用户名: 密码: 验证码:
各向异性导电胶及其在射频识别标签封装中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文针对射频识别标签(RFID)芯片的倒装封装材料、封装工艺及可靠性展开研究,属于"RFID标签封装设备与技术”863课题的子项目,涉及导电银(Ag)粉的可控制备及其生长机理研究,RFID倒装芯片用各向异性导电胶(ACA)配方的筛选优化,RFID电子标签封装工艺、互连可靠性与失效机理研究。
     采用湿化学法制备了不同形态的微米级Ag粉,并分析了其生长机理。以硝酸银为银源,采用七水合硫酸亚铁作为还原剂,不加或添加适量添加剂,如硫酸、马来酸、柠檬酸、保护剂中的一种或多种,控制反应条件,制备出球形、带有凸块的六边形、光滑片状六边形、片状三角形、花状球形的微米级Ag粉,Ag粉粒径可控;采用抗坏血酸做还原剂,硫酸作为稳定剂,还原硝酸银制备出粒径均一的类球形微米级Ag粉。结果表明:硫酸银是制备微米级Ag粉合适的中间体;无机/有机多元酸的残基基团能够吸附在Ag晶体的(111)晶面,促使片状Ag晶体的生成。以马来酸作为络合剂,在室温条件下,使用抗坏血酸还原五水硫酸铜制备了微米级的均一新鲜铜(Cu)粉,再由Cu粉还原硝酸银制备出枝状Ag粉,分析认为枝状Ag晶体是在非平衡态时,Ag粒子扩散受动力学控制,自发聚集而成。
     用微米级球形Ag粉和环氧基树脂配合制备了中温快速固化ACA。最佳配比为:双酚A环氧树脂100份,自制Ag粉44.2份,增韧剂10份,潜伏性固化剂33份,填料4份。制备的ACA可在150-180℃,15-20s内固化,适合于RFID电子标签芯片倒装封装。
     测量了ACA在不同升温速率下的差示扫描量热(DSC)曲线,求得了固化动力学方程,可以预测其固化性能,并指导封装热压工艺。用全自动电子标签芯片封装设备和柔性刻蚀的铝/聚酯(Al/PET)天线基板进行实验,得到的优化工艺参数条件为:固化时间为12.5s(热压固化温度170℃),热压压力为4.5MPa,上下压头温度差60℃(上下热压头温度为:200℃和140℃),点胶量1.0s(0.04Mpa)。
     对用ACA倒装封装的RFID电子标签进行了可靠性研究。柔性刻蚀的Al/PET为天线基板的高频电子标签(13.56MHz)在高温高湿(85℃,85%RH)老化336小时后,80%的标签能正常响应,且最大响应距离为初始值的80%左右。采用刚性模块封装的低频电子标签(134.2KHz),在高温高湿老化336小时后,标签均能正常响应。这说明采用刚性模块倒装封装RFID电子标签的可靠性好。对于刻蚀的Al/PET天线基板而言,高温高湿老化环境对ACA倒装键合点的接触电阻有很大影响,随着老化时间增长,接触电阻会增大,这可能是由于Al焊盘氧化导致该类型电子标签失效。且在高温高湿老化试验过程中,胶黏剂进一步固化,分析认为后固化过程有利于提高RFID电子标签的可靠性。所研发的ACA能够应用于柔性和刚性天线基板RFID电子标签的封装。
This paper involves the materials, process and reliability of the flip chip packaging of the passitive RFID (radio frequency identification) tag inlays. The work is a part of the 863 project—The Packaging Equipments and Technologies for RFID Tag Inlays Manufacture. The main contents include the controllable preparation of silver powders and the study of their formation mechanism, the development of the formulation of the anisotropic conductive adhesive (ACA) for RFID flip chip package, the package processing of the RFID tag inlays, and the reliability study and the failure mechanism analysis of the RFID tag inlays.
     Ag powders with different morphologies were prepared by the wet-chemical methods. Using the silver nitrate as the Ag source and the iron (Ⅱ) sulfate heptahydrate as the reductant, adding the appropriate additives, such as sulfuric acid, maleic acid, citric acid and polymer stabilizer, with one or more of them, or not add any additives, and giving several sets of the reaction parameters, the micro-sized Ag particles were prepared and their sizes were controllable. The shapes of the Ag particles were various. It included the spherical, the hexagonal with a bump on the center, the flat hexagonal and flat triangular and the flowerlike. Besides, a kind of uniform ball Ag powders were also prepared by mixing the ascorbic acid solution (reductant), the diluted sulfuric acid (stabilizer) and the silver nitrate solution (Ag source). It is concluded that:The silver sulfate is a suitable Ag resource to prepare the micro-sized spherical Ag particles by wet-chemical methods; the residual anionic groups of the inorganic and organic polybasic acids which the H ions are dissociated can attach on the (111) facet of Ag crystals preferentially. It promotes the anisotropic growth of Ag crystals. The Ag dendritic crystals were prepared by mixing the silver nitrate solution with the fresh uniform Cu microcrystals, which are synthesized by reducing the copper (Ⅱ) sulfate pentahydrate with the ascorbic acid at the presence of maleic acid at the room temperature. It is considered that the growth process of dendritic crystal is as follow:The diffusion process of Ag nuclei is controlled by the kinetic factors in the non-equilibrium state and the Ag nuclei aggregate spontaneously to form the dendritic crystals.
     A type of intermediate temperate curing ACA was prepared by mixing the spherical micro-sized Ag powder and the epoxy-based resin. The optimal formula is:Bisphenol A diglycidyl ether,100 part, Ag powder,44.2 part, plasticizer,10 part, filler,4 part and latent curing agent,36.6 part. It has a capability of curing at 150-180℃in 15-20 sec, and is tailored for the RFID flip chip packaging.
     The kinetics equation of the cure reaction of ACA was accessed by using the differential scanning calorimetry (DSC) curves at the different heat rates. The relationships between the curing time, curing temperature and curing degree were forecasted by the curing kinetic model of ACA. The optimal parameters of the automatic packaging equipment for manufacturing the RFID tag inlays with the flexible Al/PET antennae are:Curing time,12.5 sec, curing temperature,170℃, hot press pressure, 4.5MPa, the temperature difference between the upper and lower hot-press heads,60℃(The temperatures of the upper and lower hot-press heads are 200℃and 140℃respectively) and the amount of dispersed adhesive is 1.0 sec (The dispersing pressure, 0.04 MPa)
     The reliability of the RFID tag inlays packaged with the above ACA was studied. After the high-temperature and humidity(HHT,85℃,85%RH) aging test for 336 hours, 80% of the RFID tag inlays with Al/PET antennae can be read. The maximum response distance of them were about 80% of the initial value, although the DC resistance of bonding joints shifted. However, the RFID tag inlays by assembling the chips on the rigid modules (134.2 KHz) can be read after the same aging test. This implies that the RFID tag inlays packaged on the rigid modules had a higher reliability. The high-temperature and humidity test had a great impact on the contact resistance of ACA bonding joints of the RFID tag inlays with Al/PET antennae. The contact resistance increased with the increase of the aging time. It is inferred that the failure mechanism of the RFID tag inlays with Al/PET antennae is the oxidation of Al pads. It is also found that the cure degree of ACA increased with the increase of the aging time. This postcure process is beneficial to the reliability improvement of RFID tag inlays. In a word, the prepared ACA can be applied in the packaging of RFID tag inlays with flexible and rigid antenna substrates.
引文
[1]蔡十华,王建秋,王琼华,等.射频识别技术的进展,江西科学,2007,25(4):434-437
    [2]王丰,罗少锋,李静.RFID技术在军事物流领域的应用,金卡工程,2006,11:29-31
    [3]RFID Market Forecasts 2009-2019, IDTechEx.com,2009.4.21. (http://www. idtechex.com/research/articles/rfid_market_forecasts_2009_2019_00001377.asp)
    [4]中国RFID市场趋势预测2007-2011,易观国际,2008.1.25. (http://www.analysys. com.cn/web2007/?module=yjbg&action=showone&wid=111&id=6527)
    [5]吴懿平.RFID标签制造技术.环球SMT与封装[J],2004,4(6):4-7.
    [6]J Liu. Reliability of surface-mounted anisotropically conductive adhesive joints [J]. Circuit World,1993,19(4):4-11.
    [7]J Liu. ACA bonding technology for low cost electronics packaging applications current status and remaining challenges [J]. Soldering & Surface Mount technology. 2001,13 (3):39-57.
    [8]K Gilleo. Assembly with conductive adhesive [J]. Soldering & Surface Mount technology.1995,7(1):12-17.
    [9]I M Yakutik, G P Shevchenko. Self-organization of silver nanoparticles forming on chemical reduction to give monodisperse spheres [J]. Surface Science 2004,566-568:414-418
    [10]X Sun, S Dong, E Wang. Rapid preparation and characterization of uniform, large, spherical Ag particles through a simple wet-chemical route [J].Journal of Colloid and Interface Science.2005,290(1):130-133
    [11]P Velikov Krassimir, E Zegers Gabby, A van Blaaderen. Synthesis and Characterization of Large colloidal silver particles [J].Langmuir.2003, 19(4):1384-1389.
    [12]J Yang, L Qi, D Zhang, et al. Dextran-Controlled Crystallization of Silver Microcrystals with Novel Morphologies [J]. Crystal growth &Design. 2004,4(6):1371-1375
    [13]川崎修嗣,内田友子,白石瞳.球状銀粉末の製造方法[P].JP:225760,2006
    [14]R Ueyama, M Harada,T Uetama,et al. Synthesis of Monodispersed Spherical Single Crystalline Silver Particles by Wet Chemical Process [J]. Journal of ceramic society of Japan.1999,107(1):60-65
    [15]T Guray, D G Howard. Process for making finely divided particles of silver metal [P]. US4979985, (1990).
    [16]J G Ahn, D J Kim, J R.Lee, et al. Synthesis of mono-dispersed fine spherical silver powders by chemical-reduction method[J]. Material science forum. 2007,539-543(3):2782-2786
    [17]C Fischer, A Heller, G Dube. Preparation of silver powder with specific properties by reduction in organic medium. Reduction of silver carbonate by ethylene glycol [J]. Materials Research Bulletin [J] 1989,24(10):1271-1277
    [18]H·D·格里克斯曼.制备细碎密实球形银粉的方法[P],CN1106326.1995
    [19]王璐,殷越军,张国栋,等.高纯高分散性球形超细Ag粉及生产方法[P],CN1227148A.1999
    [20]刘秉宁,张文华,李海彪,等.超细球形银粉的制备方法[P],CN1389768A.2003
    [21]周宇松,曹国洲,逯庆国,等.高振实密度超细银粉的研制[J],兵器材料科学与工程,2007,30(5):22-24
    [22]D Andrej, M Jadran. Preparation of submicrometer nickel powders by the reduction from nonaqueous media. NanoStruchxed Materials[J] 1999,12(1-4):225-228,
    [23]Y D Li, C W Li, H R Wang, et al. Preparation of nickel ultrafine powder and crystalline film by chemical control reduction. Materials Chemistry and Physics [J]. 1999,59(1):88-90
    [24]K H Kim, H C Park, S D Lee, et al. Preparation of submicron nickel powders bymicrowave-assisted hydrothermal method. Materials Chemistry and Physics [J]. 2005,92(1):234-239
    [25]K H Kim, Y B Lee, S G Lee, et al. Preparation of fine nickel powders in aqueous solution under wet chemical process. Materials Science and Engineering A [J],2004, 381(1-2):337-342
    [26]Y Zhou, S Jin, G Qiu, et al. Preparation of ultrafine nickel powder by polyol method and its oxidation product. Materials Science and Engineering B [J] 2005, 122(3):222-225
    [27]H T Li, S C Huang, K C Chen. Fine conductive particles for making anisotropic conductive adhesive composition [P].US6841094,2005
    [28]S C Huang, H T Li, K C Chen, et al. New surface functional metal powders for anisotropic conductive film materials in electronic package application. Materials Research Society Symposium-Proceedings, Symposia on Polymer/Metal Interfaces and Defect Mediated Phenomena in Ordered Polymers. December,2002 Boston, Massachusetts, U.S.A [C].2002,734:243-248
    [29]李巡天,黄淑祯,陈凯琪,适用于制备异方向性导电胶组合物的微导电粉体[P],CN1470588A,2004
    [30]R W Pennisi, M V Papageorge, G F Urbish, Anisotropic conductive adhesive and encapsulant material [P], US5136365,1992
    [31]L Cao,S Li, Z Lai, and J Liu. Formulation and characterization of anisotropic conductive adhesive paste for microelectronics packaging applications [J]. Journal of electronic materials.2005,34(11):1420-1427
    [32]武市元秀,八木秀和,未政香里,连接材料[P], CN1294166A,2001
    [33]N S Shizuoka, O O Yaizu, J T Shimizu, et al. Adhesive composition for semiconductor device and adhesive sheet for semiconductor device using the same [P], US 6770370B2,2004
    [34]I Tomoyuki. Anisotropic conductive adhesive[P], US6827880,2004
    [35]M Takayuki. Low temperature-curable adhesive[P], JP2001207133,2001
    [36]宫本折也,川田政和,各向异性导电粘合剂、其制法和使用该粘合剂的电子装置[P], CN1242403A,2000
    [37]郑志明,J·P·沙,B·夏,各向异性导电胶粘剂[P], CN 101033379A,2007
    [38]S R Iyer, P K Wong. Anisotropic conductive adhesive compositions [P], US5840215,1998
    [39]M J Yim, K W Paik. Preparation method of anisotropic conductive adhesive for flip chip interconnection on organic substrate [P], US6238597,2001
    [40]E Kenji, T Yoshihiko. Anisotropic conductive adhesive film [P]. US5330684.1994
    [41]Y Kazuyoshi. Anisotropic conductive adhesive, heat seal connector and manufaturing method of connector[P], JP2001-176326,2001
    [42]H Kumakura, S Yamamoto. Anisotropic conductive adhesive film [P], US6592783. 2003
    [43]M J Yim, J S Hwang.Multilayered anisotropic conductive adhesive for fine pitch [P]. US7081675,2006
    [44]K W Paik, M J Yim. High adhesion triple layered anisotropic conductive adhesive film [P], US6878435,2005
    [45]张洪波,苏春辉,许素莲.新型导电膜的制备及性能研究[J],化学与粘合,2004,6:321-323
    [46]张洪波.各向异性导电胶的研究,中国硕士学位论文全文数据库,1999
    [47]于洁,袁明,王琛,等.各向异性导电胶粘剂及其制备方法[P], CN1280156A,2001
    [48]张建华.金属包覆功能聚苯乙烯微球柔性粒子作为导电粒子的各向异性导电胶[P]. CN1821336A,2006
    [49]倪晓军,梁彤祥,刘杨秋,等.精细电路连接用紫外光固化各向异性导电胶[J].电子元件与材料,2002,21(8):9-13
    [50]刘萍,一种各向异性导电胶膜的制造方法[P], CN1560168A,2005
    [51]Y C Chan, D Y Luk. Effects of bonding Parameters on the reliability Performance of anisotropic conductive adhesive interconnects for flip-chip-on-flex Packages assembly I. Different bonding temperature [J], Microelectronics Reliability,2002, 42(8):1185-1194
    [52]L Cao, Z Lai, J Liu, Effect of Curing Condition of Adhesion Strength and AC A Flip-Chip Contact resistance [C], Proceeding of the Sixth IEEE CPMT Conference on High Density Microsystem Design and Packaging and Component Failure Analysis(HDP,04), Shanghai, China, June,2004:254-258
    [53]M A Uddin, M O Alam, Y C Chan, et al. Adhesion strength and contact resistance of flip chip on flex packages-effect of curing degree of anisotropic conductive film [J]. Microelectronics Reliability.2004,44 (3):505-514
    [54]X Chen, J Zhang, C Jiao, et al. Effects of different bonding Parameters on the electrical Performance and Peeling strengths of ACF interconnection [J]. Microelectronics Reliability,2006,46(5-6):774-785
    [55]Y P Wu, M O Alam, Y C Chan, et al. Dynamic strength of anisotropic conductive joints in flip-chip on glass and flex packages [J]. Microeleetronies Reliability, 2004,44(2):295-302
    [56]H J Kim, S M Hong, S Y Jang, et al, Bubbles Formation in Rigid-Flexible Substrates Bonding using Anisotropic Conductive Films (ACFs) and Their Effects on ACFs Joints Reliability,2005 Electronics Packaging Technology Conference, Grand Copthorne Waterfront, Singapore, Dec,2005:734-739
    [57]Y C Chan, D Y Luk. Effects of bonding Parameters on the reliability performance of anisotropic conductive adhesive interconnects flip-chip-on-flex Packages assembly Ⅱ.Different bonding pressure. Microelectronics Reliability [J].2002,42(8): 1195-1204
    [58]J H Zhang, Y C Chan, M O Alam, et al, Contact resistance and adhesion performance of ACF interconnections to aluminum metallization [J]. Microelectronics Reliability.2003,43(8):1303-1310
    [59]C W Tan, Y C Chan, N H Yeung. Effect of autoclave test on anisotropic conductive joints[J], Microelectronics Reliability.2003,43(2):279-285
    [60]L Frisk, J Jarvinen, R Ristolainen. Chip on flex attachment with thermoplastic ACF for RFID applications [J], Microelectronics reliablility.2002,42(9-11):1559-1562
    [61]J W Kim, J M Koo, C Y Lee, et al. Thermal degradation of anisotropic conductive film joints under temperature fluctuation [J]. International Journal of Adhesion & Adhesives.2008,28(6):314-320
    [62]M J Yim, K W Paik. Design and understanding of anisotropic conductive films (ACFs) for LCD packaging [J]. IEEE Transactions on Components and Packaging Technology partA.1998,21(2):226-234
    [63]K W Paik, M J Yim. New anisotropic conductive adhesive for low cost and reliable flip-chip on organic substrates applications[C].International Symposium on Electronic Materials and Packaging, Hong Kong, China, November,2000:282-288
    [64]G Dou, D C Whalley, C Liu, Electrical Conduction Characteristics of Solid Metal Anisotropic Conductive Adhesive Particles,4th IEEE International conference on polymers and adhesives in microelectronics and phptonics (Polytronic 2004), Portland, USA, September,2004,132-136
    [65]M J Yim, W Kwon, K W Paik, Effect of filler content on the dielectric properties of anisotropic conductive adhesives materials for high-frequency flip-chip interconnection [J], Materials Science and Engineering B 2006,126(1):59-65
    [66]M J Yim, I H Jeong, H K Choi, et al. Flip Chip Interconnection with Anisotropic Conductive Adhesives for RF and High-Frequency Applications [J]. IEEE transactions on components and packaging technologies,2005,28(4):789-795
    [67]C Melida, R B James, S J Hu. Effect of Elastic Recovery on the Electrical Contact Resistance in Anisotropic Conductive Adhesive Assemblies, IEEE transactions on components and packaging technologies,2006,29(1):137-143.
    [68]S Mann, The chemistry of form, Angewandte Chemie International Edition.,2000,39(19),3392-3406.
    [69]H Colfen, S Mann, Higher-Order Organization by Mesoscale Self-Assembly and Transformation of Hybrid Nanostructures, Angewandte Chemie International Edition.,2003,42(21),2350-2365
    [70]X Peng, L Manna, W Yang, et al. Shape control of CdSe nanocrystals [J], Nature 2000,404(6773):59-61.
    [71]Y Sun, Y Xia, Shape-Controlled Synthesis of Gold and Silver Nanoparticles [J], Science 2002,298:(5601)2176-2179.
    [72]R Jin, Y Cao,C A. Mirkin, et al. Photoinduced Conversion of Silver Nanospheres to Nanoprisms [J], Science.2001,294(5548):1901-1903.
    [73]R Jin, Y Cao, E Hao, et al. Controlling anisotropic nanoparticle growth through plasmon excitation [J]. Nature.2003,425(6957):487-490.
    [74]D Yu, V W Yam. Controlled Synthesis of Monodisperse Silver Nanocubes in Water [J], Journal of the American Chemical Society.2004,126(41):13200-13201.
    [75]E Hao, K L Kelly, J T Hupp, et al. Synthesis of Silver Nanodisks Using Polystyrene Mesospheres as Templates. Journal of the American Chemical Society.2002, 124(51):15182-15183.
    [76]S Chen, Z Fan, D L Carroll. Silver Nanodisks:Synthesis, Characterization, and Self-Assembly. Journal of Physical Chemistry B,2002,106(42):10777-10781.
    [77]M Maillard, S Giorgio, M Pileni. Siver nanodisks [J], Advanced Materials.2002,14 (15):1084-1086.
    [78]M Maillard, P Huang, L Brus. Silver Nanodisk Growth by Surface Plasmon Enhanced Photoreduction of Adsorbed [Ag+] [J]. Nano Letter.2003, 3(11):1611-1615.
    [79]I P Santos, L M. Liz-Marzan. Synthesis of Silver Nanoprisms in DMF [J], Nano Letter,2002,2(8):903-905.
    [80]S Chen, D L Carroll. Synthesis and Characterization of Truncated Triangular Silver Nanoplates [J]. Nano Letter,2002,2(9):1003-1007.
    [81]A Callegari, D Tonti, M Chergui, Photochemically Grown Silver Nanoparticles with Wavelength-Controlled Size and Shape [J]. Nano Letter,2003,3(11):1565-1568.
    [82]L P Jiang, S Xu, J M Zhu, et al. Ultrasonic-Assisted Synthesis of Monodisperse Single-Crystalline Silver Nanoplates and Gold Nanorings [J]. Inorganic Chemistry, 2004,43(19):5877-5883.
    [83]Y Sun, Y Xia. Triangluar Nanoplates of silver synthesis, characterization, and use as sacrificial templates for generating triangular nanorings of gold [J]. Advanced Materials,2003,15(9):695-699.
    [84]Y Sun, B Mayers, Y Xia. Transformation of Silver Nanospheres into Nanobelts and Triangular Nanoplates through a Thermal Process [J]. Nano Letter,2003,3(5): 675-679.
    [85]N R Jana, L Gearheart, C J Murphy. Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratio. Journal of Chemical society Communication, 2001,7:617.
    [86]K K Caswell, C M Bender, C J Murphy, Seedless, Surfactantless Wet Chemical Synthesis of Silver Nanowires [J]. Nano Letter,2003,3(5):667-669.
    [87]Y Sun, B Gates, B Mayers, et al. Crystalline Silver Nanowires by Soft Solution Processing [J]. Nano Letter,2002,2(2):165-168
    [88]B Wiley, Y Sun, B Mayers, et al. Shape-Controlled Synthesis of Metal Nanostructures:The Case of Silver[J].Chemistry-A European Journal, 2005,11(2):454-463
    [89]J Yang, L Qi, D Zhang, J Ma, and H Cheng, Dextran-Controlled Crystallization of Silver Microcrystals with Novel Morphologies[J], Crystal growth & design, 2004,4(6):1371-1375
    [90]J Yang, L Lu, H Wang, et al. Glycyl Glycine Templating Synthesis of Single-Crystal Silver Nanoplates [J]. Crystal growth & design,2006,6(9):2155-2158
    [91]J Du, B Han, Z Liu, et al. Control Synthesis of Silver Nanosheets, Chainlike Sheets, and Microwires via a Simple Solvent Thermal Method [J]. Crystal growth & design, 2007,7(5):900-904
    [92]B Santanu B, K D Apurba, B Arindam, et al. Dendron-like Growth of Silver Nanoparticles Using a Water-Soluble Oligopeptide[J], Journal of Physical Chemistry B,2006,110(22):10757-10761
    [93]X Wang, H Itoh, K Naka, et al. Tetrathiafulvalene-Assisted Formation of Silver Dendritic Nanostructures in Acetonitrile[J], Langmuir,2003,19(15):6242-6246
    [94]L Qu, L Dai. Novel silver nanostructure from silver mirror reactive substates [J]. Journal of Physical Chemistry.2005,109(29):13985-13990
    [95]J Fang, H You, P Kong, et al. Dendritic Silver Nanostructure Growth and Evolution in Replacement Reaction [J]. Crystal growth & design.2007,7(5):864-867
    [96]J Zhu, S Liu, O Palchik, et al. Shape-Controlled Synthesis of Silver Nanoparticles by Pulse Sonoelectrochemical Methods [J]. Langmuir.2000,16(16):6396-6399
    [97]R He, X Qian, J Yin, et al. Formation of silver dendrites under microwave irradiation [J]. Chemical Physics Letters.2003,369(3-4):454-458
    [98]T Qiua, X L Wua, G J Wan, et al. Self-organizedsynthesis of micrometer scale silver disks by electroless metal deposition on Si-incorporated diamond-like carbon films [J]. Journal of Crystal Growth.2005,284(3-4):470-476
    [99]L Li, X Cao, F Yu, et al. Gl dendrimers-mediated evolution of silver nanostructures from nanoparticles to solid spheres [J]. Journal of Colloid and Interface Science. 2003,261(2):366-371
    [100]V Privman, D V Goia, J Park, et al. Mechanism of Formation of Monodispersed Colloids by Aggregation of Nanosize Precursors [J]. Journal of Colloid and Interface Science.1999,213(1):36-54.
    [101]J Park, V Privman, E Matijevic. Model of Formation of Monodispersed Colloids [J]. Jounal of Physical Chemistry B.2001,105(47):11630-11635.
    [102]E M Patrito, P P Olivera, H Sellers, On the nature of the SO42-/Ag(111) and SO42-/Au(111) surface bonding[J]. Surface Science.1997,380(2-3):264-282
    [103]X Zou, E Ying, H Chen, et al. An approach for synthesizing nanometer-to micrometer-sized silver nanoplates [J]. Colloids and Surfaces A:Physicochem. Eng. Aspects.2007,303(3):226-234
    [104]M Maillard, S Giorgio, M P Pileni. Silver Nanodisks [J]. Advanced materials. 2002,14(15):1084-1085
    [105]T A Witten, L M Sander. Diffusion-Limited Aggregation, a Kinetic Critical Phenomenon [J]. Physical review letters.1981,47(19):1400-1403.
    [106]T A Witten, L M Sander. Diffusion-limited aggregation [J].Physical review. B.1983, 27(9):5686-5697.
    [107]E B Jacob, P Garik. The formation of patterns in non-equilibrium growth [J]. Nature. 1990,343(6258):523-530.
    [108]I Washio, Y Xiong, Y Yin, et al. Reduction by the End Groups of Poly (vinyl pyrrolidone):A New and Versatile Route to the Kinetically Controlled Synthesis of Ag Triangular Nanoplates, Advanced Materials [J].2006,18(13):1745-1749
    [109]R S Pai and K M Walsh, The viability of anisotropic conductive film as a flip chip interconnect technology for MEMS devices, Journal of micromechanics and microengineering [J].2005,15 (6):1131-1139.
    [110]陈平.2-乙基-4-甲基咪哇固化环氧树脂的固化反应机理、动力学及其反应活性[J].高分子学报.1994,6:641-646
    [111]张明,安学锋,唐邦铭,等.高性能双组份环氧树脂固化动力学研究和TTT图绘制[J].复合材料学报.2006,23(1):17-25.
    [112]A Maazouz, C Texier, M Taha, et al. Chemo-rheological study of dicyanate ester for the simulation of the resin-transfer molding process [J]. Composites Science and Technology,1997,16(4):297-311.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700