用户名: 密码: 验证码:
不同耐密性玉米品种维管束特性及源库系统特点研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
玉米维管束是植株机械支撑和物质运输的重要系统,在源库系统中承担“流”的作用,是玉米源库系统协调的重要组织。本文以2种不同耐密类型的4个玉米品种为试验材料,采用植物显微技术与生理生化相结给的方法,研究了不同耐密性玉米品种的维管束形态、发育特点和结构特性,并比较了类型间和品种间的差异;探讨了4个玉米品种维管束性状、“流”强度与流质、叶源和穗库对密度的响应,维管束在源库系统中的作用;分析了维管束特性与倒伏的关系和对水分胁迫的响应。试图进一步完善源库理论,了解玉米维管束输导系统的结构、功能及与源库的关系,为玉米高产栽培与种质创新提供理论依据和参考。试验主要研究结果如下:
     1不同耐密性玉米品种的维管束特性
     拔节期茎基部节间维管束在类型内和类型间差异均不显著;抽雄期在类型内、类型间各品种间的差异显著;抽雄期至乳熟期穗位节间维管束在类型间、类型内始终存在着明显差异;穗柄节间、穗轴维管束均表现为随发育进程在类型间和和类型内差异愈加明显。4个玉米品种维管束的差异在植株生长发育早期表现不突出,进入抽雄期后各类型品种间的差异开始完全表现。
     从不同耐密类型品种的不同植株部位情况来看,茎基部节间维管束发育是稀植型要优于密植型,其中东单60表现最佳;穗位节间、穗柄节间和穗轴的维管束发育则是密植型要优于稀植型,而且衰老进程也较慢,其中以郑单958表现最好。从植株不同部位维管束的内部结构来看,除穗位节外,茎基部节间、穗柄节间和穗轴维管束结构比例变化表现为密植型品种要比稀植型品种更符合植株的生长发育进程。
     2不同耐密性玉米品种维管束与源库系统对密度的响应
     稀植型品种植株茎基部节间维管束各密度处理均要大于密植型品种。在植株生长发育早期,密植型品种和东单60茎基部节间维管束对密度的反应较为敏感,至生长发育后期敏感程度降低,而辽单526表现相反。抽雄期和乳熟期,密植型品种的穗位节维管束对密度变化不敏感,而稀植则表现出较大敏感性。抽雄期穗柄维管束只有辽单565对密度响应敏感,至乳熟期两种类型品种穗柄维管束受密度影响均较大。增加密度对玉米植株维管束主要是负向影响。
     在本试验中将茎基部伤流视为研究“流”活性的一种方式。植株生育前期与中后期密植型品种茎基部节、穗位节的伤流量要大于稀植型品种,由此推断密植型品种维管束的输送能力要优于稀植型品种。4个品种茎基部节伤流量在各密度处理后期比前期有所下降,而穗位节伤流量则相反。郑单958茎基部节伤流对密度的响应在生育前期和后期表现出相同的规律,其它3个品种规律不明显。4个品种穗位节伤流类型内表现出相同的变化规律,且生育前期与后期规律相同。
     不同耐密性品种茎基部节伤流成分在生育后期与生育前期相比,可溶性糖、无机磷与硝态氮含量呈下降趋势,可溶性蛋白和氨基酸总量增加;各成分所占的比例,密植型品种,由以可溶性糖为主变为以氨基酸为主,稀植型品种除东单60在较高和最高密度处理外,则由以可溶性糖为主变为以无机磷为主。因此认为,不同耐密性品种可能存在着不同的维管束运输协调系统。生育前期,郑单958与其它3个品种相比,在各密度下各成份含量相对均衡,说明其在密度变化时单株的自我调节能力较强,可以推断生育早期郑单958根系的吸收、转化及维竹束的运输能力更强。而生育后期,4个品种各伤流成分在不同密度处理变化都较大,表现出对密度的高度敏感。
     密植型品种的源系统叶面积小,叶绿素含量低,但已达到光合作用所需水平,总体对密度的响应敏感性相对较差,LAI较高,叶面积与密度呈二次曲线关系,随密度增加有一定的缓冲;稀植型品种相对叶面积多,但对密度响应敏感,与密度呈线性相关,对于密度增加没有缓冲。密植型品种与辽单526的光合速率、蒸腾速率及气孔导度均表现出在对照密度下表现最佳,而东单60光合速率则随密度的增加持续下降。蜡熟期与灌浆期相比,稀植型品种光合速率的下降比例要大于密植型品种。密植型品种的光合速率较高,生育后期水分代谢仍相对旺盛,保证了光合作用的持续。4个品种的产量均在适宜密度时达到最大,且各密度处理下密植型的产量要高于稀植型品种;与密度的拟合均符合一元二次回归方程。不同耐密性玉米品种籽粒营养成分受密度影响不大。
     3不同耐密性玉米品种维管束与倒伏的关系
     穗位以下1~7节的抗压力,不同耐密性品种均对密度反应敏感;不同节位的茎粗,在灌浆期和乳熟期与抗压力的相关系数较大且均达极显著水平,且以第3节相关系数最大,这说明茎节的抗压力更主要取决于茎节的粗度。在这两个时期,密度与各节的抗压力呈高度负相关,达极显著水平,这表明密度越大茎秆的抗压力就越差,因此可以用茎秆的抗压力指标测定密度对茎秆强度的影响,并可以此推断田间倒伏情况。不同耐密性品种第3节茎长/茎粗变异系数最大,而穗位/株高比相对稳定,且表现出穗位系数与倒伏率成反比。通径分析结果表明,在茎秆农艺性状与倒伏关系中,第3节茎长/茎粗和株高/第3节茎粗与倒伏率的关系最为密切。
     茎基部1~3节维管束对密度响应的变化表现为维管束面积的变化与韧皮部面积的变化一致,木质部对密度响应变化相对平缓。茎基部1~2节间维管束对密度变化响应较差,而第3节间维管束对密度的响应更加敏感。这从茎节的生理结构角度显示了茎基部第3节易成为倒伏节的主要原因。不同耐密性品种茎基部第3节性状与倒伏率的关系上,密植型品种比稀植型品种关系更加密切。此外,本试验结果还表明,抗倒伏与株型之间无必然联系,而与品种茎秆性状对密度敏感程度关系更为密切。
     4不同耐密性玉米品种维管束与水分胁迫的关系
     生育前期的水分胁迫不仅对营养生长期植株的维管束产生影响,对于生殖生长期的植株维管束同样存在明显的延后效果。维管束大小对水分胁迫在拔节期反应更为敏感,4个品种均有较大程度的减少,但维管束内部结构相对稳定。抽雄期,穗位节维管束受水分胁迫的影响同样表现为逆向,维管束大小缩减,发育缓慢,而此时维管束内部结构调整却更加明显。散粉期各品种穗柄的维管束大小要比对照有所增加,维管束发育状况也优于对照,维管束内部结构调整不大,此期水分胁迫影响表现出积极的一面。
     水分胁迫品种间的差异要大于类型间的差异。同类型内并未表现出有相似规律的变化。郑单958、辽单565和东单60水分胁迫的敏感性和响应程度更为明显,生育前期水分胁迫的负效应明显,生育后期水分胁迫的正效应也表现明显,而辽526生育前、后期对水分胁迫反应均不敏感,可能缺乏适应外界环境变化的自身调节能力。
The vascular bundles are the significant system for mechanical framework and matter transportation of maize, and playing an important role in the flow that harmonizes the source-sink system. Four maize varieties that belong to two different density-tolerant types were selected in this experiment. The shape, development and structure of the vascular bundles and the difference of vascular bundles between varieties were observed through optic microscope. Meanwhile the responses of flow intension and its components, leaf-source and ear-sink to densities were studied to analyze the function of vascular bundles in source-sink system and the relationship between vascular bundles and lodging. In addition the effects of water stress on vascular bundle characteristics were also studied in this experiment. The understanding of the structure and function of vascular bundles and its relationship to source-sink system could perfect the source-sink theory and provide an insight for high-yield cultivation and breeding for maize. The main results showed as follows:
     1 The vascular bundle characteristic of different density-tolerant maize
     There was no significant difference of basal stem vascular bundle within the same type and between the different types at jointing stage, but the significant difference was found at tasselling stage. From the tasselling stage to the milk maturity, the significant difference always existed in vascular bundle of ear-located stem in all four varieties. The difference of vascular bundle in the ear first stalk and ear cob among varieties was clearer with the developmental process of maize. Namely, there was no difference in vascular bundle of four maize varieties until tasselling stage.
     From the aspect of different plant parts of different density-tolerant maize varieties, the vascular bundle development in basal stem of the thin density varieties was better than that of the density-tolerant varieties, especially in Dongdan60. The vascular bundle development in ear first stalk and ear cob of the density-tolerant varieties was better than that of thin-density varieties, especially in Zhengdan958. From the aspect of vascular bundle structure in different plant parts, the vascular bundle structure of the basal stem, ear first stalk and ear cob except ear-located ear of the density-tolerant varieties was up to the plant development.
     2 The responses of vascular bundle and source-sink system of different density-tolerant maize to densities
     The vascular bundle areas of the thin-density varieties at all density treatments were bigger than that of the density-tolerant varieties. The basal stem vascular bundles of density-tolerant varieties and Dongdan60 at early growing stage were sensitive to the change of density, and became insensitive at later growing stage. However, Liaodan565 was opposite. The ear-located vascular bundles of the density-tolerant varieties were not sensitive at the change of the density at tasselling and milk maturity stage, but it appeared more sensitive in the thin-density varieties. Ear stalk vascular bundle in Liaodan565 was sensitive at density at tasselling. Till milk maturity effects of density on ear stalk vascular bundle of both types were great. Increasing of density had mainly negative impacts on the vascular bundle of maize plant.
     The sap of the basal stem was considered as a flow to study its activities in this research. The sap content of basal and ear-located stem in density-tolerant varieties were more than that of the thin-density varieties, thus, it could be deduced that the transportation capacity of density-tolerant were better than that of the thin density varieties. The sap content of four varieties basal stem at all density treatments declined from the early growing period to the later growing period, however it acted on opposition in the ear located. The response of the basal stem sap content in Zhengdan958 to densities showed the same way at early and later growing stage, and there was no apparent rule in the other three varieties. The ear-located stem sap content within the same types showed the same change rule at both early and later growing stage.
     The contents of soluble sugar, inorganic phosphates and nitrate nitrogen in the basal stem sap decreased with the development, and yet the soluble protein and total amino acid content increased. The main component in basal stem sap of density-tolerant maize changed from soluble sugar to amino acid and inorganic phosphates became the main component in basal stem sap in thin-density maize varieties from soluble sugar except Dongdan60 at the top and higher density. Consequently the different density-tolerant maize varieties had their own adjusted vascular bundle transportation system. At early stage, the components of sap in Zhengdan958 were balanced compared with the other three varieties; thus, it was considered that zhengdan958 had strong self-adjustment ability and its ability of absorbing and transporting in root was better. At later stage, the components of sap in basal stem of all varieties were more sensitive to the density.
     Though the relative single leaf area of density-tolerant maize varieties was small and its chlorophyll content was low, LAI was higher and the photosynthesis demands were met. The relationship of leaf area with densities in density-tolerant maize was second-degree curve which helped to release the density press. However, the relationship of leaf area with densities in density-tolerant maize was linear; the leaf areas of thin-density varieties were relatively higher and sensitive to densities. Photosynthetic rate, transpiration rate and stomatal conductance of density-tolerant varieties and Liaodan526 were at the highest level at the contrast density, but photosynthetic rate of Dongdan60 continuously declined with the density increased. Form the filling stage to wax ripeness stage, the decrease rate of photosynthetic rate of density-thin varieties was larger than that of density-tolerant varieties. The high rate of photosynthesis and water metabolism in density-tolerant varieties remained function of photosynthesis for a relative long time. The highest yield was gained at the proper density, and the yield of the density-tolerant varieties was higher than that of thin-density varieties. One-dimensional quadratic regression equation was build between the yield and the density in all varieties. There were no significant effects on grain nutrition by densities in all varieties.
     3 The relationship between the vascular bundle characteristic and lodging
     The response of stalk anti-press from the first stem to the seventh stem in different density-tolerant maize varieties to densities was sensitive. Correlation coefficient between diameter and anti-press of different stems was significant at 0.01 level at filling and milk maturity stage, in particular the third stem had the largest correlation coefficient. So the analysis of correlation suggested that the stem anti-press demanded on the stem diameter. The densities and stem anti-press were negative correlated which indicated higher density induced lower stem anti-press. Therefore the stem anti-press could be an index to determine the effect of density on stem intension to anticipate the lodging. The coefficient of variation of stem length/diameter of the third stem was the largest but the ear-located height/plant height was relatively stable. And the ear-located height/plant height was inversely proportional to the lodging rate. The relationship of lodging with stem length/diameter and plant/stem diameter in the third stem was closest through the path analysis.
     The responses of the basal 1-3 stem internodes vascular bundle to the densities showed the vascular areas change was similar with the phloem area and xylem area changed smoothly. The vascular bundle of the third stem was the most sensitive to the densities which explained the main reason for the lodging often caused by the third stem. The relationship of the lodging with third stem traits in the density-tolerant varieties was closer than that in the thin-density varieties. In addition the lodging was no necessary connected with the plant type but sensitive to the stem traits.
     4 The relationship between the vascular bundle characteristic and water stress
     Water stress occurred in early stage not only affected the development of vascular bundle in the nutrient period but also produced laggard effects on vascular bundle in generative period. The vascular bundle size at jointing stage was more sensitive to the water stress occurred at seedling stage with the evident decrease in vascular bundle size of all maize varieties, but the vascular bundle structure was stable. The effects of water stress on vascular bundle of ear-located stem at tasselling stage was negative which reduced the vascular bundle area and slow down the development, but the changes of vascular bundle structure were patent. At anthesis vascular bundle area in the ear stalk was increased and its development was facilitated under the water stress.
     The difference of vascular bundle induced by water stress in varieties was larger than that in types. The similar changes were not found in the same types. Zhengdan958, Liaodan565 and Dongdan60 were more sensitive to the water stress, and negative impacts by water stress were apparently observed at early growing stage and positive impacts at later growing stage. Liaodan526 was not sensitive to the water stress at all growing stage, maybe it was absent in self-adjustment for the change of the environment.
引文
1.白向历.2009.玉米抗旱机制及鉴定指标筛选的研究.沈阳农业大学博士学位论文.
    2. 白志英,李存东,郑金风,毕常锐,唐光雷.2010.种植密度对玉米先玉335和郑单958生理特性、产量的影响.华北农学报,25(增刊):166-169.
    3. 柏彦超,钱晓晴,沈淮尔,薛巧云,于娟娟,陈峰,汪孙军.2009.不同水、氮条件对水稻苗生长及伤流液的影响.植物营养与肥料学报,15(1):76-81.
    4. 鲍巨松,薛吉全,郝引川,杨成书.1993.玉米不同株型群体库源特征的研究.西北农业学报,2(3):53-57.
    5.卜令铎,张仁各,常宇,薛吉全,韩苗苗.2010.苗期玉米叶片光合特性对水分胁迫的响应.生态学报,30(5):1184-1191.
    6. 陈传永,侯海鹏,李强,朱平,张振勇,董占强,赵明.2010.种植密度对不同玉米品种叶片光合特性与碳、氮变化的影响.作物学报,36(5):871-878.
    7. 陈传永.2010.东北春玉米高产群体结构与功能特点及产量性能定量分析.中国农业科学院博士学位论文.
    8. 陈范骏,米国华,刘建安,张福锁.1999.玉米自交系木质部伤流液中氮素形态差异及其与氮效率的关系.中国农业科学,32(5):43-48.
    9. 陈学峰.2007.基于图像序列的植物维管束的三维绘制技术研究.首都师范大学硕士学位论文.
    10.陈展宇.2008.旱稻抗旱解剖结构及其生理特性的研究.吉林农业大学博士学位论文.
    11.董红芬,李洪,李爱军,阎晓光.2010.不同密度下玉米穗茎生长与雌穗分化的关系.玉米科学,18(5):65-71,75.
    12.董树亭,胡昌浩.1993.玉米不同株型品种的高产濳力及群体光合特性研究.作物杂志3:34-36.
    13.段留生,张明才,董学会,田晓莉,李召虎.2008.等离子体原子发射光谱法(ICP-AES)测定玉米和大豆根系伤流液中无机元素流量.光谱学与光谱分析,28(11):2671-2673.
    14.段民孝.2005.从农大108和郑单958中得到的玉米育种启示.玉米科学,13(4):49-52.
    15.丰光,刘志芳,李妍妍,邢锦丰,黄长玲.2009.玉米茎秆耐穿刺强度的倒伏遗传研究.作物学报,35(11):2133-2138.
    16.丰光,黄长玲,邢锦丰.2008.玉米抗倒伏的研究进展.作物杂志,4:12-14.
    17.丰光.2009.我国不同年代玉米单交种杂种优势比较及茎秆穿刺遗传研究.中国农业科学院硕士学位论文.
    18.勾玲,黄建军,张宾,李涛,孙锐,赵明.2007.群体密度对玉米茎秆抗倒力学和农艺性状的影响.作物学报,33(10):1688-1695.
    19.顾自奋,翁训珠,叶信璋,官玉麟.1985.大麦茎秆维管束数与小穗的关系.作物学报,11(3):199-206.
    20.关钱,钱晓刚.2008.超级杂交稻茎杆形态与抗倒伏相关性研究.耕作与栽培,2:10-12.
    21.郭江,郭新宇,王纪华,张凤路.2005.不同株型玉米光响应曲线的特征参数研究.西北植物学报,25(8):1612-1617.
    22.郭江.2005.不同株型玉米吕种灌浆期光合特性研究.河北农业大学硕士学位论文.
    23.郭旭新,周富彦,寇明蕾,赵英.2010.水分胁迫下夏玉米的生理特性及补效应.灌溉排水学报,29(3):85-88.
    24.郭玉秋,懂树亭,王空军,郑洪建,胡昌浩,张吉旺.2002.玉米不同穗型品种产量、产量构成及源库关系的群体调节研究.华北农学报.17(增刊):193-198.
    25.韩金龙,王同燕,徐子利,徐立华,徐相波,邢燕菊,阴卫军.2010.玉米抗旱机理及抗旱性鉴定指标研究进展.中国农学通报,26(21):142-146.
    26.郝树荣,郭相平,王文娟.2010.不同时期水分胁迫对玉米生长的后效性影响.农业程学报,26(7)71-75.
    27.何启平,董树亭,高荣歧.2005.玉米果穗维管束系统的发育及其与穗粒库容的关系.作物学报,31(8):995-1000.
    28.何启平,董树亭,高荣歧.2007.不同类型玉米品种果穗维管束的比较研究.作物学报,33(7):1187-1196.
    29.何启平.2002.密度对不同玉米品种果穗维管束结构的影响.菏泽师专学报,24(2):30-32.
    30.何启平.2009.不同类型玉米品种果穗维管束结构的差异研究.安徽农业科,37(34):16798-16800.
    31.胡萌,魏湜,杨猛,矫海波,魏玲,王燚,吉彪.2010.密度对不同株型玉米光合特性及产量的影响.玉米科学,18(1):103-107.
    32.黄璜.1994.生态条件对水稻茎杆维管束数的影响.仲恺农学院学报,7(2):9-15.
    33.黄璜.1998.水稻穗颈节间组织与颖花数的关系.作物学报,24(2):193-200.
    34.黄建军.2008.不同耐密性玉米品种的抗倒伏特征研究.石河子大学硕士学位论文.
    35.黄升谋,邹应斌,刘春林.2005.杂交水稻两优培九强、弱势粒结实生理研究.作物学报,31(1):102-107.
    36.黄智鸿,中林,曹洋,孙刚,郝满,吴春胜.2007.超高产与普通玉米源库关系的比较研究.吉林农业大学学报,29(6):607-611,615.
    37.贾十芳,李从峰,董树亭,张吉旺.2010.花后不同时期遮光对玉米粒重及品质影响的细胞学研究.中国农业科学,43(5):911-921.
    38.江东岭,杜雄,张宁,边大红,崔彦宏.2009.种植密度对夏玉米群体库源关系的影响.华北农学报,24(3):201-207.
    39.姜岩,马玉波,穆春生,杨向东.1998.紧凑型玉米杂交种产量源库特征.延边大学农学学报,20(1):10-13.
    40.姜岩,马玉波,穆春生,杨向东.1998.紧凑型玉米杂交种产量源库特征.延边大学农学学报,20(1):10-13.
    41.荆彦辉,付永彩,孙传消,张培江,徐正进,陈温福,王象坤.2004.水稻穗颈维管束及产量相关性状的QTL分析.中国农业大学学报,9(5):16-21.
    42.荆彦辉,徐正进.2003.水稻维管束性状的研究进展.沈阳农业大学学报,34(6):467-471.
    43.居春霞,彭永欣,郭文善,严六零,封超年.1994.小麦茎秆维管束发育与穗部性瘃关系的研究.江苏农学院学报,15(2):27-32.
    44.李成龙,吕金印,高俊凤.2007.水分亏缺对小麦抽穗期穗轴维管束系统的影响.中国农学通报,23(1):111-114.
    45.李春奇,郑慧敏,李芸,李潮海.2010.种植密度对夏玉米雌穗发育和产量的影响.中国农业科学.43(12):2435-2442.
    46.李得孝,员海燕,周联东.2004.玉米抗倒伏性指标及其模拟研究.西北农林科技大学学报(自然科学版),32(5):53-56.
    47.李合生.2002.植物生理生化实验原理和技术.北京:高等教育出版社.
    48.李金才,魏凤珍,丁显萍.1999.小麦穗轴和小穗轴维管束系统及与穗部生产力关系的研究.作 物学报,25(3):315-309.
    49.李金泉,徐止进,荆彦辉,姜健,陈温福.2002.水稻穗颈及第2节间维管束数的遗传分析.华南农业大学学报(自然科学版),23(3):5-8.
    50.李明,李文雄.2006.玉米产量形成与源库关系.玉米科学,14(2):67-70.
    51.李宁,翟志席,李建民,吴沛波,段留生,李召虎.2008.密度对不同株型玉米农艺、根系性状及产量的影响.玉米科学,16(5):98-102.
    52.李绍长,王荣栋.1998.作物源库理论在产量形成中的应用.新疆农业科学,3:106-110.
    53.李文娟,何萍,金继运.2010.钾素对玉米茎髓和幼根超微结构的影响及其与茎腐病抗性的关系.中国农业科学,43(4):729-736.
    54.李文娟.2008.钾素提高玉米(Zea mays L.)茎腐病抗性的营养与分子生理机制.中国农业科学院博士学位论文.
    55.梁引库,王美妮,李新生,陈德经,江海.2006.玉米源库流研究进展.陕西农业科学6:107-110.
    56.梁引库.2006.不同源库比玉米衰老期间体内营养物质的变化及其对衰老的影响.西北农林科技大学,硕十学位论文.
    57.凌启鸿,蔡建中,苏祖芳.1982.水稻茎杆维管束数与穗部性状关系及其应用的研究.江苏农学院学报,3(3):7-16.
    58.刘伟,吕鹏,苏凯,杨今胜,张吉旺,董树亭,刘鹏,孙庆泉.2010.种植密度对夏玉米产量和源库特性的影响.应用生态学报,21(7):1737-1743.
    59.刘志新.2009.不同耐密性玉米的密植效应及耐密性遗传规律研究.沈阳农业大学博十论文.
    60.吕凤山,刘克礼,高聚林,郭新宇.1998.春玉米茎杆维管束与叶片光合性状和果穗发育的关系.内蒙古农牧学院学报,19(3):42-48.
    61.吕丽华,陶洪斌,夏来坤,张雅杰,赵明,赵久然,王璞.2008.不同种植密度下的夏玉米冠层结构及光合特性.作物学报,34(3):447-455.
    62.吕丽华,王璞,鲁来清.2008.不同冠层结构下夏玉米产量形成的源库关系.玉米科学,16(4):66-71.
    63.吕仲贤,Sylvia Villareal,俞晓平, Heongkong-luen,胡萃.2004.氮肥对稻株含水量和伤流液的影响及其与对褐飞虱为害耐性的关系.中国水稻科学,18(2):161-166.
    64.马凤旭.2010.水分亏缺对玉米生理指标、形态特性及解剖结构的影响.西北农林科技大学硕士学位论文.
    65.马均,周开达,马文波,汪旭东,明东风,严志彬.2002.重穗型杂交稻穗颈节间维管束与籽粒充实关系的研究.中国农业科学,35(5):576-579.
    66.孟剑霞,杨晓玲,郭金耀,梁彦.2005.玉米果穗发育的维管束特性研究.植物生理科学,21(7):216-219.
    67.苗芳,张嵩午,周春菊,冯佰俐。冯治国,康健.2003.冷型小麦解剖结构特征的研究.西北农林科技大学学报(自然科学版),31(2):121-124.
    68.欧阳学智,谢绍萍,李宝健.1998a.玉米叶片细脉原生韧皮部筛分子的分化和超微结构:原生质体的变化.植物学报,40(1):14-21.
    69.欧阳宁智,谢绍萍.1997.玉米叶片细脉及其鞘组织个体发育的超微结构研究.植物学报,39(6):494-499.
    70.欧阳学智,谢绍萍.1998b.玉米叶片主脉及其鞘组织的早期发育和超微结构.植物学报,40(8):695-702.
    71.潘宁宁.2007.高产夏玉米库源特征及其群体效应研究.河北农业大学硕士学位论文.
    72.秦月秋.1991.小麦茎秆维管束与穗部性状关系的研究.山东师范大学学报(自然利学版),6(3):85-89.
    73.桑云.2009.小麦DH群体穗下间维管束及相关性状QTL分析.山东农业大学硕士学位论文.
    74.中海兵,杨德龙,景蕊莲,吕小平,曲延英.2007.小麦穗颈维管束遗传特性及其与产量性状的关系.麦类作物学报,27(3):465-470.
    75.沈阳市气象局.2010.2010年沈阳市农作物生长季气候评价. [EB/OL]. http://www. tqyb. cc/ArticleInfo.asp?ChannelID=0404&Articleid=201010110001.
    76.沈阳市统计局.2010.沈阳概况(自然与环境)http://www.sysinet.gov.cn/NewsList. aspx?LM_ID=1&LM_MX_ID=4.
    77.时向东,刘艳芳,文志强,王卫武.2006.植物根系伤流研究进展.安徽农业科学,34(10):2043-2045.
    78.宋海星,李生秀.2004.水、氮供应对玉米伤流及其养分含量的影响.植物营养与肥料学报, 10(6):574-578.
    79.孙庆泉,胡昌浩,董树亭,王空军.2003.我国不同年代玉米品种生育全程根系特性演化的研究.作物学报,29(5):641-645.
    80.孙世贤,戴俊英,顾慰连.1989a.氮、磷、钾肥对玉米倒伏及其产量的影响.中国农业科学,22(30):28-33.
    81.孙世贤,顾慰连,戴俊英.1989b.密度对玉米倒伏及其产量的影响.沈阳农业大学学报,20(4):413-416.
    82.覃鸿妮,蔡一林,孙海燕,王久光,王国强,刘志斋.2010.种植密度对不同株型玉米蔗糖代谢和淀粉合成相关酶活性的影响.中国生态农业学报,18(6):1183-1118.
    83.唐海涛,田玉秀,康继伟,张彪.2008.玉米杂交种抗倒伏性的研究.种子,27(11):57-60.
    84.陶世蓉,初庆刚,东先旺,刘绍棣.1995.不同株型玉米叶片形态结构的研究.玉米科学,3(2):51-53.
    85.王传海,郑有飞,何都良,高桂枝.2003.紫外线强度增加对小麦节间大维管束条数及穗部性状的影响.麦类作物学报,23(3):45-48.
    86.王寒梅,滕涛,李德顺,罗玉鑫,刘长新,宋儒,陈新华.2005.玉米引入热带种质对倒伏性的影响.杂粮作物,25(4):221-223.
    87.王纪华,王树安,赵冬梅,夏厚军.1994.玉米穗轴维管解剖结构及含水率对籽粒发育的影响.玉米科学,2(4):41-43.
    88.王健,朱锦懋,林青青,李晓娟,滕年军,李振声,李滨,张爱民,林金星.2006小麦茎杆结构和细胞壁化学成分对抗压强度的影响.科学通报,3:679-685.
    89.王立新,郭强,苏青.1990.玉米抗倒性与茎秆显微结构的关系.植物学通报,7(8):34-36.
    90.王庆成,刘霞,李宗新,刘开吕.2008.种植密度对玉米种皮形态建成及胚乳淀粉粒发育的影响.中国农业科学,41(8):2506-2512.
    91.王群瑛,胡昌浩.1991.玉米茎秆抗倒特性的解剖研究.作物学报,17(1):70-77.
    92.王忠.2000,植物生理学.北京:中国农业出版社,221-256.
    93..吴妍,张岁岐,刘小芳,山仑.2010.水分胁迫及复水条件下外源Ca2+对玉米幼苗根系水力导度及生长的影响.作物学报,36(6):1044-1049.
    94.徐正进,陈温福,曹洪任,张龙步,杨守仁.1998.水稻穗颈维管束数与穗部性状关系的研究.作物学报,24(1):47-54.
    95.徐正进,陈温福,张龙步,彭应财,张俊国.1996.水稻穗颈维管束性状的类型间差异的研究.作物学报,22(2):168-172.
    96.薛刚,刘凤霞.1995.小麦节间维管组织与灌浆速率及粒重的相关性研究.西北农业学报,4(3):22-25.
    97.薛吉全,梁宗锁,马国胜,路海东,任建宏.2002.玉米不同株型耐密性的群体生理指标研究.应用生态学报,13(1):55-59.
    98.薛吉全,马国胜,路海东,崔鸣,李运方,刘厚群.2001.密度对不同类型玉米源库关系及产量的调控.西北植物学报,21(6):1162-1168.
    99.严云,廖成松,张福锁,李春俭.2010.密植条件下玉米冠根生长抑制的因果关系.植物营养与肥料学报,16(2):257-265.
    100.杨吉顺,高辉远,刘鹏,李耕,董树亭,张吉旺,下敬锋.2010.种植密度和行距配置对超高产夏玉米群体光合特性的影响.36(7):1226-1233.
    101.于海秋,王晓磊,蒋春姬,王晓光,曹敏建.2008,土壤干旱下玉米幼苗解剖结构的伤害进程.干旱地区农业研究,26(5):143-147.
    102.于晓刚,张文忠,韩亚东,黄丽丽,徐海,赵明辉,高东吕,徐正进,陈温副.2010.粳稻颖果维管束结构粒位间差异及其与品质性状的关系.作物学报,36(7):1198-1208.
    103.袁莉民,仇明,王朋,王志琴,杨建昌.2006.C4转基因水稻秧苗叶片气孔与叶鞘维管束结构特征.中国农业科学,39(5):902-909.
    104.袁刘止,柳家友,付家峰,吴伟华,闫海霞,赵月强,李潮海.2010,玉米倒伏后子粒灌浆特性的比较分析.作物杂志,2:38-40.
    105.袁志华,赵安庆,何予鹏,李云东.2001.玉米茎秆抗倒伏的力学分析.河南农业大学学报,35(90):43-45.
    106.张从志,张仕宝,赵炳梓,张辉,黄平,李晓平,朱强根.2009.玉米水分利用效率、碳稳定同位素判别值和比叶面积之间的关系.作物学报,35(6):1115-1121.
    107.张凤路,崔彦宏,王志敏,赵明,王树安.1999.玉米籽粒小穗柄维管束发育状况与籽粒败育关 系研究.河北农业大学学报.22(1):16-19.
    108.张洪生,赵明,吴沛波,翟延举,姜雯.2009.种植密度对玉米茎秆和穗部性状的影响.玉米科学,17(5):130-133.
    109.张洪生,盖伟玲,李玲燕,姜雯.2009.种植密度对不同玉米品种抗倒伏性及产量的影响.中国种业,6:34-35.
    110.张其芳,刘奕,黄福灯,胡东维,程方民.2009.水稻不同粒位小穗轴的超微结构差异及其CaM活性的细胞化.作物学报,35(12):2280-2287.
    111.张喜娟,姜树坤,李红娇,李伟娟,徐止进,陈温福.2008.粳型超及稻品种‘沈农265’穗部和穗颈维管束性状的QTL剖析.植物生理学通迅,44(5):907-913.
    112.张振清,王维光,汤小仪,夏叔芳.1997.玉米叶肉原生质体和维管束鞘细胞的分离及CO2固定.植物生理学报,13(3):271-277.
    113.张振清,夏叔芳.1987.玉米叶肉细胞和维管束鞘细胞中光合产物的分析.植物生理学报,13(4):338-343.
    114.章志宏,陈明明,唐俊,胡中立.2002.水稻穗颈维管束和穗部性状的遗传分析.作物学报,28(1):86-89.
    115.赵步洪,金银根,陈新红,杨建吕,朱庆森,张洪熙.2004.两系杂交稻穗颈节间维管束与籽料充实特性的研究.上海交通大学学报(农业科学版),22(2):181-184.
    116.赵全志,高尔明,黄不生,凌启鸿,孙淑萍,焦三军.1999.源库质量与作物超高产栽培及育种.河南农业大学学报,33(3):226-230.
    117.赵全志,高尔明,黄不生,凌启鸿.1999.水稻穗颈节伤流势与源库质量的关系研究.中国农业科学,32(6):104-106.
    118.赵全志,高尔明,黄不生,凌启鸿.2001.水稻穗颈节也基部节间伤流的比较及其与氮素调控研究.作物学报,27(1):103-109.
    119.郑乐娅,吴敬德,吴跃进,童继平.2002.离子束介导水稻转基因植株后代的维管束和光合速率的研究.作物学报,28(3):401-405.
    120.郑不尧,李小云.1986.玉米不同叶位叶解剖结构的研究Ⅱ.不同叶位叶片维管束系统的观察.中国农业科学,6:41-48.
    121.郑盛华,严昌荣.2006.水分胁迫对玉米苗期生理和形态特性的影响.生态学报,4(26):1138-1143.
    122.郑盛华.2007.水分胁迫对玉米生理生态特性影响的研究.中国农业科学院硕士学位论文.
    123.中华人民共和国国国家统计局.2010.中国统计年鉴-2010.北京:中国统计出版社.
    124. Aloni, R.2001. Foliar and axial aspects of vascular differentiation:hypotheses and evidence. Plant Growth Regulation,20:22-34.
    125. Bosabalidis, A.M, Evert, R.F., Russin, W.A.1994. Ontogeny of the vascular bundles and contiguous tissues in the maize leaf blade. American Journal of Botany,81 (6):745-752.
    126. Botha, C.E.J., Cross, R.H.M, Van Bel, A.J.E, Peter, C.I.2000. Phloem loading in the sucrose-export-defective(SXD-1)mutant maize is limited by callose deposition at plasmodesmata in bundle sheath-vascular parenchyma interface. Protoplasma,214:65-72.
    127. Bozic, M.1993. The influence of crop density and nitrogen fertilizer on maize yield in conditions of intensive agriculture. Review of Researeh Wook at the Faeulty of Agriculture, Belgrade,38:7-18.
    128. Carena. M.J, Cross, H.Z.2003. Plant density and maize germlasm improvement in the northern corn belt. Maydica,48:105-111.
    129. Cheng, W.Y., Cheng, P.C., Walden, D.B.2001. The number of vascular bundles in 18 different cultivars of inbred, hybrid or commercial sweet corn. Maize Genetics Cooperation Newsletter, http://www. maizegdb. org/mnl/76/92cheng. html.
    130. Dengler, N.G.2001. Regulation of vascular development. Plant Growth Regulation 20:1-13.
    131.Donld, C.M.1968. The breeding of crop ideotype. Euphytice,17:193-211.
    132. Esechine, H.A., Rodringuez, V., Al-Asmi, H.2004. Comparison of local and exotic maize varieties for stalk lodging components in a desert climate. European Journal of Agronomy,21:21-30.
    133. Evert, R.F., Russin, W.A., Bosabalidis, A.M.1996. Anatomical and ultrastructural changes associated with sink_to_source transition in developing maize leaves. International Journal of Plant Science,157: 247-261.
    134. Fevert, L.R., Mierzwa, R.J., Escherich, W.1988. Cytochemical localization of phosphatase activity in vascular bundles and contiguous tissues of the leaf of Zea mays. Protoplasma,146:41-51.
    135. Fritz, E., Evert, R.F., Nasse, H.1989. Loading and transport of assimilates in different maize leaf bundles. Planta,178:1-9.
    136. Koizumi, K., Naramoto, S., Sawa, S., Yahara, N., Ueda, T., Nakano, A., Sugiyama, M., Fukuda, H. 2005. VAN3 ARF-GAP-mediated vesicle transport is involved in leaf vascular network formation. Development,132:1699-1711.
    137. Langale, J.A., Lane, B., Freeling, M., Nelson, T.1989. Cell lineage analysis of maize bundle sheath and mesophyll cells. Development of Biology,133 (1):128-139.
    138. Lucas, Borras, Mark, E. Westgate, Juan P. Astini, Laura Echarte.2007. Coupling time to silking with plant growth rate in maize. Field Crops Research,102:73-85.
    139. Mikio, N., Fang, Q., Lisa, A.B., Patrick, S.S.2003. Laser-Capture microdissection, a tool for the global analysis of gene expression in specific plant cell types:identification of genes expressed differentially in epidermal cells of vascular tissues of maize. American Society of Plant Biologists,15 (3):583-595.
    140. Muhammad Aslam, Iftikhar A. Khan, Muhammad Saleem, Zulfiqar Ali.2006. Assessment of water stress tolerance in different maize accessions at germination and early growth stage. Pakistan Journal of Botany,38(5):1571-1579.
    141.Rodrigo, G.S., Mark, E.W., Fernando, H.A.2007. Source/Sink ratio and the relationship between maximum water content maximum volume, and final dry weight of maize kernels. Field Crops Research,101:19-25.
    142. Ross, S.M., Tyree, M.T.1979. Mason and Maskell's diffusion analogue reconciled with a translocation theory. Annals of Botany,44:637-640.
    143. Russell, S.H., Evert, R.F.1985. Leaf vasculature in Zea mays. Planta,164:448-458.
    144. Sachs, T.2000. Integrating cellular and organismic aspects of vascular differentiation. Plant Cell Physiol 41:649-656.
    145. Sakaguchi, J., Fukuda, H.2008. Cell differentiation in the longitudinal veins and formation of commissural veins in rice (oryza sativa) and maize (zea mays). Plant Research,121:593-602.
    146. Shane, M.W., Mccully, M.E., Canny, M.J.2000. The vascular system of maize stems revisited: implication for water transport and xylem safety. Annals of Botany,86 (2):245-258.
    147. Sheri, A.M, Larry, L.D., Bruce, E.H.2004. Divergent selection for rind penetrometer resistance and its effects on European corn borer damage and stalk traits in corn. Crop science,44 (3):711-707.
    148. Sinha, N., Hake, S.1990. Mutant characters of Knotted maize leavesare determined in the innermost tissue layers. Development of Biology.141,203-210.
    149. Sowinnski, P., Rudzinska-Langwald, A., Kobus, P.2003. Changes in plasmodesmata frequency in vascular bundles of maize seedling leaf induced by growth at sub-optimal temperatures in relation to photosynthesis and assimilate export. Environmental and Experimental Botany,50:183-196.
    150. Thorsch, J.A.2000. Vessels in Zingiberaceae:A light, scanning and transmission microscope study. IAWA Journal 21:61-76.
    151. Trenton, F.S., Joseph, G.L.2006. Corn stalk response to plant population and the Bt-European corn borer trait. Agronomy Journal,99 (3):657-664.
    152. Trivett, C.L., Evert, R.F.1998. Ontogeny of the vascular bundles and contiguous tissues in the barley leaf blade. International Journal of Plant Science,159 (5):716-723.
    153. Turner, S.. Sieburth, L.E.2002. Vascular patterning. In:Somerville CR, Meyerowitz EM (eds) The Arabidopsis book. American Society of Plant Biologists, Rockville.
    154. Vollbrecht, E., Veit, B., Sinha, N., Hake, S.1991. The developmental gene Knotted-1 is a member of a maize homeobox genefamily. Nature,350,241-243.
    155. Williams, E.1974. Fine structure of vascular and epidermal plastids of mature maize leaf. Protoplasma, 79:395-400.
    156. Zimmermann, M.H.1983. Xylem structure and the ascent of sap. Berlin:Springer-Verlag.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700