-porosity relationships for sandstone analogs made from fused glass beads. Geophysics, 1995, 60(1): 108~119
    [116] Vernik L. Acoustic velocity and porosity systematics in siliciclastics. The Log Analyst, 1998, July: 27~35
    [117] 吴翊, 李永乐, 胡庆军. 应用数理统计. 长沙: 国防科技大学出版社, 1995
    [118] 沈元隆, 周井泉. 信号与系统, 北京: 人民邮电出版社, 2003
    [119] 刘炳初. 泛函分析. 北京: 科学出版社, 1998
    [120] 李庆扬. 数值分析基础教程. 北京: 高等教育出版社, 2004
    [121] 郭自强. 固体中的波. 北京: 地震出版社, 1982
    [122] 戈革等. 弹性波动力学. 北京: 石油工业出版社, 1980

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700