用户名: 密码: 验证码:
PS/金属核壳结构复合微球的制备及其在各向异性导电胶膜上的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
各向异性导电胶膜(Anisotropic Conductive Film, ACF)是一种绿色环保的新型电子封装材料。与传统的锡铅焊料相比,具有封装工艺简单、可进行窄间距互连、低封装温度、环保等优点。ACF是由微米级导电粒子与可控快速固化的树脂胶粘剂共混成膜后得到的复合材料,因其在X、Y方向绝缘,只在Z方向导电,从而呈现各向异性。导电粒子是ACF材料的核心部分,用来实现互连凸点间的电导通;树脂粘合剂除了具有粘接、耐热及绝缘功能外,其主要作用是固定互连凸点的相对位置,并提供压力以维持凸点与导电粒子间的接触面积。
     聚合物/金属导电复合微球是以微米级单分散聚合物微球为核,以金属为壳的核壳式复合材料。它可以兼具聚合物微球的真圆度、粒径均一、弹性、轻质等性质和金属的导电性能,因而成为目前ACF导电粒子的主流结构。本文将分别采用分散聚合法和化学镀法制备微米级单分散聚苯乙烯(PS)微球和PS/金属导电复合微球,分析了材料的形成机理及形貌等方面的影响因素,并对导电复合微球的导电性能进行了表征。以改性环氧树脂(EP)为基体,以咪唑类或阳离子型化合物为固化剂,开发新型EP基ACF胶粘剂体系,使其可在中高温条件下快速固化,并具有稳定的室温储存性及优良的粘结强度,以解决目前商用ACF产品在运输、储存等方面存在的问题。
     采用分散聚合法制备了尺寸可控的微米级单分散PS微球。研究了加料方式、聚合时间、单体浓度、分散剂浓度、引发剂浓度及种类、分散介质以及聚合温度等因素对PS微球形貌及单分散性的影响。实验结果表明,聚合反应的成核期最为敏感,也是制备单分散PS微球的关键。一步加料法制备的PS微球的形貌及单分散性更好;单体浓度、溶剂极性及聚合温度对PS微球粒径的影响较为明显,分散剂浓度及引发剂浓度则次之,但对PS微球的单分散性影响较大。通过改变聚合条件,可以制备直径为1-3μm的单分散PS微球。
     镍(Ni)具有优异的导电性、耐腐蚀性、成本低等特点,以其作为导电壳层,采用化学镀法在单分散PS微球表面施镀制备了PS/Ni导电复合微球。讨论了PS微球活性中心的修饰、化学镀实施方式、镀液中还原剂及络合剂浓度、PS微球装载量等因素对复合微球的分散性、镀层包覆情况及导电性能的影响。另外,在化学镀Ni过程中,微量的稀土元素镧(La)的引入有效地提高了PS/Ni复合微球的镀层致密程度,同时降低了复合微球的密度。当镀液中La203的浓度分别为0mM和0.15mM时,PS微球表面的Ni基合金颗粒的平均尺寸由300nm减小为70nm,复合微球的密度则由4.068g cm-3降低至1.515g cm-3,使其更符合ACF导电粒子的要求。
     铜(Cu)具有优异的导电、导热、低成本、低电子迁移率等优点,采用化学镀法对单分散的PS微球表面进行金属化,制备PS/Cu导电复合微球。采用线性扫描伏安法测试化学镀过程中的局部阴阳极极化曲线,以协助分析镀液pH值、还原剂浓度、络合体系等因素对PS/Cu复合微球形貌、镀层包覆情况及分散性的影响。改变PS微球的装载量可以有效地调节复合微球的密度、壳层厚度及导电性能。另外,在镀液中加入稳定剂2,2-联吡啶后,PS微球表面出现了数颗立方体状的Cu颗粒;而加入La203后,则有效地改善了复合微球的表面形貌。
     银(Ag)具有很好的导电性、柔韧性及延展性,采用改进的化学镀法在PS微球表面进行银的包覆。在PS微球的镀前处理时,以10nm左右的铂(Pt)溶胶代替PdCl2完成活化,使PS微球表面的活性中心尺寸由70nm减小至10nm,有利于均匀镀层的形成。分析了化学镀Ag过程中温度、时间、PS微球装载量等因素对复合微球形貌、镀层厚度、分散性及导电性的影响。另外,在镀液中添加PVP可有效地改善复合微球镀层的微结构,使Ag镀层更加均匀致密。
     将双酚A型环氧树脂(DGEBA)与二聚酸改性DGEBA复合,作为胶粘剂的基体,以2-甲基咪唑(2MZ)或阳离子型六氟锑酸盐(PPH)为固化剂,制备了新型的用于ACF的胶粘剂。分别研究了2MZ/EP和PPH/EP体系的固化行为、室温储存性及固化物的热稳定性。实验结果显示,PPH/EP体系在25-30℃下可放置60天左右,但其固化物的T。仅为100℃。为了提高该体系固化物的热稳定性,将双酚A甲醛环氧树脂复合到胶粘剂基体中,制备了PPH/MEP胶粘剂。测试结果显示,该体系固化物的T。可提高到120℃,而且该体系具有更好的室温储存性能。
     以粒径为3μm的PS/Ag复合微球作为导电粒子,以PPH/MEP体系作为树脂胶粘剂,制备了导电性能和粘接性能优异的ACF材料。根据电极间接触电阻理论分析,压力、导电粒子的尺寸、电极间导电粒子的数目等对连接件接触电阻都具有很大的影响。实验结果表明,提高导电微球含量、绑定压力、绑定温度及延长绑定时间对ACF的导电性能都具有积极作用,但ACF的粘接性能主要由树脂胶粘剂的固化程度所决定。在进行间距为500μm的FOG连接时,ACF的导电粒子临界含量为35wt.%左右,当导电粒子含量为20wt.%左右时,ACF可同时具有较好的导电性能和粘接性能。ACF进行FOG互连时的最佳的绑定工艺参数为:绑定压力0.3MPa,绑定温度170℃,绑定时间15s。
As the requirements for interconnection and joining materials in microelectronics packaging applications have moved toward ultra-fine-pitch bonding and environmental friendliness, anisotropic conductive films (ACFs) have attracted considerable attention as an alternative to tin/lead (Sn/Pb) solders. ACFs not only allow products to be thinner, smaller and lighter, but also offer good electrical performance and stability. ACFs mainly consist of polymeric binder matrices and micrometre-scale conductive fillers. Only with applied heat and pressure during bonding process, the electric connections will be established in the Z-direction by a relatively low loading of conductive fillers. The cured polymer adhesive holds the two components together and provides pressure to maintain the interconnection area between bumps/pads and conductive fillers.
     Polymer/metal conductive microspheres are a kind of composite materials with a core/shell structure. Owing to the combination of round-shape, monodispersion, elasticity and lightweight of polymer microspheres and the excellent conductivity of metal, polymer/metal composite microspheres have been widely added into insulating adhesive matrix to prepare ACFs. Monodispersed polystyrene (PS)/metal composite microspheres were prepared by dispersion polymerization of styrene followed by electroless plating. The influences on the formation mechanism and morphology of composite microspheres were investigated, and their electrical properties were also characterized. To improve the storage stability of adhesives at ambient, modified epoxy (EP) and cationic hexafluoroantimonate were used as matrix and latent curing agent, respectively, to develop a new epoxy based adhesive. Such adhesives displayed an excellent storage stability at ambient, good adhesive strength and fast curing speed at relatively low temperature.
     Monodispersed PS microspheres were prepared by dispersion polymerization with controlled diameters. The effects of polymerization time, monomer concentration, dispersing agent concentration, initiator concentration, initiator type, dispersion medium and polymerization temperature on the monodispersion and morphology of PS microspheres were investigated. The results revealed that the sensitive nucleation period played the most important role on the preparation of monodispersed PS microspheres. Better monodispersion and morphology of PS microspheres can be obtained by one-step procedure. The influences of monomer concentration, dispersion medium and polymerization temperature on the diameters of PS were stronger than that of dispersing agent concentration and initiator concentration. However, they determined the monodispersion of PS to a large extent. In a word, monodispersed PS microspheres with diameters of1~3μm can be obtained by dispersion polymerization with controlled polymerization conditions.
     Nickel (Ni) has good conductivity, corrosion resistance and low cost. PS/Ni conductive composite microspheres with Ni coating on PS microspheres were prepared by electroless plating technology. The effects of decoration with active centers on PS microspheres surface, the condition of electroless plating, reductant concentration, complexant concentration and the loading of PS on the dispersion, Ni coating state and the electrical properties of PS/Ni composites were discussed. Furthermore, to improve the surface roughness, subsidiary fracture of the plated layer and high density, lanthanum (La) was added into electroless Ni plating bath. With the La content ranging from0to50mg L-1, the average grain size of the Ni based alloy coating reduced from300nm to70nin, the average shell thickness of the composites reduced from240nm to95nm, and the density of the composites decreased gradually from4.068g cm-3to1.515g cm-3
     Copper (Cu) has high electrical, thermal conductivity, moderate hardness, low cost and low electromigration. The formation of Cu shell on PS surface was obtained by electroless plating technology. The effects of pH of plating solution, reductant concentration, mode of feeding reductant and complexing system on morphology. Cu coating state and dispersion of PS/Cu composites were investigated with the assistant of linear sweep voltammetry (LSV) method. Tailoring of density, shell thickness and conductivity can be achieved by varying the loading of PS microspheres in plating bath. In addition, the existence of2,2-dipyridyl or La2O3as a stabilizer had a different influence on the deposition rate of Cu by electrochemical measurements, and thus led to a various morphology of PS/Cu composites. A more compact copper shell on PS surface can be obtained in the presence of La2O3
     Silver (Ag) has excellent conductivity, flexibility and malleability'. A modified electroless silver-plating process was developed for the preparation of monodispersed PS/Ag composite microspheres. PS surfaces were decorated with colloidal platinum of approximately10nm in size, much smaller than that of clusters fabricated by a conventional activation method, which contains Sn and Pd species of70nm. The effects of temperature, time of plating and loading of PS in plating bath on morphology. Ag coating state, dispersion and conductivity of PS/Ag composites were investigated. The results showed that a dense, stable and uniform Ag nanoshell was formed on the surface of PS microspheres with the assistant of poly (vinylpyrrolidone).
     A new epoxy based adhesive was prepared by using composite resin of diglycidylether of bisphenol A (DGEBA) and dimmer acid modified DGEBA as matrix and2-methylimidazole or N-phenethylpyrazinium hexafluoroantimonate (PPH) as curing agent. The curing behavior, storage stability at ambient of adhesive and thermostability of cured products were studied. The results showed that the pot life of PPH/EP adhesive exceeded to60days at25~30℃, but the glass transition temperature (Tg) of its cured product was only100℃. To improve the thermostability of cured products, bisphenol A novalac epoxy was added into the adhesive matrix to prepare PPH/MEP system. The results showed that Tg of cured PPH/MEP product increased to120℃, and PPH/MEP system maintained an excellent storage stability at ambient.
     ACFs with good conductivity and peel strength were prepared, which electrically connect ITO glass and flex print circuit (FPC) with conducting patterns of500μm in pitch. PS/Ag composite microspheres with diameter of3μm and PPH/MEP system were used as conductive fillers and adhesive resin, respectively. According to the theoretical analysis, contact resistance can be strongly influenced by applied pressure, filler size and number of filler between electrodes. The experimental results showed that increasing the filler content, bonding pressure, temperature and time played positive role on the conductivity of ACF. However, the adhesive property of ACF largely depended on the curing degree of resin. The critical content of conductive fillers was35wt.%in the flex on glass (FOG) process using ACF. When the filler content was20wt.%, ACF possessed good conductivity and peel strength at the same time. The optimal bonding pressure, temperature and time for reliability of interconnection using ACF were0.3MPa,170℃and15s, respectively.
引文
[1]Bradford, E. B.; Vanderhoff, J. W., Electron microscopy of monodisperse latexes. Journal of Applied Physics,1955,26 (7):864-871.
    [2]Golgelioglu, C.; Bayraktar, A.; Celebi, B.; Uguzdogan, E.; Tuncel, A., Aqueous size exclusion chromatography in semimicro and micro-columns by newly synthesized monodisperse macroporous hydrophilic beads as a stationary phase. Journal of Chromatography A,2012,1224:43-50.
    [3]Hosaka, S.; Murao, Y.; Tamaki, H.; Masuko, S.; Miura, K.; Kawabata, Y., Monodisperse microspheres of copolymers of glycidyl methacrylate and its derivatives as materials for biomedical application. Polymer International,1993,30 (4):505-511.
    [4]Cao, Y.-C.; Wang, Z.; Jin, X.; Hua, X.-F.; Liu, M.-X.; Zhao, Y.-D., Preparation of Au nanoparticles-coated polystyrene beads and its application in protein immobilization. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2009,334 (1-3):53-58.
    [5]Song, J.; Tronc, F.; Winnik, M., Monodisperse, controlled micron-size dye-labeled polystyrene particles by two-stage dispersion polymerization. Polymer,2006,47 (3):817-825.
    [6]宋丹;姜炜;周际东;程志鹏;李风生,交联PS微球负载纳米Ni颗粒的制备及表征.功能材料,2008,(02):346-348+352.
    [7]Chen, M.; Zhou, J.; Xie, L.; Gu, A.; Wu, L., Facile fabrication method of PS/Ni nanocomposite spheres and their catalytic property. Journal of Physical Chemistry C,2007,111 (32):11829-11835.
    [8]Wang, J.; Connack, P. A. G.; Sherrington, D. C.; Khoshdel, E., Monodisperse, molecularly imprinted polymer microspheres prepared by precipitation polymerization for affinity separation applications. Angewandte Chemie International Edition,2003,42 (43):5336-5338.
    [9]周晓英;张光华,大粒径单分散聚合物微球的制备及其在LCD中的应用进展.塑料,2008.(05):37-40+51.
    [10]Kim, S.-G.; Seo, Y.-G.; Cho, Y.-J.; Shin, J.-S.; Gil, S.-C.; Lee, W.-M., Optimization of emulsion polymerization for submicron-sized polymer colloids towards tunable synthetic opals. Bulletin of the Korean Chemical Society,2010,31 (7):1891-1896.
    [11]Graf, C.; van Blaaderen, A., Metallodielectric colloidal core-shell particles for photonic applicati-ons. Langmuir,2001,18 (2):524-534.
    [12]Zhang, J.; Liu, J.; Wang, S.; Zhan, P.; Wang, Z.; Ming, N., Facile methods to coat polystyrene and silica colloids with metal. Advanced Functional Materials,2004,14 (11):1089-1096.
    [13]Zhu, S. L.; Tang, L.; Cui, Z. D.; Wei, Q.; Yang, X. J., Preparation of copper-coated [3-SiC nanoparticles by electroless plating. Surface and Coatings Technology,2011,205 (8-9):2985-2988.
    [14]Yamaguchi, I.; Watanabe, M.; Shinagawa, T.; Chigane, M.; Inaba, M.:Tasaka, A.; Izaki, M., Preparation of core/shell and hollow nanostructures of cerium oxide by electrodeposition on a polystyrene sphere template. ACS Applied Materials & Interfaces,2009,1 (5):1070-1075.
    [15]Khan, M. A.; Armes, S. P., Conducting polymer-coated latex particles. Advanced Materials,2000, 12 (9):671-674.
    [16]Zhao, W.; Zhang, Q.; Zhang, H.; Zhang, J., Preparation of PS/Ag microspheres and its application in microwave absorbing coating. Journal of Alloys and Compounds,2009,473 (1-2):206-211.
    [17]Kim, K.; Lee, H. B.; Park, H. K.; Shin, K. S., Easy deposition of Ag onto polystyrene beads for developing surface-enhanced-raman-scattering-based molecular sensors. Journal of Colloid and Interface Science,2008,318 (2):195-201.
    [18]Yougen, H.; Tao, Z.; Pengli, Z.; Rong, S., Preparation of monodisperse polystyrene/silver composite microspheres and their catalytic properties. Colloid & Polymer Science,2012,290 (5): 401-409.
    [19]Cheng, X.; Gao, L.; Li, J.; Zhang, A.; Zhang, D., Facile method to prepare Pd/polystyrene composite microspheres and investigation on their catalytic properties. Iranian Polymer Journal,2012, 21 (5):335-341.
    [20]Li, Y.; Pan, Y.; Zhu, L.; Wang, Z.; Su, D.; Xue, O., Facile and controlled fabrication of functional gold nanoparticle-coated polystyrene composite particle. Macromolecular Rapid Communications, 2011,32(21):1741-1747.
    [21]Kato, N.; Caruso, F., Homogeneous, Competitive fluorescence quenching iminunoassay based on gold nanoparticle/polyelectrolyte coated latex particles. The Journal of Physical Chemistry B,2005, 109(42):19604-19612.
    [22]Lee, J.-H.; Mahmoud, M. A.; Sitterle, V. B.; Sitterle, J. J.; Meredith, J. C. Highly scattering, surface-enhanced raman scattering-active, metal nanoparticle-coated polymers prepared via combined swelling-heteroaggregation. Chemistry of Materials,2009,21 (23):5654-5663.
    [23]Tokonami, S.; Yamamoto, Y.; Mizutani, Y; Ota,I.; Shiigi, H.; Nagaoka, T., Green electroless plating method using gold nanoparticles for conducting microbeads:application to anisotropic conductive films. Journal of The Electrochemical Society,2009,156 (12):D558-D563.
    [24]马莒生;陈国海,无铅焊料在清华大学的研究与发展.电子元件与材料,2004,(11):45-48.
    [25]Li, Y.; Moon, K. S.; Wong, C. P., Electronics without lead. Science,2005,308 (5727):1419-1420.
    [26]Daoqiang, L.; Wong, C. P., High performance conductive adhesives. IEEE Transactions on Electronics Packaging Manufacturing,1999,22 (4):324-330.
    [27]Andrae, A. S. G.; Itsubo, N.; Yamaguchi, H., Life cycle assessment of Japanese high-temperature conductive adhesives. Environmental Science & Technology,2008,42 (8):3084-3089.
    [28]Lin, Y.-S.; Chiu, S.-S., Electrical properties of copper-filled electrically conductive adhesives and pressure-dependent conduction behavior of copper particles. Journal of Adhesion Science And Technology,2008,22 (14):1673-1697.
    [29]Lee, J.-H.; Kim, D. O.; Song, G.-S.; Lee, Y; Jung, S.-B.; Nam, J.-D., Direct metallization of gold nanoparticles on a polystyrene bead surface using cationic gold ligands. Macromolecular Rapid Communications,2007,28 (5):634-640.
    [30]何敬强,各向异性导电胶膜用单分散聚苯乙烯微球的合成.硕士,华中科技大学,2007.
    [31]张红武;叶利峰;刘士荣;倪忠斌;陈明清,分散聚合法制备单分散聚苯乙烯微球.化工技术与开发,2010,(02):5-7.
    [32]范婷;陈建定:黄广建,分散聚合法制备单分散聚苯乙烯微球.功能高分子学报,2007,(02):172-177.
    [33]张荣荣,带有荧光性质的聚合物微球的制备与研究.硕士,北京化工大学,2009.
    [34]曹同玉;戴兵:戴俊燕,单分散大粒径聚合物微球的合成及应用.高分子通报,1995,(03):174-180.
    [35]罗正平;张秋禹;谢钢;吴旻;张军平,分散聚合研究.高分子通报,2002,(05):35-40.
    [36]Williamson, B.; Lukas, R.; Winnik, M. A.; Croucher, M. D., The preparation of micron-size polymer particles in nonpolar media. Journal of Colloid and Interface Science,1987,119 (2):559-564.
    [37]Almog, Y.; Reich, S.; Levy, M., Monodisperse polymeric spheres in the micron size range by a single step process. British Polymer Journal,1982,14(4):131-136.
    [38]Ober, C. K.; Lok, K. P.; Hair, M. L., Monodispersed, micron-sized polystyrene particles by dispersion polymerization. Journal of Polymer Science:Polymer Letters Edition,1985,23 (2): 103-108.
    [39]Yang, W.; Yang, D.; Hu, J.; Wang, C.; Fu, S., Dispersion copolymerization of styrene and other vinyl monomers in polar solvents. Journal of Polymer Science Part A:Polymer Chemistry,2001,39 (4): 555-561.
    [40]Paine, A. J.; Luymes, W.; McNulty, J., Dispersion polymerization of styrene in polar solvents.6. Influence of reaction parameters on particle size and molecular weight in poly(N-vinylpyrrolidone)-sta-bilized reactions. Macromolecules,1990,23 (12):3104-3109.
    [41]Tseng, C. M.; Lu, Y. Y.; El-Aasser, M. S.; Vanderhoff, J. W., Uniform polymer particles by dispersion polymerization in alcohol. Journal of Polymer Science Part A:Polymer Chemistry,1986,24 (11):2995-3007.
    [42]Ober, C. K.; Lok, K. P., Formation of large monodisperse copolymer particles by dispersion polymerization. Macromolecules,1987,20 (2):268-273.
    [43]Canelas, D. A.; Betts, D. E.; DeSimone, J. M., Dispersion polymerization of styrene in supercritical carbon dioxide:importance of effective surfactants. Macromolecules,1996,29 (8): 2818-2821.
    [44]Shiho, H.; DeSimone, J. M., Dispersion polymerization of glycidyl methacrylate in supercritical carbon dioxide. Macromolecules,2001,34 (5):1198-1203.
    [45]Harrisson, S.; Mackenzie, S. R.; Haddleton, D. M., Pulsed laser polymerization in an ionic liquid: strong solvent effects on propagation and termination of methyl methacrylate. Macromolecules,2003, 36 (14):5072-5075.
    [46]Minami, H.; Yoshida, K.; Okubo, M., Preparation of polystyrene particles by dispersion polymerization in an ionic liquid. Macromolecular Rapid Communications,2008,29 (7):567-572.
    [47]Song, J.; Winnik, M., Monodisperse, micrometer-sized low molar mass polystyrene particles by two-stage dispersion polymerization. Polymer,2006,47 (13):4557-4563.
    [48]Song, J.-S.; Winnik, M. A., Cross-linked, monodisperse, micron-sized polystyrene particles by two-stage dispersion polymerization. Macromolecules,2005,38 (20):8300-8307.
    [49]Song, J.-S.; Chagal, L.; Winnik, M. A., Monodisperse micrometer-size carboxyl-functionalized polystyrene particles obtained by two-stage dispersion polymerization. Macromolecules,2006,39 (17): 5729-5737.
    [50]Inukai, S.; Tanma, T.; Orihara, S.; Konno, M., A simple method for producing micron-sized, highly monodisperse polystyrene particles in aqueous media:effects of impeller speed on particle size distribution. Chemical Engineering Research and Design,2001,79 (8):901-905.
    [51]Orihara, S.; Konno, M., A simple method for producing micrometer-sized monodisperse polystyrene particles in aqueous media. Journal of Colloid and Interface Science,2000,230 (1): 210-212.
    [52]Gu, S.; Inukai, S.; Konno, M., Preparation of monodisperse, micron-sized polystyrene particles with an amphoteric initiator in soapfree polymerization. Journal of Chemical Engineering of Japan, 2002,35 (10):977-981.
    [53]Gu, S.; Inukai, S.; Konno, M., Soapfree synthesis of monodisperse, micron-sized polystyrene particles in aqueous media. Journal of Chemical Engineering of Japan,2003,36 (10):1231-1235.
    [54]Yamada, Y; Sakamoto, T.; Gu, S.; Konno, M., Soap-free synthesis for producing highly monodisperse, micrometer-sized polystyrene particles up to 6μm. Journal of Colloid and Interface Science,2005,281 (1):249-252.
    [55]Gu, S.; Akama, H.; Nagao, D.; Kobayashi, Y.; Konno, M., Preparation of micrometer-sized poly(methyl methacrylate) particles with amphoteric initiator in aqueous media. Langmuir.2004,20 (19):7948-7951.
    [56]Nagao, D.; Sakamoto, T.; Konno, H.; Gu, S.; Konno, M., Preparation of micrometer-sized polymer particles with control of initiator dissociation during soap-free emulsion polymerization. Langmuir,2006,22 (26):10958-10962.
    [57]Ugelstad, J.; Kaggerud, K. H.; Hansen, F. K.; Berge, A., Absorption of low molecular weight compounds in aqueous dispersions of polymer-oligomer particles. Die Makromolekulare Chemie,1979, 180 (3):737-744.
    [58]Ugelstad, J.; Mfutakamba, H. R.; Merk, P. C.; Ellingsen, T.; Berge, A.; Schmid, R.; Holm, L. J(?)rgedal, A.; Hansen, F. K.; Nustad, K., Preparation and application of monodisperse polymer particles. Journal of Polymer Science:Polymer Symposia,1985,72 (1):225-240.
    [59]Ugelstad, J., Swelling capacity of aqueous dispersions of oligomer and polymer substances and mixtures thereof. Die Makromolekulare Chemie,1978,179 (3):815-817.
    [60]Okubo, M.; Shiozaki, M.; Tsujihiro, M.; Tsukuda, Y., Preparation of micron-size monodisperse polymer particles by seeded polymerization utilizing the dynamic monomer swelling method. Colloid & Polymer Science,1991,269 (3):222-226.
    [61]Okubo, M.; Ise, E.; Yamashita, T., Synthesis of greater than 10μm-sized. monodispersed polymer particles by one-step seeded polymerization for highly monomer-swollen polymer particles prepared utilizing the dynamic swelling method. Journal of Applied Polymer Science,1999,74 (2):278-285.
    [62]Okubo, M.; Izumi, J.; Hosotani, T.; Yamashita, T., Production of micron-sized monodispersed core/shell polymethyl methacrylate/polystyrene particles by seeded dispersion polymerization. Colloid & Polymer Science,1997,275 (8):797-801.
    [63]Okubo, M.; Nakagawa, T.,Preparation of micron-size monodisperse polymer particles having highly crosslinked structures and vinyl groups by seeded polymerization of divinylbenzene using the dynamic swelling method. Colloid & Polymer Science,1992,270 (9):853-858.
    [64]Okubo, M.; Shiozaki, M., Production of micron-size monodisperse polymer particles by seeded polymerization utilizing dynamic swelling method with cooling process. Polymer International,1993, 30 (4):469-474.
    [65]张兆斌;应圣康,原子转移自由基聚合及可控自由基聚合.高分子通报,1999,(03):141-147.
    [66]Shim, S. E.; Oh, S.; Chang, Y. H.; Jin, M.-J.; Choe, S., Solvent effect on TEMPO-mediated living free radical dispersion polymerization of styrene. Polymer,2004,45 (14):4731-4739.
    [67]Oh, S.:Kim, K.:Lee, B. H.; Shim, S. E.; Choe, S., TEMPO-mediated dispersion polymerization of styrene in the presence of camphorsulfonic acid. Journal of Polymer Science Part A:Polymer Chemistry,2006.44 (1):62-68.
    [68]Saikia, P. J.; Lee, J. M.; Lee, K.; Choe, S., Reaction parameters in the RAFT mediated dispersion polymerization of styrene. Journal of Polymer Science Part A:Polymer Chemistry,2008,46 (3): 872-885.
    [69]Saikia, P. J.; Lee, J. M.; Lee, B. H.; Choe, S., Influence of a reversible addition-fragmentation chain transfer agent in the dispersion polymerization of styrene. Journal of Polymer Science Part A: Polymer Chemistry,2007,45 (3):348-360.
    [70]Klupp Taylor, R. N.; Bao, H.; Tian, C.; Vasylyev, S.; Peukert, W., Facile route to morphologically tailored silver patches on colloidal particles. Langmuir,2010,26 (16):13564-13571.
    [71]Deng, Z.; Chen, M.; Wu, L., Novel method to fabricate SiO2/Ag composite spheres and their catalytic, surface-enhanced raman scattering properties. Journal of Physical Chemistry C.2007,111 (31):11692-11698.
    [72]Kim, J. H.; Bryan, W. W.; Lee, T. R., Preparation, characterization, and optical properties of gold, silver, and gold-silver alloy nanoshells having silica cores. Langmuir,2008,24 (19):11147-11152.
    [73]Jiang, Z.-j.; Liu, C.-y., Seed-mediated growth technique for the preparation of a silver nanoshell on a silica sphere. The Journal of Physical Chemistry B,2003,107 (45):12411-12415.
    [74]Kim, J.-H.; Bryan, W. W.; Chung, H.-W.; Park, C. Y.; Jacobson, A. J.; Lee, T. R., Gold, palladium, and gold-palladium alloy nanoshells on silica nanoparticle cores. ACS Applied Materials& Interfaces, 2009,1 (5):1063-1069.
    [75]Kim, H.; Daniels, E. S.; Dimonie, V. L.; Klein, A., Palladium-catalyzed electroless plating of gold on latex particle surfaces. Journal of Applied Polymer Science,2009,112 (2):843-849.
    [76]Jeon, Y. M.; Gong, M. S.; Cho, H. N., Preparation of silver/PMMA beads via the in sito reduction of a silver alkylcarbamate complex. Macromolecular Research,2009,17 (1):2-4.
    [77]Jiang, J.; Lu, H.; Zhang, L.; Xu, N., Preparation of monodisperse Ni/PS spheres and hollow nickel spheres by ultrasonic electroless plating. Surface and Coatings Technology,2007,201 (16-17): 7174-7179.
    [78]龚凡;王滨生,浅谈化学镀前活化工艺的发展.应用科技,2002,(03):59-60+63.
    [79]颜宇,聚合物/金属核壳粒子的制备及应用.硕士,南京理工大学,2009.
    [80]贺丽丽,金属包覆高分子导电复合粒子的制备研究.硕士,南京理工大学,2007.
    [81]Park, J.-G.; Kim, J.-W.; Oh, S.-G.; Suh, K.-D., Monodisperse polymer/metal composite particles by electroless chemical deposition:Effect of surface functionality of polymer particles. Journal of Applied Polymer Science,2003,87 (3):420-424.
    [82]Jun, J.-B.; Seo, M.-S.; Cho, S.-H.; Park, J.-G.; Ryu, J.-H.; Suh, K.-D., Synthesis of monodisperse nickel-coated polymer particles by electroless plating method utilizing functional polymeric ligands. Journal of Applied Polymer Science,2006,100 (5):3801-3808.
    [83]Kim, B. C; Park, J. H.; Lee, S. J., Preparation of composite particles via electroless nickel plating on polystyrene microspheres and effect of plating conditions. Polymer Korea,2010,34 (1):25-31.
    [84]Jiang, J.; Lu, H.; Zhang, L.; Xu, N., Preparation of monodisperse Ni/PS spheres and hollow nickel spheres by ultrasonic electroless plating. Surface and Coatings Technology,2007,201 (16-17): 7174-7179.
    [85]Zhao, W.; Zhang, Q.; Zhang, J.; Gu, J.; Guo, F., Preparation and characterization of core-shell PS/Ni composite microspheres. Polymer Composites,2009,30 (8):1098-1105.
    [86]宋丹;周际东;姜炜;张小娟;李风生,超声波辅助制备单分散金属包覆聚苯乙烯导电微球,材料工程,2008,(11):63-67.
    [87]Lee, J.-H.; Lee, Y; Nam, J.-D., Tunable surface metal morphologies and electrical properties of monodispersed polystyrene beads coated with metal multilayers via electroless deposition. Intermetallics,2009,17 (5):365-369.
    [88]Lee, J.-H.; Lee, Y; Nam, J.-D., Multi-metal shell coated with surface modification of polystyrene bead cores to improve its adhesion metal shell. Surface and Interface Analysis,2010,42 (1):36-39.
    [89]Lee, J.-H.; Oh, J. S.; Lee, P. C.; Kim, D. O.; Lee, Y; Nam, J.-D., Fabrication of nickel/gold multilayered shells on polystyrene bead cores by sequential electroless deposition processes. Journal of Electronic Materials,2008,37 (10):1648-1652.
    [90]Yamamoto, Y.; Takeda, S.; Shiigi, H., An electroless plating method for conducting microbeads using gold nanoparticles. Journal of The Electrochemical Society,2007.154 (9):D462-D466.
    [91]刘惠玉;陈东:唐芳琼;凌慧;任湘菱,化学镀法制备银壳聚苯乙烯微球.物理化学学报,2006,(05):644-648.
    [92]Chen, D.; Liu, H.; Liu, J.; Ren, X.; Meng, X.; Wu, W.; Tang, F., A general method for synthesis continuous silver nanoshells on dielectric colloids. Thin Solid Films,2008,516(18):6371-6376.
    [93]闫迎辉;郭文利;梁彤祥;时利民;唐春和,Ni镀层在PS微球化学镀Ag中的作用.稀有金属材料与工程,2007,(11):2045-2048.
    [94]Zhao, W.; Zhang, Q.; Zhang, J.; Zhang, H., Preparation and thermal decomposition of PS/Ag microspheres. Polymer Composites,2009,30 (7):891-896.
    [95]Wang, W.; Jiang, Y.; Wen, S.; Liu, L.; Zhang, L., Preparation and characterization of polystyrene/Ag core-shell microspheres-A bio-inspired poly(dopamine) approach. Journal of Colloid and Interface Science.2012,368 (1):241-249.
    [96]Rongwei, Z.; Wei, L.; Kyoung-Sik, M.; Qizhen, L.; Wong, C. P., Highly reliable copper-based conductive adhesives using an amine curing agent for in situ oxidation/corrosion prevention. IEEE Transactions on Components, Packaging and Manufacturing Technology,2011,1 (1):25-32.
    [97]Gao, D. L.; Zhan, M. S., Fabrication and electrical properties of metal-coated acrylate rubber microspheres by electroless plating. Applied Surface Science,2009,255 (7):4185-4191.
    [98]叶明泉:雷霞;韩爱军,化学沉积法制备镍包覆PS-AA复合粒子.塑料工业,2009.(05):64-66+63.
    [99]Wang, P. H.; Pan, C.-Y., Polymer metal composite microspheres:Preparation and characterization of poly(St-co-AN)/Ni microspheres. European Polymer Journal,2000,36 (10):2297-2300.
    [100]唐少春;孟祥康,银纳米粒子在聚苯乙烯球表面的异相成核与生长.南京大学学报(自然科学版).2009,(02):122-128.
    [101]范丽恒;魏林娟:陈明清:熊万斌;刘晓业,特殊形态聚合物微球原位负载Ag纳米粒子.功能高分子学报,2008,(02):195-199.
    [102]Lee, J.-M.; Kim. D.-W.; Lee, Y.-H.; Oh, S.-G., New approach for preparation of silver-polystyrene heterogeneous nanocomposite by polyol process. Chemistry Letters,2005,34 (7): 928-929.
    [103]Cassagneau, T.:Caruso, F., Contiguous silver nanoparticle coatings on dielectric spheres. Advanced Materials,2002,14 (10):732-736+692.
    [104]Mayya, K. S.; Schoeler, B.; Caruso, F., Preparation and organization of nanoscale polyelectrolyte-coated gold nanoparticles. Advanced Functional Materials,2003,13 (3):183-188.
    [105]Caruso. F.; Spasova, M.; Salgueirino-Maceira, V; Liz-Marzan, L. M., Multilayer assemblies of silica-encapsulated gold nanoparticles on decomposable colloid templates. Advanced Materials,2001. 13(14):1090-1094.
    [106]Dong, A. G.; Wang. Y. J.; Tang, Y.; Ren, N.; Yang, W. L.; Gao, Z., Fabrication of compact silver nanoshells on polystyrene spheres through electrostatic attraction. Chemical Communications,2002, (4):350-351.
    [107]Liang. Z.; Susha, A.; Caruso, F., Gold nanoparticle-based core-shell and hollow spheres and ordered assemblies thereof. Chemistry of Materials,2003,15 (16):3176-3183.
    [108]Liang, Z.:Susha, A. S.; Caruso, F.. Metallodielectric opals of layer-by-layer processed coated colloids. Advanced Materials,2002.14(16):1160-1164.
    [109]Ji, T.; Lirtsman, V. G.:Avny, Y., Preparation, characterization, and application of Au-shell/polyst-yrene beads and Au-shell/magnetic beads. Advanced Materials,2001,13 (16):1253-1256.
    [110]程彬;朱玉瑞;江万权;王翠英;陈祖耀;周刚毅;张培强,超细金属-高分子复合纳米粒子的制备与表征.功能材料,2000,(S1):111-112.
    [111]叶明泉;贺丽丽;韩爱军,紫外辐照法制备金属钴包覆苯乙烯-甲基丙烯酸共聚物复合粒子应用化学,2009,(05):538-542.
    [112]Tamai, T.; Watanabe, M.; Hatanaka, Y.; Tsujiwaki, H.; Nishioka, N.; Matsukawa, K., Formation of metal nanoparticles on the surface of polymer particles incorporating polysilane by UV irradiation. Langmuir,2008,24 (24):14203-14208.
    [113]Pol, V. G; Gedanken, A.; Calderon-Moreno, J.; Palchik, Y.; Slifkin, M. A.; Weiss, A. M., Erratum: Deposition of gold nanoparticles on silica spheres:A sonochemical approach. Chemistry of Materials, 2003,15(17):1111-1118.
    [114]Lee, J.-H.; Mahmoud, M. A.; Sitterle, V.; Sitterle, J.; Meredith, J. C., Facile preparation of highly-scattering metal nanoparticle-coated polymer microbeads and their surface plasmon resonance. Journal of the American Chemical Society,2009,131 (14):5048-5049.
    [115]Sanles-Sobrido, M.; Banobre-Lopez, M.; Salgueirino, V; Correa-Duarte, M. A.; Rodriguez-Gon-zalez, B.; Rivas, J.; Liz-Marzan, L. M., Tailoring the magnetic properties of nickel nanoshells through controlled chemical growth. Journal of Materials Chemistry,2010,20 (35):7360.
    [116]Ishida, T.; Kuroda, K.; Kinoshita, N.; Minagawa, W.; Haruta, M., Direct deposition of gold nanoparticles onto polymer beads and glucose oxidation with H2O2. Journal of Colloid and Interface Science,2008,323(1):105-111.
    [117]Liu, W.; Yang, X.; Huang, W., Catalytic properties of carboxylic acid functionalized-polymer microsphere-stabilized gold metallic colloids. Journal of Colloid and Interface Science,2006,304 (1): 160-165.
    [118]Chen, C.-W.; Serizawa, T.; Akashi, M., Preparation of platinum colloids on polystyrene nanospheres and their catalytic properties in hydrogenation. Chemistry of Materials,1999,11 (5): 1381-1389.
    [119]赵雯;卢婷利;张宏;陈涛,核壳结构有机/无机复合微球的制备与应用进展.材料导报,2009,(07):106-110.
    [120]Salgueirifio-Maceira, V.; Correa-Duarte, M. A., Increasing the complexity of magnetic core/shell structured nanocomposites for biological applications. Advanced Materials,2007,19 (23):4131-4144.
    [121]李瑞娜,荧光纳米颗粒在肿瘤早期检测中的应用.硕士,上海师范大学,2008.
    [122]封宾,金包覆核壳结构纳米复合材料的制备及性能研究.博士,北京交通大学,2010.
    [123]曹元成.量子点编码微球分析技术的构建及其在生物分析中的应用.博士,华中科技大学,2007.
    [124]刘惠玉,纳米金属复合颗粒的可控制备及其等离了共振性质的调变与应用.博士,中国科学院研究生院(理化技术研究所),2007.
    [125]周之燕;王秀峰;师杰;张新孟,聚苯乙烯微球的制备及其在光子晶体中的应用.化工新型材料,2010,(09):8-10+53.
    [126]Shi, W.; Sahoo, Y.; Swihart, M. T.; Prasad, P. N., Gold nanoshells on polystyrene cores for control of surface plasmon resonance. Langmuir,2005,21 (4):1610-1617.
    [127]吕晓丽;常海波,聚苯乙烯/银核壳结构纳米粒子的制备与表征.吉林师范大学学报(自然科学版),2006,(04):17-19.
    [128]Rogach, A.; Susha, A.; Caruso, F.; Sukhorukov, G.; Kornowski, A.; Kershaw, S.; Mohwald, H.; Eychmuller, A.; Weller, H., Nano- and microengineering:Three-dimensional colloidal photonic crystals prepared from submicrometer-sized polystyrene latex spheres pre-coated with luminescent polyelectro- lyte/nanocrystal shells. Advanced Materials,2000,12 (5):333-337.
    [129]张嘉;闫康平;王伟;严季新;王建中,金属包覆型复合微球的电磁应用进展.金属功能材料.2006,(05):36-40.
    [130]王为,高分子复合导电微球的制备及其应用初探.材料保护,1999, 32(5).
    [131]张建华.化学镀制备激光ICF磁性PS靶材的研究.精细化工,2007,24(6).
    [132]蔺永诚;陈旭,各向异性导电胶互连技术的研究进展.电子与封装,2006,(07):1-7+20.
    [133]Kang, S.; Sarkhel, A., Lead (Pb)-free solders for electronic packaging. Journal of Electronic Materials,1994,23 (8):701-707.
    [134]Kim, H.; Kim, J.; Kim, J., Effects of novel carboxylic acid-based reductants on the wetting characteristics of anisotropic conductive adhesive with low melting point alloy filler. Microelectronics Reliability,2010,50 (2):258-265.
    [135]Yim, M.; Li, Y.; Moon, K.; Wong, C. P., Oxidation prevention and electrical property enhancement of copper-filled isotropically conductive adhesives. Journal of Electronic Materials,2007, 36(10):1341-1347.
    [136]Zhao, H.; Liang, T.; Liu, B., Synthesis and properties of copper conductive adhesives modified by SiO2 nanoparticles. International Journal of Adhesion and Adhesives.2007,27 (6):429-433.
    [137]Hsien-Chie, C.; Wen-Hwa, C.; Chieh-Sheng, L.; Yung-Yu, H.; Ruoh-Huey, U., On the thermal-mechanical behaviors of a novel nanowire-based anisotropic conductive film technology. IEEE Transactions on Advanced Packaging,2009,32 (2):546-563.
    [138]Wang, L.; Xu. J.; Chen, Y.; Cheng, S.; Fan, L.-J., Preparation and characterization of polyaniline coated microspheres for potential application in anisotropic conductive film. Journal of Polymer Research,2011,18 (6):2169-2174.
    [139]王洁静,各向异性导电胶膜(ACF)力学性能研究.硕士,天津大学,2008.
    [140]Shi, F. G.; Abdullah, M.; Chungpaiboonpatana, S.; Okuyama, K.; Davidson, C.; Adams, J. M., Electrical conduction of anisotropic conductive adhesives:effect of size distribution of conducting filler particles. Materials Science in Semiconductor Processing.1999,2 (3):263-269.
    [141]郑堃,面向RFID标签封装的固化系统设计及其热分析.硕士,华中科技大学,2006.
    [142]Chung, C.-K.:Paik. K.-W., Effects of the Degree of cure on the electrical and mechanical behavior of anisotropic conductive films. Journal of Electronic Materials,2010,39 (4):410-418.
    [143]Cheng. W.-T.;Chih, Y.-W.:Yeh. W.-T.. In situ fabrication of photocurable conductive adhesives with silver nano-particles in the absence of capping agent. International Journal of Adhesion and Adhesives,2007,27 (3):236-243.
    [144]Kiwon. L.; Hyoung-Joon. K.; Myung-Jin, Y.; Kyung-Wook, P., Ultrasonic bonding using anisotropic conductive films (ACFs) for flip chip interconnection. IEEE Transactions on Electronics Packaging Manufacturing.2009.32 (4):241-247.
    [145]Kim. K.-S.; Ha. C.-W.; Jang, T.-Y.; Joung, S. W.; Yun, W.-S., Using lateral vibration for thermosonic flip-chip interconnection with anisotropic conductive film. Journal of Micromechanics and Microengineering,2010.20 (10):105015.
    [146]倪晓军;梁彤翔,导电胶的研究进展.电子元件与材料,2002,(01):5-7+11.
    [147]Yim, M.:Kim, H.; Paik. K., Anisotropic conductive adhesives with enhanced thermal conductivity for flip chip applications. Journal of Electronic Materials,2005,34 (8):1165-1171.
    [148]Yim, M. J.:Li. Y.; Moon. K. S.; Wong, C. P.. High performance anisotropic conductive adhesives using copper particles with an anti-oxidant coating layer. Journal of Electronic Packaging,2010,132 (1):011007.
    [149]Eom, Y.-S.; Baek, J.-W.; Moon, J.-T.; Nam, J.-D.; Kim, J.-M., Characterization of polymer matrix and low melting point solder for anisotropic conductive film. Microelectronic Engineering, 2008,85 (2):327-331.
    [150]Baek, J.-W.; Jang, K.-S.; Eom, Y.-S.; Moon, J.-T.; Kim, J.-M.; Nam, J.-D, Chemo-rheological characteristics of a self-assembling anisotropic conductive adhesive system containing a low-melting point solder. Microelectronic Engineering,2010,87 (10):1968-1972.
    [151]Eom, Y.; Jang, K.; Moon, J.; Nam, J.; Kim, J., Electrical and mechanical characterization of an anisotropic conductive adhesive with a low melting point solder. Microelectronic Engineering,2008, 85 (11):2202-2206.
    [152]Hwang, J. S., Filler size and content effects on the composite properties of anisotropic conductive films (ACFs) and reliability of flip chip assembly using ACFs. Microelectronics Reliability,2008,48 (4):645-651.
    [153]Chan, Y. C.; Luk, D. Y., Effects of bonding parameters on the reliability performance of anisotropic conductive adhesive interconnects for flip-chip-on-flex packages assembly I. Different bonding temperature. Microelectronics Reliability,2002,42 (8):1185-1194.
    [154]Wu, Y. P.; Alam, M. O.; Chan, Y. C.; Wu, B. Y., Dynamic strength of anisotropic conductive joints in flip chip on glass and flip chip on flex packages. Microelectronics Reliability,2004,44 (2): 295-302.
    [155]Chen, X.; Zhang. J.; Jiao, C.; Liu, Y, Effects of different bonding parameters on the electrical performance and peeling strengths of ACF interconnection. Microelectronics Reliability,2006,46 (5-6):774-785.
    [156]Yim, M.; Hwang, J.; Paik, K., Anisotropic conductive films (ACFs) for ultra-fine pitch Chip-On-Glass (COG) applications. International Journal of Adhesion and Adhesives,2007,27 (1): 77-84.
    [157]Seppala. A.; Ristolainen, E., Study of adhesive flip chip bonding process and failure mechanisms of ACA joints. Microelectronics Reliability,2004,44 (4):639-648.
    [158]Liqiang, C.; Zonghe, L.; Liu, J. Effect of curing condition of adhesion strength and ACA flip-chip contact resistance. In:Proceedings of The 6th IEEE CPMT International Symposium on High Density Packaging and Component Failure Analysis, Shanghai, China,2004,254-258.
    [159]Kyung-Woon, J.; Kyung-Wook, P, Effects of anisotropic conductive film viscosity on ACF fillet formation and chip-on-board packages. IEEE Transactions on Electronics Packaging Manufacturing, 2009,32 (2):74-80.
    [160]Wen, F.; Zhang, W.; Wei, G.; Wang, Y.; Zhang, J.; Zhang, M.; Shi, L., Synthesis of noble metal nanoparticles embedded in the shell layer of core-shell poly(styrene-co-4-vinylpyridine) micospheres and their application in catalysis. Chemistry of Materials,2008,20 (6):2144-2150.
    [161]Cao, Y.-C.; Hua, X.-F.; Zhu, X.-X.; Wang, Z.; Huang, Z.-L.; Zhao, Y.-D.; Chen, H.; Liu, M.-X., Preparation of Au coated polystyrene beads and their application in an immunoassay. Journal of Immunological Methods,2006,317 (1-2):163-170.
    [162]Kuo, C.-Y.; Lu, S.-Y:Chen, S.; Bernards, M.; Jiang, S., Stop band shift based chemical sensing with three-dimensional opal and inverse opal structures. Sensors and Actuators B:Chemical,2007,124 (2):452-458.
    [163]Liu, D. F.; Xiang, Y. J.; Wu, X. C.;Zhang, Z. X.; Liu, L. F.; Song, L.; Zhao, X. W.; Luo, S. D.; Ma, W. J.; Shen, J.; Zhou. W. Y.; Wang, G; Wang, C. Y.; Xie, S. S., Periodic ZnO nanorod arrays defined by polystyrene microsphere self-assembled monolayers. Nano Letters,2006,6 (10):2375-2378
    [164]Saenz, J. M.; Asua, J. M., Kinetics of the dispersion copolymerization of styrene and butyl acrylate. Macromolecules,1998,31 (16):5215-5222.
    [165]左秋月;史铁钧;周讯;章云冉耳;何建,非极性混合介质中分散聚合法制备聚乙烯基吡咯烷酮.应用化工,2011,(10):1758-1760+1763.
    [166]龚小燕;袁桂梅;陈胜利,微米级单分散聚苯乙烯微球的制备.中国粉体技术,2010,(02):4-7.
    [167]Fujisawa, S.; Kadoma, Y.; Yokoe, I., Radical-scavenging activity of butylated hydroxytoluene (BHT) and its metabolites. Chemistry and Physics of Lipids,2004,130 (2):189-195.
    [168]Hong, J.; Hong, C. K.; Shim, S. E., Synthesis of polystyrene microspheres by dispersion polymerization using poly(vinyl alcohol) as a steric stabilizer in aqueous alcohol media. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2007,302 (1-3):225-233.
    [169]曹同玉;戴兵;戴俊燕;王艳君;袁才登,单分散、大粒径聚苯乙烯微球的制备.高分子学报,1997,(02):31-38.
    [170]Tian, K. H.; Liu. C. L.; Yang, H. J.; Ren, X. Y., In situ synthesis of copper nanoparticles/polystyr-ene composite. Colloid Surf. A-Physicochem. Eng. Asp.,2012,397:12-15.
    [171]Nitanan, T.; Opanasopit, P.; Akkaramongkolpom, P.; Rojanarata. T.; Ngawhirunpat. T.; Supaphol. P.. Effects of processing parameters on morphology of electrospun polystyrene nanofibers. Korean Journal of Chemical Engineering,2012,29 (2):173-181.
    [172]Chen, G. M.; Liu, S. H.; Chen. S. J.; Qi, Z. N., FTIR spectra, thermal properties, and dispersibility of a polystyrene/montmorillonite nanocomposite. Macromolecular Chemistry and Physics. 2001,202(7):1189-1193.
    [173]Wu, D.; Ge. X.; Huang, Y; Zhang, Z., γ-Radiation synthesis of silver-polystyrene and cadmium sulfide-polystyrene nanocomposite microspheres. Materials Letters,2003,57 (22-23):3549-3553.
    [174]Kawahashi, N.; Shiho. H., Copper and copper compounds as coatings on polystyrene particles and as hollow spheres. Journal of Materials Chemistry,2000,10(10):2294-2297.
    [175]Dick, L. A.; McFarland, A. D.:Haynes, C. L.; Van Duyne, R. P., Metal film over nanosphere (MFON) electrodes for surface-enhanced Raman spectroscopy (SERS):Improvements in surface nanostructure stability and suppression of irreversible loss. Journal of Physical Chemistry B,2002.106 (4):853-860.
    [176]Zhang, Q.; Ge, J.; Goebl, J.; Hu, Y.; Sun. Y.; Yin, Y. Tailored Synthesis of Superparamagnetic Gold Nanoshells with Tunable Optical Properties. Advanced Materials,2010,22(17):1905-1909.
    [177]Jin, P.; Chen, Q.; Hao, L.; Tian, R.; Zhang, L., Synthesis and catalytic properties of nickel-silica composite hollow nanospheres. Journal of Physical Chemistry B,2004,108 (20):6311-6314.
    [178]Xiao, Z.; Wang, W.; Ye, L.; Sha, Y.; Tu. S., Effect of Cd2+ as a stabilizer in the electroless nickel plating system. Surface and Coatings Technology,2008.202 (20):5008-5011.
    [179]金琳;刘旭光;杨永珍;许并社,碳微球负载钉纳米颗粒复合材料的化学镀制备.材料导报.2010,(16):21-24+45.
    [180]Lee,I.; Hammond, P. T.:Rubner. M. F.. Selective electroless nickel plating of particle arrays on polyelectrolyte multilayers. Chemistry of Materials,2003,15 (24):4583-4589.
    [181]王小泉;魏帅;邢汝霖;严密林,镍磷化学镀镀层沉积速率影响因素研究.西安石油大学学报(自然科学版),2005,(05):67-70+10.
    [182]张颖;陶珍东;汪娟;姚明明,超声振荡辅助化学镀镍及其性能研究.电镀与涂饰, 2009,(10):18-21.
    [183]Touyeras, F.; Hihn, J. Y.; Delalande, S.; Viennet, R.; Doche, M. L., Ultrasound influence on the activation step before electroless coating. Ultrasonics Sonochemistry,2003,10 (6):363-368.
    [184]曹鼎;李芝华,超声处理化学镀法制备镀银玻璃纤维.粉末冶金材料科学与工程,2009,(06):422-426.
    [185]黄琦;李惠琪;吴玉萍,室温下超声对化学镀镍的影响.应用声学,1998,(04):47-48+17.
    [186]王巧玲;黄桂芳,络合剂对Co-Fe-P镀层化学沉积速率和结构的影响.湘潭大学自然科学学报,2008,(01):92-94+104.
    [187]Liu, D.; Wang, H., Affects of citric acid concentration and system pH on the speed and the stability of nickel electroless plating. Advanced Materials Research,2011, (239-242):1813-1818.
    [188]张道礼;龚树萍;周东祥,不同络合剂对化学镀镍过程的影响.材料开发与应用,2000,(01):5-8.
    [189]Bulasara, V. K.; Thakuria, H.; Uppaluri, R.; Purkait, M. K., Combinatorial performance characteristics of agitated nickel hypophosphite electroless plating baths. Journal of Materials Processing Technology,2011,211 (9):1488-1499.
    [190]李勇;夏季斌,稀土对化学镀镍溶液稳定性的影响.电镀与涂饰,2005,(07):5-7.
    [191]肖友军,稀土La对化学沉积Co-Ni-B合金镀层的改性作用.表面技术,2005,(05):38-39.
    [192]黄庆荣;蒋柏泉;陈常青,稀土在化学镀中应用研究现状.稀土,2007,(01):102-106.
    [193]Ashassisorkhabi, H.; Moradihaghighi, M.; Hosseini, M., Effect of rare earth (Ce, La) compounds in the electroless bath on the plating rate, bath stability and microstructure of the nickel-phosphorus deposits. Surface and Coatings Technology,2008,202 (9):1615-1620.
    [194]Huang, W. Q.; Deng, J. Q.; Huang, G. F., Influence of CeCl3 and deposition parameters on electroless NiFeP deposition. International Journal of Electrochemical Science,2009,4 (3):377-385.
    [195]杨钦鹏:李迎建;李均钦;高继华:汤皎宁;谷坤明;曹广忠,稀土元素La、Nd和Eu对化学镀镍层结构与性能的影响.科学技术与工程,2003,(03):275-278.
    [196]Rosalbino, F.; Angelini. E.:De Negri. S.; Saccone, A.; Delfino, S., Influence of the rare earth content on the electrochemical behaviour of Al-Mg-Er alloys. Intermetallics,2003,11 (5):435-441.
    [197]Wu, G.; Fan, Y.; Gao, H.; Zhai, C.; Zhu, Y. P., The effect of Ca and rare earth elements on the microstructure, mechanical properties and corrosion behavior of AZ91D. Materials Science and Engineering:A,2005,408 (1-2):255-263.
    [198]Govindaraju, H. K.; Jayaraj, T.; Sadanandarao, P. R.; Venkatesha, C. S., Evaluation of mechanical properties of as-cast Al-Zn-Ce alloy. Materials & Design,2010,31 (1):S24-S29.
    [199]Li, J.; Tian, Y; Li, Y; Wang, X., Effect of rare earth addition on structure and properties of Ni-P coating on SiCp/Al composites. Journal of Rare Earths,2010,28 (5):769-773.
    [200]Ho, A.; Chang, J.; Chin, W.-K.; Hsieh, H. T., Synthesis and structural characterizations of "Core-Shell"-type nickel-coated polymeric particles. Journal of Polymer Research,2006,13 (4): 285-291.
    [201]Zhong, Y.; Ping, D.; Song, X.; Yin, F., Determination of grain size by XRD profile analysis and TEM counting in nano-structured Cu. Journal of Alloys and Compounds,2009,476 (1-2):113-117.
    [202]Yin, X.; Hong, L.; Chen, B. H., Role of a Pb2+ stabilizer in the electroless nickel plating system: A theoretical exploration. Journal of Physical Chemistry B,2004,108 (30):10919-10929.
    [203]Xuan, T; Zhang, L.; Feng, S., Study on electrochemical characteristics of electroless Co-Ni-B alloy with cerium. Journal of Rare Earths,2006,24 (1):393-396.
    [204]Xuan. T; Zhang, L.; Huang, Q., Crystallization behavior of electroless Co-Ni-B alloy plated in magnetic field in presence of cerium. Transactions of Nonferrous Metals Society of China,2006,16 (2): 363-367.
    [205]Kuang, J.; Huang. Y., Research on improvement of electrode efficiency of water electrolysis on Ni-P electroless plating by appended RE. Journal of Rare Earths,2010,28:469-473.
    [206]Chen, C. H.; Chen, B. H.; Hong, L., Role of Cu2+ as an additive in an electroless nickel-phospho-rus plating system:A stabilizer or a codeposit? Chemistry of Materials,2006,18(13):2959-2968.
    [207]Wang, K. L.; Zhang, Q. B.; Sun, M. L; Wei, X. G.; Zhu, Y. M., Rare earth elements modification of laser-clad nickel-based alloy coatings. Applied Surface Science,2001,174 (3-4):191-200.
    [208]Liu, D.; Zhou, L.; Yu, J.; Yan, Y; Lee, K., Effects of rare earth cerium addition on the synthesis and corrosion resistance of electroless Ni-PTFE-P coating. Materials and Corrosion,2011,62 (10): 926-931.
    [209]Dang, Z.-M.; Zhang, B.; Li, J.; Zha, J.-W.; Hu, G.-H., Copper particles/epoxy resin thermosetting conductive adhesive using polyamide resin as curing agent. Journal of Applied Polymer Science,2012, 126 (3):815-821.
    [210]Ho, L.-N.; Nishikawa, H.; Takemoto, T., Effect of different copper fillers on the electrical resistivity of conductive adhesives. Journal of Materials Science:Materials in Electronics,2011,22 (5): 538-544.
    [211]Chan, K.:Mariatti, M.; Lockman, Z.; Sim, L., Effect of ultrasonication medium on the properties of copper nanoparticle-filled epoxy composite for electrical conductive adhesive (ECA) application. Journal of Materials Science:Materials in Electronics,2010,21 (8):772-778.
    [212]贾飞;王周成,以硼氢化钠为还原剂化学镀镍的电化学研究.物理化学学报,201,(03):633-640.
    [213]谷新;胡光辉;王周成;林昌健,化学镀铜过程混合电位本质的研究.物理化学学报,2004,(02):113-117.
    [214]曾建皇,聚氨酯海绵基体低磷化学镀镍工艺及机理研究.硕士.湖南大学,2002.
    [215]Li, J.; Kohl, P. A., The deposition characteristics of accelerated nonfomialdehyde electroless copper plating. Journal of The Electrochemical Society,2003,150 (8):C558-C562.
    [216]Ohno, I.; Wakabayashi, O.; Haruyama, S., Anodic oxidation of reductants in electroless plating. Journal of The Electrochemical Society,1985,132 (10):2323-2330.
    [217]Izumi, O., Electrochemistry of electroless plating. Materials Science and Engineering:A,1991. 146 (1-2):33-49.
    [218]Lu, Y.; Yu, M.; Drechsler, M.; Ballauff, M., Ag nanocomposite particles:preparation, characterization and application. Macromolecular Symposia,2007,254 (1):97-102.
    [219]Plana, D.; Campbell, A. I.; Patole, S. N.; Shul, G.; Dryfe, R. A. W., Kinetics of electroless deposition:the copper-dimethylamine borane system. Langmuir,2010,26 (12):10334-10340.
    [220]Li, J., The influence of 2,2'-dipyridyl on non-formaldehyde electroless copper plating. Electrochimica Acta,2004,49 (11):1789-1795.
    [221]Xu, C.; Wu, G.; Liu, Z.; Wu, D.; Meek, T. T.; Han, Q., Preparation of copper nanoparticles on carbon nanotubes by electroless plating method. Materials Research Bulletin.2004.39 (10):1499-1505
    [222]Lim, V. W. L.; Kang, E. T.; Neoh, K. G., Electroless plating of palladium and copper on polypyrrole films. Synthetic Metals,2001,123 (1):107-115.
    [223]Lin, Y.-M.; Yen, S.-C., Effects of additives and chelating agents on electroless copper plating. Applied Surface Science,2001,178(1-4):116-126.
    [224]Zheng, Y.-J.; Xiao, F.-X.; Zou, W.-H.; Wang, Y, Anode oxidation of HCHO in THPED-containi-ng electroless copper plating solution. Journal of Central South University of Technology,2008,15 (5): 669-673.
    [225]Hanna, F.; Hamid, Z. A.; Aal, A. A., Controlling factors affecting the stability and rate of electroless copper plating. Materials Letters,2004,58 (1-2):104-109.
    [226]Oita, M.; Matsuoka, M; Iwakura, C., Deposition rate and morphology of electroless copper film from solutions containing 2,2'-dipyridyl. Electrochimica Acta,1997,42 (9):1435-1440.
    [227]Liu, R. S.; You, C. C.; Tsai, M. S.; Hu, S. F.; Li, Y. H.; Lu, C. P., An investigation of smooth nano-sized copper seed layers on TiN and TaSiN by new non-toxic electroless plating. Solid State Communications,2003,125 (7-8):445-448.
    [228]Joo, M.; Lee, B.; Jeong, S.; Lee, M, Laser sintering of Cu paste film printed on polyimide substrate. Applied Surface Science,2011,258 (1):521-524.
    [229]Li, J.; Kohl, P. A., The acceleration of nonformaldehyde electroless copper plating. Journal of The Electrochemical Society,2002,149 (12):C631-C636.
    [230]Wang, X.; Li, N.; Yang, Z.; Wang, Z., Effects of triethanolamine and K4[Fe(CN)6] upon electroless copper plating. Journal of The Electrochemical Society,2010,157 (9):D500-D502.
    [231]Hsu, H.-H.; Yeh, J.-W.; Lin, S.-J., Repeated 3D nucleation in electroless Cu deposition and the grain boundary structure involved. Journal of The Electrochemical Society,2003,150 (11):C813-C815
    [232]Hsu, H.-H.; Teng, C.-W.; Lin, S.-J.; Yeh, J.-W., Sn/Pd catalyzation and electroless Cu deposition on TaN diffusion barrier layers. Journal of The Electrochemical Society,2002,149 (3):C143-C149.
    [233]Lai, C.-H.; Sung, Y.-C.; Lin, S.-J.:Chang, S.-Y.; Yeh, J.-W., Atomic-scale observation on the nucleation and growth of displacement-activated palladium catalysts and electroless copper plating. Electrochemical and Solid-State Letters,2005,8 (8):C114-C116.
    [234]Song, C.; Wang, D.; Lin, Y.; Hu, Z.:Gu, G.; Fu, X., Formation of silver nanoshells on latex spheres. Nanotechnology,2004,15 (8):962-965.
    [235]Chen, Z.; Wang, Z. L.; Zhan, P.; Zhang, J. H.; Zhang, W. Y; Wang, H. T.; Ming, N. B., Preparation of metallodielectric composite particles with multishell structure. Langmuir,2004,20 (8): 3042-3046.
    [236]Liu, J. B.; Dong, W.; Zhan, P.; Wang, S. Z.; Zhang, J. H.; Wang, Z. L., Synthesis of bimetallic nanoshells by an improved electroless plating method. Langmuir,2005,21 (5):1683-1686.
    [237]姜晓霞;沈伟,化学镀理论及实践.国防工业出版社,2000.
    [238]田微;顾云飞,化学镀银的应用与发展.电镀与环保,2010,(03):4-7.
    [239]Wu, D.; Zhang, T.; Wang, W.-C.; Zhang, L.; Jin, R., Reflective and conductive surface-silvered polyimide films prepared by surface graft copolymerization and electroless plating. Polymers for Advanced Technologies,2008,19 (5):335-341.
    [240]Wang, W.; Zhang, A.; Liu, L.; Tian, M.; Zhang, L., Dopamine-induced surface functionalization for the preparation of Al-Ag bimetallic microspheres. Journal of The Electrochemical Society,2011, 158(4):D228-D233.
    [241]Li, L.; Liu, B., Study of Ni-catalyst for electroless Ni-P deposition on glass fiber. Materials Chemistry and Physics,2011,128 (1-2):303-310.
    [242]陈坤;胡传群;王小波;聂棱,空心玻璃微球表面化学镀银工艺研究.材料保护,2006,(08):29-31+72.
    [243]Yong, K.-T.; Sahoo, Y.; Swihart, M. T.; Prasad. P. N., Synthesis and plasmonic properties of silver and gold nanoshells on polystyrene cores of different size and of gold-silver core-shell nanostructures. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2006,290 (1-3):89-105.
    [244]Tian, C.;Mao. B.; Wang, E.; Kang. Z.;Song, Y.; Wang, C.; Li. S., Simple strategy for preparation of core colloids modified with metal nanoparticles. The Journal of Physical Chemistry C.,2007,111 (9): 3651-3657.
    [245]Feng, X.; Ma, H.; Huang. S.; Pan, W.; Zhang, X.; Tian, F.; Gao, C.; Cheng, Y.; Luo, J., Aqueous-organic phase-transfer of highly stable gold, silver, and platinum nanoparticles and new route for fabrication of gold nanofilms at the oil/water interface and on solid supports. The Journal of Physical Chemistry B,2006,110(25):12311-12317.
    [246]Ma, H.; Yin, B.; Wang, S.; Jiao, Y; Pan, W.; Huang, S.; Chen, S.; Meng, F., Synthesis of silver and gold nanoparticles by a novel electrochemical method. Chetnphyschem,2004,5(1):68-75.
    [247]Chen, M.; Kim, Y. N.; Lee, H. M.; Li, C.; Cho, S. O., Multifunctional magnetic silver nanoshells with sandwichlike nanostructures. The Journal of Physical Chemistry C,2008,112 (24):8870-8874.
    [248]童晓梅;杨明政,非等温DSC法研究改性咪唑/环氧E44的固化反应动力学.陕西科技大学学报(自然科学版),2010,(05):32-36.
    [249]韩广帅,铜粉环氧树脂导电胶储存稳定性的研究.硕士,江苏科技大学,2010.
    [250]陈平;刘立柱,2-乙基-4-甲基咪唑固化环氧树脂的固化反应机理、动力学及其反应活性.高分子学报,1994,(06):641-646.
    [251]Heise, M. S.; Martin, G. C., Curing mechanism and thermal properties of epoxy-imidazole systems. Macromolecules,1989,22 (1):99-104.
    [252]马其祥,LCD用UV固化胶粘剂的研制.硕士,安徽理工大学,2008.
    [253]Hao, W.; Hu, J.; Chen, L.; Zhang, J.; Xing, L.; Yang, W., Isoconversional analysis of non-isothermal curing process of epoxy resin/epoxide polyhedral oligomeric silsesquioxane composites. Polymer Testing,2011,30 (4):349-355.
    [254]Harsch, M.; Karger-Kocsis, J.; Hoist, M., Influence of fillers and additives on the cure kinetics of an epoxy/anhydride resin. European Polymer Journal,2007,43 (4):1168-1178.
    [255]Park, S.-J.; Heo, G.-Y., Effect of alkyl groups of latent cationic catalysts on cure and dynamic mechanical behaviors of epoxy resins. Macromolecular Chemistry and Physics,2005,206 (11): 1134-1139.
    [256]李海燕;谢川,阳离子光引发剂研究进展.信息记录材料,2004,(04):37-41.
    [257]Park, S.-J.; Kim, T.-J.; Lee, J.-R., Cationic cure of epoxy resin initiated by methylanilinium salts as a latent thermal initiator. Journal of Polymer Science Part B:Polymer Physics,2001,39 (20): 2397-2406.
    [258]Lee, J.:Choi, Y; Lee, J.-R.; Park, J., Cationic cure of epoxy resin by an optimum concentration of N-benzylpyrazinium hexafluoroantimonate. Macromolecular Research,2002,10 (1):34-39.
    [259]Park, S.-J.; Seo, M.-K.; Lee, J.-R., Studies on epoxy resins cured by cationic latent thermal catalyst at elevated temperature. Polymer International,2004,53 (11):1617-1623.
    [260]Park. S.-J.; Jin, F.-L.; Lee, J.-R.; Shin, J.-S., Cationic polymerization and physicochemical properties of a biobased epoxy resin initiated by thermally latent catalysts. European Polymer Journal, 2005,41 (2):231-237.
    [261]Morio, K.; Murase, H.; Tsuchiya, H.; Endo, T., Thermoinitiated cationic polymerization of epoxy resins by sulfonium salts. Journal of Applied Polymer Science,1986,32 (7):5727-5732.
    [262]Inoue, M.; Suganuma, K., Influential factors in determining the adhesive strength of ACF joints. Journal of Materials Science:Materials in Electronics,2009,20 (12):1247-1254.
    [263]Lin, Y. C.; Zhong, J., A review of the influencing factors on anisotropic conductive adhesives joining technology in electrical applications. Journal of Materials Science,2008,43 (9):3072-3093.
    [264]Uddin, M. A.; Alam, M. O.; Chan, Y C.; Chan, H. P., Adhesion strength and contact resistance of flip chip on flex packages-effect of curing degree of anisotropic conductive film. Microelectronics Reliability,2004,44 (3):505-514.
    [265]Myung-Jin, Y.; Kyung-Wook, P. Design and understanding of anisotropic conductive films (ACFs) for LCD packaging. In:Proceedings of The 1st IEEE International Symposium on Polymeric Electronics Packaging, Norrkoping, Sweden,1997,233-242.
    [266]Chin, M.; Iyer, K. A.; Hu, S. J., Prediction of electrical contact resistance for anisotropic conductive adhesive assemblies. IEEE Transactions on Components and Packaging Technologies,2004, 27 (2):317-326.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700