用户名: 密码: 验证码:
荒漠旱生小灌木劈裂生长的形态发生及其适应机制的比较研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
内蒙古西鄂尔多斯荒漠区拥有非常丰富的灌木资源,它们对于干旱高温多风沙的恶劣气候环境不仅具有各自独特的适应方式,同时部分早生小灌木还具有共同的生长方式—劈裂生长。本文选取分布于该地区典型劈裂生长的植物—长叶红沙为研究对象,探讨劈裂生长发生过程的细胞学特征。同时,以同一生境下进行劈裂生长的长叶红沙、红沙以及无劈裂生长现象的半日花为研究对象,对其内源激素和膜系统保护酶进行比较研究,进一步探讨劈裂生长的生理调节机制以及对环境的适应性。研究结果如下:
     1.长叶红沙劈裂发生过程的细胞学特征与绵刺极其相似,劈裂生长首先在茎基部发生,当长叶红沙植株生长到一定阶段的时候,劈裂发生部位形成层活动不均匀,次生木质部的导管口径缩小,数量减少,木纤维含量增多,由此向内形成缢缩。之后缢缩部位前端的细胞不断解体,使得缢缩不断加深,相邻的两个缢缩部位通常要延伸到劈裂发生部位的中心位置连接在一起,整个维管束裂成多个单独的维管束,并相互分离。
     2.长叶红沙根、劈裂发生部位木质部中有异常的类似形成层的结构,木质部被几层扁平的细胞环分割成数轮,推测其与劈裂生长的发生密切相关。
     3.内源激素在长叶红沙不同部位含量不同,尤其在刚刚开始劈裂的过渡植株的劈裂发生部位IAA和ZR的积累量比根部大,可能共同调节这个部位细胞的生长和分裂,促进劈裂生长的发生。
    
    4.对同一生境条件下进行劈裂生长的长叶红沙、红沙和无壁裂生长现象的半
    日花内源激素的研究发现,长叶红沙在刚刚开始劈裂的过渡植株的壁裂发生
    部位累积IAA和ZR,红沙在刚刚开始劈裂的过渡植株的壁裂发生部位累积GA:;
    和ZR,半日花则是幼苗茎基部的激素含量较高,说明内源激素在生长旺盛部
    位含量较高,对劈裂生长的发生具有一定的调控作用。
    5.对内蒙古西鄂尔多斯荒漠区强旱生小灌木抗氧化酶系统的研究发现,它们
    的膜脂过氧化程度都不高,但体内SOD、POD、CAT的活力表现不同,说明不
    同植物对于干旱的环境条件具有不同的适应机制。
There are abundance of shrubs in Inner Mongolia West Erods region,which develop respective ways to adapt to the abominable conditions:drought,high temperature,sandy wind etc.Some of them have the same character-fissurate growth.In the study,we selected typical fissurate growth species living in the regionjleaumuria trigyna Maxim ,studied cell characters of fissurate growth .At the same time,we selected both fissurate growth species- Reaumuria trigyna Maxim, Reaumuria soongorical(Pall) Maxim and unfissurate growth species-Helianthemum soongoricum Schrenk ,studied the changes of the endogenous phytohormones content and the enzyme activity of the antioxidation system and wanted to know the physiological mechanism and adaptation of fissurate growth.The results are as follows:
    
    
    
    1 .Cell characters of fissurate growth in Reaumuria trigyna Maxim is very similar with that in potaninia mongolica. Fissurate growth starts from the base of stem.During certain phases of growth,the cambium layer of the fissurate part is asymmetric, the vessel of secondary xylem becomes smaller and less,while the amount of xylem fiber increases.The constriction forms here.Then the cells gradually disintegrate at the front of the constrition,the constrition gradually becomes deeper and splits here.One constrition will connect with the next one when they extend to the center of fissurate part.The whole vascular bundle splits into many single vascular bundles and they separate from each other.
    2.There is unnormal cambium layer structure in the fissurate place of Reaumuria trigyna Maxim. Xylem are divided into several rings by the several layers of flat cells. We think it can play a role in fissurate growth.
    3.The contents of endogenous phytohormones in the cells of different parts are different,especially in the fissurate place,the contents of IAA ,ZR are more than that in the root,which probably adjust the split of the cells in the place and accelerate the fissurate growth.
    4. The endogenous phytohormones of fissurate growth species-Reaumuria trigyna Maxim, Reaumuria soongorical(Pall) Maxim and unfissurate growth species-Helianthemum soongoricum Schrenk living in the same place was studied.The contents of IAA, ZR are higher in the fissurate place of Reaumuria trigyna Maxim; The contents of GA3, ZR are higher in the fissurate place in Reaumuria soongorical(Pall.) but the content of endogenous phytohormones are higher in seedling of Helianthemum soongoricum Schrenk ,which illuminates endogenous phytohormones are higher in the actively growing parts and probably adjust the fissurate growth.
    5. The enzyme activity of the antioxidation system of xermorphic shrubs in Inner Mongolia West Erods region was studied. The extent of lipid peroxidation is not higher, but SOD POD CAT activity is different in different vegetation,which illuminates different vegetation has different adaptive mechanism to the droughty environment.
引文
[1] 马毓全主编,内蒙古植物志(第三卷),内蒙古人民出版社,呼和浩特,1989
    [2] 宋玉霞,于卫平等,贺兰山种10不同生活型植物的旱生结构研究,西北植物报,1997,17(5),61-68
    [3] 黄震英,吴鸿,胡正海,30种新疆沙生植物的结构及其对沙漠环境的适应性,植物生态学报,1997,21(6),521-530
    [4] 屠骊珠,内蒙古西部地区九种旱生植物叶的解剖结构研究,内蒙古大学学报,1982,13(4),485-491
    [5] FahnA,Plant anatomy,Third edition,Pergamon Press,Oxford England,1982
    [6] 王继和,吴春容,干旱荒漠区濒危植物绵刺生理生态学特性的研究,中国沙漠,2000,204,397-403
    [7] 高润宏,金宏,张巍等,阿拉善荒漠特有珍稀濒危植物绵刺克隆生长构型研究,干旱区资源于环境,2001,15(4),3-13
    [8] 候艳伟,王迎春,杨持,强旱生小灌木绵刺劈裂生长过程中内源激素含量变化的研究,植物生态学报,2004,(2),1-7.
    [9] 张明生,谢波,谈锋,水分胁迫下甘薯内源激素的变化与品种抗旱性的关系,中国农业科学,2002,35(5),498-501
    [10] 杨洪强,贾文锁,张大鹏,失水对苹果新根ABA含量和蛋白激酶活性的影响,园艺学报,2000,(27),79-84
    [11] 汤菊香,高扬帆 卫秀英,植物生长调节物质在抗旱中的作用,河南职技师院学报,1996,22-26
    [12] 束怀瑞,果树栽培生理学,北京,中国农业出版社,1993,111-137
    [13] 王三根,细胞分裂素在植物抗逆和延衰中的作用,植物学通报,2000,17(2),121-126
    [14] 陈立松,刘星辉,水分胁迫对荔枝叶片内源激素含量的影响,热带作物学报,1999
    [15] 中国科学院上海植物生理研究所,上海市植物生理学会编,现代植物生理学实验指南,科学出版社,1999
    [16] 王宝山,生物自由基与植物膜伤害,植物生理学通讯,1988,14(2),12-16
    [17] 崔素霞,王蔚,陈国仓,两种沙生植物内源激素、叶绿体膜脂肪酸组成和膜脂抗氧化系统酶类的季节变化,植物生态学报,2000,24(1),96-101
    [18] 沈文飚,叶茂炳,徐郎莱等,小麦旗叶自然衰亡过程中消除活性氧能力的变化,植物学报,1997,16(4),311-316
    [19] 崔素霞,王蔚,陈国仓,两种沙生植物内源激素、叶绿体膜脂肪酸组成和膜脂抗氧化酶类的季节变化,植物生态学报,2000,24(1),96-101
    [20] 张承烈,周瑞莲,陈国仓,芦苇耐脱水能力的生理生态学分析,植物生态学与地植物学学报,1992.16(4),311-316
    
    
    [21] 汤章城,植物对水分胁迫的反应和适应性Ⅱ植物对干旱的反应和适应性.植物生理学通讯,1983,4,1-7
    [22] 黄振英,吴鸣,胡正海,新疆10种沙生植物旱生结构的解剖学研究,西北植物学报,1995,15(6),56-61
    [23] 杨戈,干旱地区植物结构与水的关系,干旱区研究,1993,(3),16-20
    [24] 李广毅,高国,尹忠东,灰黄滨藜叶解剖结构与抗逆性研究,西北植物学报,1995,10(1),48-51
    [25] 蒋志荣,沙冬青抗旱机理的研究,中国沙漠,2000,20(1).71-74
    [26] Hsiao, T C, Plant responses to water stress, Plant Physiol 1973,24,519-570
    [27] 李德全,土壤干旱下不同小麦品种的渗透调节和渗透调节物质,植物生理学报,1992,18(1),37-44
    [28] Hsiao, T.C, Aceredo, E. Fereres and D.W. Heenderson, Water stress, growth and osmotic adjust, Phil. Zrans. R. Soc. Land. Ser. B. 1976,273,497-500
    [29] Marze leaf elongation: contionus measurement and close dependence on plant water stress, Science, 1970,24,519-521
    [30] 李德全,邹琦,土壤干旱下不同抗旱小麦品种的渗透调节和渗透调节物质,植物生理学报,1992,18(1),37-44
    [31] 汤章城,王育启等,钾在高粱苗水分亏缺时脯氨酸累积中的作用,植物生理学报,1984,10(3),209-215
    [32] Yoshiba Y, Kiyosue T, NakashimaK, Yamaguchi-Shinoxaki K Regulation of levels of proline as an osmloyte in pians under water stress, Plant Cell Physiol, 1997, 38(10),1095-1102
    [33] Wood AJ, Saneoda H, Rhodes D, Joly RJ. Betaine aldehyde dehydrogenase in sorghum, Plant Physiol, 1996,110(4),1301-1308
    [34] 景蕊莲,昌小平,变水处理条件下小麦幼苗的甜菜碱代谢与抗旱性的关系,作物学报,1999,25(4),494-498
    [35] 郭卫东,沈向,李嘉瑞等,植物抗旱分子机理,西北农业大学学报,1999,27(4),102-107
    [36] Ngram J, Bartels D, The molecular basis of dehydration tolerance in plants, Annual Review of Plant Physiology and Plant Molecular Biology 1996,47,377-403
    [37] 侯采霞,汤章城,钾离子对盐诱导菠菜碱积累的影响,植物生理学报,1984,24(2),131-135
    [38] 余叔文,汤章城,主编.植物生理与分子生物学(M).北京:科学出版社,1999,476-492
    [39] 汤学军,王康,激动素和抗坏血酸保护受冷害苗细胞膜和促进SOD合成的效应,植
    
    物学报,1993,增刊,45-49
    [40] 细胞分裂素在植物抗逆和延衰中的作用,植物学通报,2000,172,121-126
    [41] 王霞,候平,植物对干旱胁迫的适应机理,干旱区研究,2001,18(2),42-46
    [42] Zang, J.Davies, W.J.,Abscisic acid produced in dehydrating roots may enable the plant to measure the water status of the soil, Plant, cell Environ, 1989,12,73-81
    [43] 陈国仓,王洪亮,张承冽,河西走廊不同旱生植物内源激素和叶水势的比较研究,中国沙漠,1994,14(1),17-21
    [44] 王洪春,植物抗性生理,植物生理学通讯,1981,7(6),72081
    [45] Przemysaw Wojtaszek. Oxidative burst:an early plant response to pathogen infection,Biochem, 1997,322,681-692
    [46] 蒋明义,杨文英,徐江,渗透胁迫诱导的水稻幼苗的氧化伤害,作物学报,1994,20(6),733-738
    [47] BOWLER C, VAN MONTAGU M, Superoxide dismutase and stress tolerance, Annu Rye plant Physiol Mol Bioi, 1992,43,83-116
    [48] COSTA P, BZHRIMAN N, FRIGERIO J M, Water-deficit-responsive proteins in maritime pine, Plant Mol Bioi, 1998,38,587-596
    [49] CKERSIE B D, BOWLEY S R, HARJANTO E, Water-deficit tolerance and field performance of transgenic Alfalfa overexpressing superoxide dismutase, Plant Physiol, 1996,111,1177-1181
    [50] 王金胜,郭栋生,丁起胜等,水分胁迫对玉米幼苗几种生理生化指标的影响及其与抗旱性的关系,山西农业大学学报,1992,12,(2),137-140
    [51] GAMBLE P E, BURKE J J, Effect of water stress on the chloroplast antioxidant system Alterations in glutathione reductase activity, Plant Physiol, 1984,76,615-621
    [52] 赵会贤,汪沛洪,郭蔼光,水分胁迫对小麦幼苗抗氧化物质含量的影响及其与抗旱性的关系,西北农业学报,1992,(3),37-40
    [53] 蒋明义,杨文英,徐江,渗透胁迫诱导水稻幼苗的氧化伤害,作物学报,1994,20(6),733-738
    [54] Maurel C, Aquaporins and water permeability of plant membranes, Annu Rev Plant Physiol Mol Bio1,1997,48,399-429
    [55] 俞嘉宁,山伦,lea蛋白与抗旱性,生物工程进展,2002,22(2),10-15
    [56] 周建明,朱群,白永延等,高等植物水分胁迫的基因及其表达调控,细胞生物学杂志,1999,21(1),1-6
    [57] Shinozaki, Keal, Gene express and signal transduction in water-stress
    
    response, Plant Physiol, 1997,115,327-334
    [58] Neill S, Jetal, Regulation of gene express during water deficit stress, Plant Growth Regulation, 1999,19,23-33
    [59] Inchi, Setal, Stress-inducible gene for 9-cis-Epoxycarotenoid dioxygenase involved abscisic acid biosynthesis under water stress in drought-tolerant Cowpea, Plant Physiol, 2000,123,553-562
    [60] Seki, Metal, Monitoring the expression pattern of 1300 Arabiopsis genes under drought and cold stress by using a full-length cDNA microarray, Plant Cell, 2001,13,61-72
    [61] 刘强,张勇,陈受宜,干旱、高盐及低温诱导的植物蛋白激酶基因,科学通报,2000,45(6),561-566
    [62] Kavi KishorPB. hong Z et al. Overexpression of the △' -proline-5-carboxylate synthetasse increases proline production and confers osmo tolerance in Plants. Plant Physiol, 1995,10 (81), 387-394
    [63] 骆爱玲,刘家尧,王学臣,梁峥等,不同基因型小麦和高粱的抗旱性与种芽甜菜碱醛脱氢酶的关系,植物学报,2001,43(1),108-110
    [64] IUCHI, s, YAMAGUCHI-SHINOZAKIK, Drought-inducible genes in the highly drought-tolerant cow pea:cDNA and analysis of the expression of the corresponding genes Plant Cell Physio1,1996,37(8),1073-1082
    [65] HEJX, WANGJ, LIANG H G, Effect of water stress on photochemical function and protein metabolism of photosystem Ⅱ in wheat leaves, Physiol Plant, 1995,(93) 771-777

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700