用户名: 密码: 验证码:
核电站蒸汽发生器动态安全评估体系与方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蒸汽发生器是核电站大型、关键设备,蒸汽发生器的结构完整性直接关系到核电站的安全可靠运行,因此核电站蒸汽发生器的动态安全评估是国内外相关科研机构一直在探讨的问题。与国外核电发达国家相比,我国目前蒸汽发生器动态安全评估在管理体系、评估技术和数据库建设方面都存在不少的问题。本文以加快蒸汽发生器动态安全评估数据库系统建设,提高数据库系统的服务水平为目标,利用知识网格在知识共享与协同方面的优势,以及本体在知识表达方面表现出来的特性,并借鉴多尺度的思想,建立了个在线的、支持知识共享、远程协作和动态交互的蒸汽发生器动态安全评估系统,为快速提供评估结果、正确制定维护决策提供有力支持。
     利用知识网格在知识共享与协同方面的优势,以实现设备动态安全评估的知识共享、远程协作和动态交互为目标,建立了基于知识网格的有多重知识、多组信息和多方面资源支持的动态安全评估体系结构。在该体系结构中,资源节点之间相互开放、共享资源信息,由网格技术服务平台统一管理和调度,为不同企业、制造厂商、科研院所等提供其所需的知识服务。
     根据目前蒸汽发生器动态安全评估中存在的问题及实际需求,提出了基于多尺度的蒸汽发生器动态安全评估方法。多尺度思想的应用使得蒸汽发生器动态安全评估焦点能够集中在对蒸汽发生器安全、可靠运行有重要影响的关键核心部件上,提高了蒸汽发生器动态安全评估工作的经济性、适度性和均衡性。
     针对蒸汽发生器动态安全评估领域在知识表达和信息组织等方面存在的问题,将本体技术引入到该领域的概念建模中来,提出了蒸汽发生器动态安全评估知识本体表达S-F-P-A模型,对基于本体的蒸汽发生器动态安全评估知识本体分类体系和表达方法进行了研究,在一定程度上规范了蒸汽发生器动态安全评估领域知识的描述,实现了领域内知识的重用、共享和交互,从而为实现蒸汽发生器动态安全评估的远程协作、知识共享提供了可能。
     在上述研究的基础上,设计并开发了蒸汽发生器动态安全评估系统,建立了以实际应用为目标的蒸汽发生器动态安全评估系统功能模型,对系统的总体功能和数据库进行了设计,并展示了系统在国内某核电站的实际应用效果,验证了上述研究成果在蒸汽发生器动态安全评估工作中的可行性和实用性。最后,系统地总结了本文的主要研究成果,并指出了进一步的研究方向。
As the key component of nuclear power plant, the structural integrity of steam generator is closely linked with the realibility of the nuclear power plant. Many domestic and foreign research institutions are studying the dynamic security assessment for steam generator in nuclear power plant. Currently, compared with the countries with developed nuclear technology, China has great distance in Management System, assessment technology and database construction. In order to speed up the database construction of steam generator dynamic security assessment, and to improve the service level of database system, the knowledge grid, ontology and multi-scale are introduced into the traditional dynamic security assessment system. An on-line steam generator dynamic security assessment system for supporting knowledge sharing, remote cooperative and dynamic interaction is constructed by using the advanced information technologies.
     In order to realize knowledge sharing, remote cooperative and dynamic interaction in component dynamic security assessment, the system framework of dynamic security assessment supported by multi-knoledge, multi-information and multi-resources and based on knowledge grid is constructed. The resource nodes are open and assorting with each other, sharing the resource information, managing and dispatching are unified with grid technology service platform, the serving information is offered for different users, manufactures and research units.
     According to the actual demand and promblems in the steam generator dynamic security assessment, a steam generator dynamic security assessment method based on multi-scale is proposed, which makes the assessment focus on the key parts that has an important influence on the safety and reliable operation, and improves the economy, moderate degree and proportionality of the assessment.
     Aiming at the problems of knowledge expressing and information organizing in dynamic security assessment domain, the ontology is introduced into conception modeling for this domain. S-F-P-A dynamic security assessment knowledge expressing model of steam generator is created, and the ontology classification system and the knowledge representation method are introduced. Then the description of knowledge is standardized to some extent, which makes the knowledge reused, shared, commuted possible and brings a effective settlement method for realizing knowledge sharing and remote cooperative in steam generator dynamic security assessment.
     Based on the researches above, the system of steam generator dynamic security assessment is designed and developed, then the function model of steam generator dynamic security assessment system that for the practical application is constructed. The feasibility and practicability of the system are verified by practical application in a nuclear power plant.
     Finally, it summarized all the work and results achieved in this paper. The further research work to be developed is also put forward.
引文
[1]刘一舟,严智,叶琛等.蒸汽发生器检测技术的发展[J].压力容器,2010,(07):31-36+38.
    [2]KANG H O, SEO J K, KIM Y W, et al. Structural integrity confirmation of a once-through steam generator from the viewpoint of flow instability[J]. Journal of Nuclear Science and Technology,2007, 44(1):64-72.
    [3]LIAW, EMMETT, MURPHY, et al蒸汽发生器管子完整性的审批基础以及近期运行经验[J].国外核动力,2008,29(2):44-49.
    [4]刘彤.核电蒸汽发生器健康监测关键技术研究[D].郑州大学,2007.
    [5]严利民,楼巍,何国森.压水反应堆核电站的蒸汽发生器的可靠性及安全性[J].上海大学学报(自然科学版),2001,(05):431-433+437.
    [6]陶钧,魏文斌,李世伟.秦山核电站蒸汽发生器的老化管理[J].核动力工程,2008,(06):115-118.
    [7]KIM Y J, KWAK S L, LEE J S, et al. Integrity evaluation system of CANDU reactor pressure tube[J]. Ksme International Journal,2003,17(7):947-957.
    [8]MAEDA N, TAJIMA K. Research activities for nuclear power plant aging promoted by PLEC, JAPEIC, Japan[J]. Jsme International Journal Series B-Fluids and Thermal Engineering,2004,47(2): 358-362.
    [9]丁训慎.蒸汽发生器传热管的降质及对其完整性的评估[J].核安全,2009,(02):37-42.
    [10]杨堃,余紫群.根据涡流检查技术对传热管堵管进行完整性评价[J].无损检测,2007,(02):66-70.
    [11]朱光强,桂春,刘鸿运等.蒸汽发生器含轴向裂纹传热管的失效压力分析[J].压力容器,2009,(04):15-19.
    [12]YANG R C, LIU R L, LIU J G, et al. Analysis of Reverse Flow in Inverted U-Tubes of Steam Generator under Natural Circulation Condition[J]. Journal of Nuclear Science and Technology,2008, 45(12):1252-1260.
    [13]VALDES M, ROVIRA A, DURAN M D. Influence of the heat recovery steam generator design parameters on the thermoeconomic performances of combined cycle gas turbine power plants[J]. International Journal of Energy Research,2004,28(14):1243-1254.
    [14]MACHIDA H, YOSHIOKA N, OGO H. Structural integrity evaluation method for overheating rupture of FBR steam generator tube[J]. Nuclear Engineering and Design,2002,212(1-3):183-192.
    [15]CHANG Y S, KIM J M, HUH N S, et al. Structural integrity estimates of steam generator tubes containing wear-type defects[J]. Journal of Pressure Vessel Technology-Transactions of the ASME, 2008,130(3):-.
    [16]DUAN X J, KOZLUK M J, PAGAN S, et al. Structural Integrity Assessment of Steam Generator Tube by the Use of Heterogeneous Finite Element Method[J]. Journal of Pressure Vessel Technology-Transactions of the ASME,2008,130(4).
    [17]DIERCKS D R, MUSCARA J, SHACK W J. Steam generator tube integrity programfJ]. Nuclear Engineering and Design,1996,165(Compendex):143-149.
    [18]丁训慎,章成光.压水堆蒸汽发生器传热管完整性要求[J].核标准计量与质量,2001,(03):7-11.
    [19]张红斌,李守军,胡尧和等.国外关于蒸汽发生器传热管用Inconel 690TT研究现状[J].特钢技术,2003,(04):2-11.
    [20]余紫群.卧式蒸汽发生器传热管的腐蚀及完整性评价方法研究[D].南京理工大学,2007.
    [21]王俊,龚渊.浅论核电站蒸汽发生器传热管破裂事故与SG二次侧水质控制[J].核安全,2004,(03):11-14.
    [22]SON D, JUNG W, PARK D G, et al. Magnetic Sensor for the Defect Detection of Steam Generator Tube With Outside Ferrite Sludge[J]. IEEE Transactions on Magnetics,2009,45(6):2724-2726.
    [23]MASCARI F, VELLA G, WOODS B G, et al. Sensitivity analysis of the MASLWR helical coil steam generator using TRACE[J]. Nuclear Engineering and Design,2011,241(4):1137-1144.
    [24]RYU K W, PARK C Y, KIM H N, et al. Prediction of Fretting Wear Depth for Steam Generator Tubes Based on Various Types of Wear Scars[J]. Journal of Nuclear Science and Technology,2010, 47(5):449-456.
    [25]陈银强,桂春,王先元等.外来物对蒸汽发生器传热管微动磨损的分析研究[J].核动力工程,2011,(01):21-24+33.
    [26]MAJUMDAR S. Prediction of structural integrity of steam generator tubes under severe accident conditions[J]. Nuclear Engineering and Design,1999,194(1):31-55.
    [27]DIERCKS D R, SHACK W J, MUSCARA J. Overview of steam generator tube degradation and integrity issues[J]. Nuclear Engineering and Design,1999,194(1):19-30.
    [28]MOON S I, KIM Y J, LEE J H, et al. Optimum global failure prediction model of steam generator tube with two parallel axial through-wall cracks[J]. Journal of Pressure Vessel Technology-Transactions of the ASME,2005,127(2):123-128.
    [29]In-service inspection of pressurized water reactor steam generator tubes, Regulatory guide 1.83.
    [30]Bases for plugging degraded PWR steam generator tubes, Regulatory guide 1.121.
    [31]Assessment of Current Understanding of Mechanisms of Initiation, Arrest, and Reinitiation of Stress Corrosion Cracks in PWR Steam Generator tubing, NUREG/CR-5752, ANL-99/4.
    [32]Advanced NDE for Steam Generator Tubing, NUREG/CR-6638, ANL-99/9.
    [33]Pressure and Leak-Rate Tests and Models for Predicting Failure of Flawed Steam Generator Tubes, NUREG/CR-6664, ANL-99/23.
    [34]Bases for Predicting the Earliest Penetrations Due to SCC for Alloy 600 on the Secondary Side of PWR Steam Generators, NUREG/CR-6737.
    [35]Advanced Nondestructive Evaluation for Steam Generator Tubing, NUREG/CR-6746, ANL-01/21.
    [36]Steam Generator Tube Integrity Program, Seminar Report October 1999-March 2000, NUREG/CR-6511, ANL-01/26.
    [37]Validation on Failure & Leak-Rate Correlations for Stress Corrosion Cracks in Steam Generator Tubes, NUREG/CR-6774, ANL-01/34.
    [38]ANL CANTIA-A Computer Code for Steam Generator Integrity Assessments, NUREG/CR-6786, ANL-01/30.
    [39]Non-destructive and Failure Evaluation of Tubing from a Retired Steam Generator, NUREG/CR-6924, ANL-06/48.
    [40]Sensitivity Studies of Failure of Steam Generator Tubes during Main Steam Line Break and Other Secondary Side Depressurization Events, NUREG/CR-6935, ANL-04/04.
    [41]FLESCH B, COCHET B. Leak-before-break in steam generator tubes[J]. International Journal of Pressure Vessels and Piping,1990,43(1-3):165-179.
    [42]付平,胡培峰,聂学青等.大亚湾核电蒸汽发生器二次侧在役水压试验[J].东方电气评论,2003,(01):34-36.
    [43]KAWAMURA H, FUJIWARA K, KANBE H, et al. Applicability of chemical cleaning process to steam generator secondary side, (Ⅱ)-Effect of chemical cleaning on integrity of SG tubing under accelerated IGSCC conditions[J]. Journal of Nuclear Science and Technology,2005,42(3):275-288.
    [44]KAWAMURA H, FUJIWARA K, KANBE H, et al. Applicability of chemical cleaning process to steam generator secondary side, (Ⅲ)-Effect of chemical cleaning on long term integrity of steam generator tube after chemical cleaning process[J]. Journal of Nuclear Science and Technology,2006, 43(6):655-668.
    [45]FUJIWARA K, KAWAMURA H, KANBE H, et al. Applicability of chemical cleaning process to steam generator secondary side, (Ⅳ)-Comprehensive applicability evaluation of chemical cleaning and its effect on integrity of other structural materials other than steam generator tubes[J], Journal of Nuclear Science and Technology,2006,43(11):1344-1358.
    [46]LU B F, UPADHYAYA B R, PEREZ R B. Structural integrity monitoring of steam generator tubing using transient acoustic signal analysis[J]. IEEE Transactions on Nuclear Science,2005,52(1): 484-493.
    [47]ZHAO K, UPADHYAYA B R. Model based approach for fault detection and isolation of helical coil steam generator systems using principal component analysis[J]. Ieee Transactions on Nuclear Science,2006,53(4):2343-2352.
    [48]YOON B, YANG S, LEE H, et al. Detection and Mode Identification of Axial Cracks in the Steam Generator Tube of the Nuclear Power Plant Using Ultrasonic Guided Wave[J]. Journal of Nuclear Science and Technology,2010,47(8):754-759.
    [49]ARBEAU N, MACKENZIE P, LISTER D H. Possible on-line methods of removing oxide deposits from inside steam generator tubes[J]. Canadian Journal of Chemical Engineering,2005,83(3): 573-577.
    [50]CHOI J B, YEUM S W, KO H O, et al. Development of a web-based aging monitoring system for an integrity evaluation of the major components in a nuclear power plant[J]. International Journal of Pressure Vessels and Piping,2010,87(1):33-40.
    [51]LEE S M, KIM J C, CHOI J B, et al. Development of a web-based integrity evaluation system for primary components in a nuclear power plant[J]. Advances in Nondestructive Evaluation, Pt 1-3, 2004,270-273:2226-2231.
    [52]戴忠华,刘鹏,卢文跃等.大亚湾核电站的老化和寿命管理[J].核动力工程,2005,(s1):87-89+115.
    [53]申森.核电站老化管理和延寿的现状[J].核安全,2003,(02):45-47+61.
    [54]束国刚,陆念文.压水堆核电站关键金属部件的老化和寿命评估[J].中国电力,2006,(05):53-58.
    [55]王大林.基于可靠性的核电站设备维修和寿期管理研究[D].清华大学,2010.
    [56]黄卫刚,戴忠华,吴宇坤等.大亚湾、岭澳核电站寿期管理政策[J].中国核工业,2007,(11):32-33.
    [57]高立刚,王宗军,戴忠华.大亚湾核电站设备可靠性管理体系创新[J].核科学与工程,2006,(02):156-164.
    [58]刘鹏,薛飞,戴忠华等.轻水堆核电站奥氏体不锈钢铸件的热老化及其老化管理[J].核动力工程,2005,(S1):93-96.
    [59]Liu Yajin, Guo Jiang, Liu Peng, et al. Virtual Reality Based Nuclear Steam Generator Ageing and Life Management Systems.6th International Symposium on Neural Networks (ISNN 2009), Wuhan, China,2009, May 26-May 29:1230-1239.
    [60]Jiang GUO, Yajin LIU, Kaikai GU, et al. Ageing Management System of the Steam Generator of the Nuclear Power Plant[C]. Information Science and Engineering (ICISE),20091st International Conference on, Nanjing, China,26-28 Dec.2009:2266-2269.
    [61]Yajin Liu, Jiang Guo, Mei Wu, et al. Ageing and Life Management System of Nuclear Steam Generator[C]. Power and Energy Engineering Conference, PEEC2010, Wuhan, China,2010, September 10-11:584-587.
    [62]F Berman. From teragrid to knowledge grid[J]. Communication of the ACM,2001,44(11):27-28.
    [63]M. Cannataro, D. Talia. Knowledge grid:An architecture for distributed knowledge discovery[J], Communications of the ACM,2003,46(1):89-93.
    [64]H. Zhuge. A knowledge grid model and platform for global knowledge sharing[J]. Expert Systems with Applications,2002,22(4):313-320.
    [65]Zhuge Hai. Exploring Flows in the intelligent agent grid environment. In:T. Ishida, L. Gasser, and H. Nakashima(Eds.):MMAS2004, LNAI3446,2004.13-24.
    [66]Hai Zhuge. Soft-device inheritance in the knowledge grid. In:V. Gorodetsky, J. Liu, end V. A. Skormin(Eds.):AIS-ADM2005, LNA13505,2005.62-78.
    [67]Hai Zhuge. Active e-document framework ADF:model and tool[J]. Information & Management, 2003(41):87-97.
    [68]Hai Zhuge, Yenyan Li. Semantic profile-based document logistics for eooperative research[J]. Future Generation Computer Systems,2004(20):47-60.
    [69]Hai Zhuge, Xiang-Feng Luo. Knowledge map:Mathematical model end dynamic behaviors[J]. Journal of Computer Science & Technology,2005,20(3):289-295.
    [70]H. Zhuge. China's E-Science Knowledge Grid Environment [J], IEEE Intelligent Systems,2004,19 (1):13-17.
    [71]H.Zhuge. Resource Space Grid:Model, Method and Platform, Concurrency and Computation[J], Practice and Experience,2004,16 (14):1385-1413.
    [72]H. Zhuge and X. Shi. Toward the Eco-Grid:A Harmoniously Evolved Interconnection Environment[J], Communications of the ACM,2004,47 (9):79-83.
    [73]H. Zhuge. The Knowledge Grid[M], World Scientific,2004.
    [74]I. Foster. The Open Grid Services Architecture, Version 1.5[EB/OL]. http://www.ggf.org/ documents/GFD.80.pdf,2006-10-10.
    [75]Ian Foster, Carl Kesselman, Jeffrey M. Nick, Steven Tuecke. The Physiology of the Grid-An Open Grid Services Architecture for Distributed Systems Integration [EB/OL]. http://www. globus.org/research/papers/ogsa.pdf,2005-05-21.
    [76]M. Cannataro, D. Talia, P. Trunfio. Knowledge Grid:High performance knowledge discovery services on the grid. In:C. Alee(Ed.):GRID 2001, LNCS2242,2001.38-50.
    [77]WU Zhaohui, CHEN Huajun, XU Jiefeng. Knowledge base grid:a generic architecture for semantic web[J]. Journal of Computer science & Technoligy,2003,18(4):462-473.
    [78]Huajun Chen, Zhaohui Wu, Jiefeng Xu. Kb-Grid:towards building large-scale knowledge system in semantic web. In:V. Palade, R.J. Howlett, and L.C. Jain(Eds.):KES 2003, LNAI 2774,2003. 1381-1388.
    [79]Qi Gao, HuaJun Chen, Zhaohui Wu, et al. Semantic Rule service model:enabling intelligence on grid architecture. In:M. Li et al. (Eds.):GCC 2003, LNCS 3033,2003.727-735.
    [80]邓志鸿,唐世渭,张铭等Ontology研究综述[J],北京大学学报(自然科学版),2002,38(5):730-738.
    [81]Gruber T. Towards principles n of ontology used for knowledge sharing[J]. International Journal of Human-Computer Studies,1995,43(5/6):907-928.
    [82]Nechies R., Fikes R., Finin T., et al. Enabling Technology for Knowledge Sharing[J]. AI Magazine, 12(3),1991:36-56.
    [83]Mike Uschold. Knowledge level modeling:concepts and terminology[J]. The Knowledge Engineering Review, Vol.13(1),1998:5-29.
    [84]Guarino, N., Giaretta, P.1995. Ontologies and Knowledge Bases:Towards a Terminological Clarification. In N. Macs (ed.) Towards Very Large Knowledge Bases:Knowledge Building and Knowledge Sharing 1995. IOS Press, Amsterdam:25-32.
    [85]Gruber T R. A Translation Approach to Portable Ontology Specification[J]. Knowledge Acquisition, 1993,5:199-220.
    [86]Borst W N. Construction of Engineering Ontologies for Knowledge Sharing and Reuse[D]. University of Twente, Enschede,1997.
    [87]R. Studer, V. R. Benjamins, D. Fensel:Knowledge Engineering, Principles and Methods[J]. Data and Engineering,1998,25(1-2):161-197.
    [88]周福娜,文成林,陈志国等.基于多尺度指定元分析的多故障诊断方法[J].南京航空航天大学学报,2011,(S1):91-96.
    [89]张洪武,余志兵,王鲲鹏.复合材料弹塑性多尺度分析模型与算法[J].固体力学学报,2007,(01):7-12.
    [90]孙正华,李兆霞,陈鸿天等.考虑局部细节特性的结构多尺度模拟方法研究[J].特种结构,2007,(01):71-75.
    [91]阎军.超轻金属结构与材料性能多尺度分析与协同优化设计[D].大连理工大学,2007.
    [92]李兆霞,王滢,吴佰建等.桥梁结构劣化与损伤过程的多尺度分析方法及其应用[J].固体力学学报,2010,(06):731-756.
    [93]黎微.三塔混凝土斜拉桥多尺度建模及局部损伤分析[D].中南大学,2009.
    [94]郭力,李兆霞,陈志文.面向结构状态评估的多尺度损伤模型[J].东南大学学报(自然科学版),2010,(05):1047-1051.
    [95]李兆霞,王滢,吴佰建等.桥梁结构劣化与损伤过程的多尺度分析方法及其应用[J].固体力学学报,2010,(06):731-756.
    [96]郭江,曾洪涛,肖志怀.基于知识网格的电站协同维护决策支持系统探讨[J].电力系统自动化,2007,(04):85-90.
    [97]郭江,曾洪涛,李朝晖.面向水电站维护的分布式协同决策支持系统研究[J],中国电机工程学报,2005,25(15):127-132.
    [98]郭建文,于德介,刘坚等.基于知识网格的设备维护联盟知识共享模型[J].计算机集成制造系统,2010,(01):47-56.
    [99]H. Zhuge. Semantic Grid:Scientific Issues, Infrastructure, and Methodology[J], Communications of the ACM.2005,48(4):117-119.
    [100]H. Zhuge, X.Sun, et al. A Scalable P2P Platform for the Knowledge Grid[J], IEEE Transactions on Knowledge and Data Engineering,2005,17(12):1721-1736.
    [101]H. Zhuge. Semantics, Resource and Grid[J]. Future Generation Computer Systems,2004, 20(1):1-5.
    [102]郑文文,张楠.基于知识网格的知识服务系统构建研究[J].内蒙古科技与经济,2010,(10):64-65+67.
    [103]镇璐,蒋祖华.基于知识网格的知识供应模型[J].上海交通大学学报,2007,(01):45-50.
    [104]镇璐.基于知识网格的知识供应理论与技术[D].上海交通大学,2008.
    [105]郑伟,赵军.风险指引型设备分级方法研究[J].核科学与工程,2009,4:362-370.
    [106]赵军,童节娟,何旭洪.核电站风险指引设备分级的方法[J].清华大学学报:自然科学版,2007,47(3):449-452.
    [107]王继东.核电站物项分级及相关标准[J].核标准计量与质量,2008,(02):29-33.
    [108]黄卫刚,陈世均,戴忠华.核电站重要敏感性设备分析[C]//核电站重要敏感性设备分析.
    [109]IAEA. Safety Classification of Structures, Systems and Com-ponents in Nuclear Power Plants[S]. 2011.
    [110]ERICKSONKIRK M T, DICKSON T L. THE SENSITIVITY OF RISK-INFORMED REACTOR STRUCTURAL INTEGRITY ANALYSIS RESULTS TO VARIOUS INTERPRETATIONS OF WARM PRE-STRESS[M].2010.
    [111]严利民,楼巍,何国森.压水反应堆核电站的蒸汽发生器的可靠性及安全性[J].上海大学学报(自然科学版),2001,(05):431-433+437.
    [112]CIZELJ L, MAVKO B, VENCELJ P. Reliability of steam generator tubes with axial cracks[J]. Journal of Pressure Vessel Technology, Transactions of the ASME,1996,118(4):441-445.
    [113]万臻.斜拉桥结构可靠性评估及剩余寿命预测[D].西南交通大学,2006.
    [114]王大林.基于可靠性的核电站设备维修和寿期管理研究[D].清华大学,2010.
    [115]汪隆君.电网可靠性评估方法及可靠性基础理论研究[D].华南理工大学,2010.
    [116]高立刚,王宗军,戴忠华.大亚湾核电站设备可靠性管理体系创新[J].核科学与工程,2006,(02):156-164.
    [117]付平,胡培峰,聂学青等.大亚湾核电蒸汽发生器二次侧在役水压试验[J].东方电气评论,2003,(01):34-36.
    [118]IAEA CRP 12.10.14 《Strategy for Assessment of WWER Steam Generator Tube Integrity)) 2005.
    [119]FLESCH B, VIDAL P, CHABRERIE J, et al. Operating stresses and stress corrosion cracking in steam generator transition zones (900-MWe PWR)[J]. International Journal of Pressure Vessels and Piping,1993,56(2):213-228.
    [120]FLESCH B, COCHET B. Leak-before-break in steam generator tubes[J]. International Journal of Pressure Vessels and Piping,1990,43(1-3):165-179.
    [121]PITNER P, RIFFARD T, PROCACCIA H, et al. Probabilistic fracture mechanics code for PWR steam generator tube maintenance [C]//Probabilistic fracture mechanics code for PWR steam generator tube maintenance. Transactions of the 11the International Conference on Structural Mechanics in Reactor Technology,08/18-08/23/91, Tokyo, Japan. Publ by Atomic Energy Soc of Japan:301-301.
    [122]CIZELJ L, MAVKO B, RIESCH-OPPERMANN H, et al. Propagation of stress corrosion cracks in steam generator tubes[J]. International Journal of Pressure Vessels and Piping,1995,63(1): 35-43.
    [123]CIZELJ L, MAVKO B, VENCELJ P. Reliability of steam generator tubes with axial cracks[J]. Journal of Pressure Vessel Technology, Transactions of the ASME,1996,118(4):441-445.
    [124]MAVKO B, CIZELJ L. Failure probability of axially cracked steam generator tubes:a probabilistic fracture mechanics model[J]. Nuclear Technology,1992,98(2):171-177.
    [125]Liu Yajin, Guo Jiang, Liu Peng, et al. Virtual Reality Based Nuclear Steam Generator Ageing and Life Management Systems.6th International Symposium on Neural Networks (ISNN 2009), Wuhan, China,2009, May 26-May 29:1230-1239.
    [126]Jiang GUO, Yajin LIU, Kaikai GU, et al. Ageing Management System of the Steam Generator of the Nuclear Power Plant[C]. Information Science and Engineering (ICISE),2009 1st International Conference on, Nanjing, China,26-28 Dec.2009:2266-2269.
    [127]Yajin Liu, Jiang Guo, Mei Wu, et al. Ageing and Life Management System of Nuclear Steam Generator[C]. Power and Energy Engineering Conference, PEEC2010, Wuhan, China,2010, September 10-11:584-587.
    [128]KIM Y J, KWAK S L, LEE J S, et al. Integrity evaluation system of CANDU reactor pressure tube[J]. Ksme International Journal,2003,17(7):947-957.
    [129]CHOI J B, YEUM S W, KO H O, et al. Development of a web-based aging monitoring system for an integrity evaluation of the major components in a nuclear power plant[J]. International Journal of Pressure Vessels and Piping,2010,87(1):33-40.
    [130]LEE S M, KIM J C, CHOI J B, et al. Development of a web-based integrity evaluation system for primary components in a nuclear power plant[J]. Advances in Nondestructive Evaluation, Pt 1-3, 2004,270-273:2226-2231.
    [131]孙丽君.物流配送干扰管理问题的知识表示与建模方法[D].大连:大连理工大学,2011.
    [132]Natalya F, Noy, Deborah L, et al. Ontology Development 101:A Guide to Creating Your First Ontology[EB/OL]. http://www.ksl.stanford.edu/people/dlm/papers/ ontology-tutorial-noy-mcguinness-abstract.html,2007-10-7.
    [133]李丹丹.基于本体的知识表示及信息检索研究[D].西南交通大学,2011.
    [134]U schold M, Gruninger M. ONTOLOGIES:Principles, methods and applications[J], Knowledge Engineering Review,1996,11(2):93-155.
    [135]付相君,李善平,郭鸣.产品数据模型的本体知识表达[J].计算机辅助设计与图形学学报,2005,(03):570-577.
    [136]蔡盈芳.基于本体的航空产品知识库构建研究[D].北京交通大学,2011.
    [137]高在伟,吴江,刘卫红.本体在产品知识表达中的应用研究[J].计算机技术与发展,2007,(02):23-26+30.
    [138]阮志斌,倪益华.基于本体的产品知识表达模型和实例研究[J].精密制造与自动化,2005,(03):49-55.
    [139]Natalya F, Noy, Deborah L, et al. Ontology Development 101:A Guide to Creating Your First Ontology. http://www.ksl.stanford.edu/people/dlm/papers/on-tology-tutorial-noy-mcguinness-abstract.html,2007-10-7.
    [140]许楚銮.基于本体的设备维护知识表示与检索研究[D].湖南:湖南大学,2009.
    [141]A.Bernaras, I.Laresgoiti, N.Bartolome, et al. An Ontology for Fault Diagnosis in Electrical Networks. IEEE,1999:199-203.
    [142]Ivana R, Brigitte C M, Noureddine Z. A Mix Method of Knowledge Capitalization in Maintenance[J]. Journal of Intelligent Manufacturing,2008,19(3):347-359.
    [143]Kendall E F, Dutra M E. An introduction and UML Profile for the Web Ontology Language[EB/OL], http://www.omg.org/news/meetings/workshops/UML2002-Manual/07-2 A UML Profile for the Web Ontology Language OWL.pdf,2002.10
    [144]王洪伟.基于本体的元数据模型的建立研究[D].上海交通大学,2004.
    [145]Noy N F, and McGuinness D L. Ontology Development 101:A uide to Creating Your First Ontology Stanford Knowledge Systems Laboratory Technical Report KSL-01-05 and Stanford Medical Inform SMI-2001-0880, March 2001.
    [146]Tolvanen Juha, Pekka. Incremental Method Engineering with Modeling Tools:Theoretical Principles and Empirical Evidence[D], Jyvfiskylfi:University of Jyv-iskylfi,1998.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700