用户名: 密码: 验证码:
钢桥双轴疲劳理论及设计方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
构造细节的疲劳行为历来是钢桥研究的重点问题之一。近年来,钢桥发展迅速,新型结构形式、构造细节和制造工艺不断涌现。钢桥应用范围的扩大(大跨、高速、跨海、重载),导致结构所承受的外荷载种类和水平逐渐增加;随着钢桥建造水平的不断提高,人们对结构经济和美学性能要求逐渐增强;其必然导致结构构造细节及其结构响应日益复杂,材料的利用效率日益提高。这些因素将导致钢桥疲劳和断裂的可能性逐渐提高。
     目前,钢桥疲劳强度评定方法是基于名义应力法的构造细节法;该方法以实验结果分类为基本依据,对材料疲劳失效机理体现不足。一方面,该方法不能涵盖所有构造细节,对钢桥典型构造细节和特殊构造细节的估算能力不足。另一方面,从材料疲劳失效机理出发,钢桥构件局部疲劳失效区域处于复杂应力应变状态,仅考虑单轴循环荷载效应无法合理表达钢桥构件的疲劳性能。本文拟从材料多轴疲劳失效理论层面解构钢桥构造细节疲劳问题,以期形成可用于工程实践的钢桥构造细节双(多)轴设计、预测和评定方法。为此,本文展开了以下几个方面的研究工作:
     (1)分析了影响材料疲劳强度的因素对钢桥疲劳失效的影响,总结出钢桥疲劳失效的主要特征。研究结果表明,在合理抗疲劳设计状态下,钢桥疲劳失效是指,以结构服役过程中所承受的可变荷载(汽车、列车等)为主导因素,桥位处自然环境因素综合影响,导致的材料高周、低频疲劳问题。回顾了材料多轴疲劳强度评定准则,分析了其适用范围,选取应力准则作为钢桥疲劳失效的双(多)轴评定准则。
     (2)研究了规范中典型构造细节的评估方法,以及特殊构造细节疲劳失效的特征;研究成果表明,特殊构造细节疲劳行为预测失效与现有钢桥单轴疲劳强度评估方法的局限性有关。在探明典型构造细节和特殊构造细节疲劳失效的力学诱导因素和疲劳裂纹分布状态的基础上,结合材料抗疲劳设计理论,发现钢桥构件疲劳失效具有明显的多轴特征。进一步提出了,钢桥多轴疲劳失效需要解决的两个典型问题,形成了“第一类多轴疲劳”和“第二类多轴疲劳”概念。
     (3)回顾了疲劳强度评定的常用方法,比较分析了名义应力法、热点应力法和局部法的适用范围;结合钢桥材料疲劳特征提出,将局部法应用于钢桥构件疲劳强度预测是求解钢桥多轴疲劳强度的有效途径:从常用的局部法中优选出应力场强法作为钢桥多轴疲劳强度求解的研究对象。
     (4)分析、研究和阐述了传统应力场强法的局限性。针对于此,建立了改进应力场强法。改进应力场强法,采用临界距离法对疲劳损伤区域的描述建立了新的场径求解方法,采用函数拟合技术更新了传统应力场强法的权函数求解方法。
     (5)对比分析了求解构件局部应力应变场的解析法和弹塑性有限元方法。根据钢桥构件材料特性及受荷特征,选取合理的弹塑性有限元本构关系模型作为钢桥构件局部应力应变场求解方法。
     (6)采用钢桥构件疲劳实验分析了传统应力场强法和改进应力场强法的预测性能。研究结果表明,改进应力场强法具有较高的预测精度。
     (7)采用传统应力场强法和改进应力场强法预测了钢桥节点板的疲劳强度。在此过程中,建立了“等效寿命荷载组”和“等效场径”的概念。二者的计算结果均表明,在疲劳寿命保持不变的情况下,某个方向上循环荷载增大,将导致另外一个方向上的循环荷载减小。传统应力场强法、改进应力场强法计算结果分别呈线性分布、次分布。在此基础上,本文提出了计入双轴疲劳效应的节点板单轴设计公式。
Fatigue behavior of structure details is one of the key problems in the field of research of the steel bridge. In recent years, the steel bridge has developed rapidly, and new structure form, structure details and manufacturing technology of steel bridge are continuously emerging. The expansion of application scope of the steel bridge results in the increases of the kinds and level of load which the structures bear, such as long span, high speed, cross-sea, heavy load. With the increasing of construction level of steel bridge, the demand of economic performance and aesthetic properties is enhanced gradually, which will lead to the complexity of the structure and its mechanical response, correspondingly improve the utilization efficiency of materials. In this situation, the probability of fatigue and fracture of steel bridge will be significantly increased.
     At present, the classical assessment method of steel bridge fatigue strength is the structure detail method based on nominal stress method. This method is the evidence for the categorization of the fatigue tests of structure details, thus fatigue failure mechanism of materials is not reflected reasonably. On the one hand, this method can not include all kinds of structure details, and the ability of computational estimation of classical and special structure details of steel bridge is insufficient. On the other hand, the local fatigue failure region of steel bridge is in the complex stress-strain state. According to the fatigue failure mechanism of materials, so fatigue behavior of steel bridge component will not be estimated reasonably if the effect is only considered under the uniaxial load. The fatigue failure of steel bridge component is analyzed and discussed according with multiaxial fatigue method of materials in order to establish the multiaxial assessment method of steel bridge structure details which can be used in the engineering practice. Therefore, a series of research work is carried out as follows:
     (1) Factors influencing the material fatigue strength, which have an effect on the fatigue failure of steel bridge component, are analyzed, and main features of fatigue failure of steel bridge are summarized. Research results indicated that in the reasonable design state, fatigue failure of steel bridge refers to the high-cycle and low frequency fatigue problem which is caused by taking the variable load as dominant factors and comprehensive factors of the natural environment in the bridge position. Assessing criterion of multiaxial material fatigue strength is reviewed, and their scopes of application are discussed. And then the stress criterion is selected to evaluate steel bridge component fatigue strength.
     (2) The dissertation investigated assessment methods of classical steel structure details in the codes and the fatigue failure features of the special steel structure details. The research results showed that the prediction failure of special steel structure details is related to the limitation of the uniaxial assessment method in the code. From the perspective of the anti-fatigue design, based on the mechanical factors inducing the fatigue failure for classical and special steel bridge structure details and the distribution of the fatigue cracks, the research found that the fatigue failure has the significant multiaxial feature. According to this, two classical problems of fatigue failure are put forward, therefore the first kind and the second kind multiaxial fatigue problems are established.
     (3) The commonly used fatigue strength assessment methods are reviewed. And the application scope of nominal stress method, hot spot stress method, and local method are analyzed and discussed. Combined with the feature of steel bridge fatigue behavior, the dissertation proposed that the application of the local method to predicating the fatigue strength of steel bridge component is an effective approach to assess the multiaxial fatigue strength of the steel bridge. Stress field intensity method is selected as the research object of the steel bridge multiaxial fatigue strength assessment method.
     (4) Limitations of the traditional stress field intensity method are analyzed and expounded. The model of the stress field intensity method is improved to overcome limitations. The improved stress field intensity method established the new method of calculating field diameter by using the fatigue damage area of critical distance method, and the new approach to solving weight function by using function fitting technology.
     (5) Analytical method and elastic-plastic finite element method of solution to local stress-strain field are compared and analyzed. According to material properties and bearing loads feature of steel bridge, proper elastic-plastic finite element constitutive relationship model is selected to solve the local stress-strain field of steel bridge component.
     (6) The predictability of the traditional stress field intensity method and the improved stress field intensity method are verified by employing the fatigue strength of steel bridge fatigue tests. The research results show that the prediction precision of the improved stress field intensity method is significantly higher.
     (7) Fatigue strength of steel bridge gusset plate is predicted by using the traditional stress field intensity method and the improved stress field intensity method. In the solving process, equivalent life load group and equivalent field diameter models are established. The results show that when fatigue life is not changed, if the cyclic load of some direction increases, the cyclic load of another one will decrease. The steel bridge gusset plate predictions of traditional stress field intensity method points out the relation of cyclic load appear linear, and the relations of improved stress field intensity method appear parabolic. Based on this, the design formula of uniaxial load of steel bridge gusset plate is established.
引文
[1]钱冬生.钢桥疲劳设计[M].成都:西南交通大学,1986.
    [2]费希尔WJ.钢桥的疲劳和断裂—实例研究[M].北京:中国铁道出版社,1989.
    [3]格内尔TR.焊接结构的疲劳[M].北京:机械工业出版社,1988.
    [4]史永吉.面向21世纪焊接钢桥的发展[J].中国铁道科学,2001,22(5):1-10.
    [5]李小珍,任伟平,卫星,等.现代钢桥新型结构型式及其疲劳问题分析[J].钢结构,2006,21(88):50-55.
    [6]刘晓光.钢桥疲劳研究关键技术分析[J].钢结构,2007,22(5):7-9.
    [7]朱劲松,孟会林.公路钢桥精细化抗疲劳设计方法及其应用[J].桥梁建设,2009(03):44-47.
    [8]周胜利,林亚超.高速铁路钢桥的疲劳问题及构造处理[J].国外桥梁,1996(03):38-45.
    [9]冯云成,武星,卫星,等.珠江黄浦大桥北汊斜拉桥索梁锚固结构模型疲劳试验研究[J].公路,2009(10):312-316.
    [10]任伟平,强士中,卫星,等.湛江海湾大桥锚拉板式索梁锚固区疲劳试验[J].西南交通大学学报,2007,42(01):49-54.
    [11]刘永前,刘庆宽.斜拉桥索梁锚固结构疲劳性能的试验研究[J].石家庄铁道学院学报,2001,14(01):33-36.
    [12]张育智,李乔,满洪高.斜拉桥锚箱式索梁锚固区应力及传力途径分析[J].西南交通大学学报,2006,41(02):179-183.
    [13]王嘉弟,赵廷衡.斜拉桥钢箱梁索梁锚固区域应力应变分析[J].桥梁建设,1997(04):20-25.
    [14]刘庆宽,强士中,张强,等.斜拉桥耳板索梁锚固结构受力特性研究[J].中国公路学报,2002,15(01):72-75.
    [15]陶晓燕,余振生,刘晓光,等.西堠门大桥索梁锚固部位的受力分析及模型试验[J].中国铁道科学,2009,30(01):49-53.
    [16]陈开利,王天亮.南京长江二桥斜拉桥索梁锚固区模型疲劳试验研究[J].钢结构,2004,19(06):20-22.
    [17]李小珍,蔡婧,强士中,等.南京长江二桥南汊桥索梁锚固结构疲劳试验研究[J].工程力学,2005,22(01):223-228.
    [18]狄谨,周绪红,吕忠达,等.正交异性钢箱梁U型肋加劲板极限承载力试验[J].中国公路学报,2009,22(02):59-64.
    [19]王春生,冯亚成.正交异性钢桥面板的疲劳研究综述[J].钢结构,2009,24(09):10-13.
    [20]荣振环,张玉玲,刘晓光,等.大跨度斜拉桥正交异性板疲劳试验研究[J].钢结构,2009,24(05):12-16.
    [21]李莹,黄侨,孙永明.焊接钢桥腹板出平面变形疲劳问题的有限元分析[J].公路交通科技,2008,25(01):74-78.
    [22]任伟平,李小珍,李俊,等.大跨度钢桁梁主桁节点与横梁连接试验研究[J].钢结构,2007,22(5):27-30.
    [23]包立新,卫星,李俊,等.钢箱梁斜拉桥索梁锚固区的抗疲劳性能试验研究[J].工程力学,2007,24(08):127-132.
    [24]胡正民,王福惠,沈乃昶.焊接钢梁疲劳强度研究——铁路纵梁足尺疲劳试验[J].西南交通大学学报,1983,1(03):1-11.
    [25]王春生,钱慧.钢桥腹板间隙面外变形疲劳研究综述[C].//白云,石永久,王元清.中国钢结构协会结构稳定与疲劳分会2008年学术交流会论文集:中国钢结构协会结构稳定与疲劳分会2008年学术交流会暨纪念王国周先生诞辰九十周年大会.中国辽宁沈阳:《钢结构》杂志编辑部,2008:46-52.
    [26]侯文崎,叶梅新.铁路大跨度钢管混凝土拱桥拱肋管节点的疲劳性能研究[J].钢结构,2007,22(05):22-26.
    [27]高仁良,黄承逵,杨国贤.管节点国产化疲劳性能的试验研究[J].大连理工大学学报,1994,34(05):578-582.
    [28]沈祖炎,赵金城,童乐为.钢结构焊接方管节点疲劳性能研究[J].土木工程学报,1993,26(04):40-46.
    [29]陶晓燕,张玉玲,刘晓光.铁路钢桥整体节点双轴疲劳试验研究[J].中国铁道科学,2005,26(02):77-79.
    [30]缪龙秀,候炳磷,程育仁.疲劳强度[M].北京:中国铁道出版社,2000.
    [31]Suresh S.,王光中.材料的疲劳[M].北京:国防工业出版社,1999.
    [32]王珉.抗疲劳制造原理与技术[M].南京:江苏科学技术出版社,1999.
    [33]赵少汴,王忠保.抗疲劳设计方法与数据[M].北京:机械工业出版社,1997.
    [34]刘义伦.工程构件疲劳寿命预测理论与方法[M].长沙:湖南科学技术出版社,1997.
    [35]Lanza G. Strength of shafting subjected to both twisting and bending[J]. Transaction ASME,1886, 5(5):130-144.
    [36]Gough H G, Pollard H V. The strength metals under combined alternating stress[J]. Proc Inst Mech Engrs,1935,131(3):3-18.
    [37]Stulen F B. A fatigue criterion for multiaxial stresses[J]. Proc. ASTM,1954,54(9):822-838.
    [38]Carpinteri A, Spagnoli A. Multiaxial high-cycle fatigue criterion for hard metals[J]. International Journal of Fatigue,2001,23(5):135-145.
    [39]黄学增,高镇同.弯扭复合应力疲劳强度准则[J].机械强度,1985,4(04):36-41.
    [40]Marin J. Interpretation of fatigue strength combined stresses[J]. Institution of Mechanical Engineers,1956,3(4):184-194.
    [41]Sines G, Ohgi G. Fatigue criterion under combined stresses or strains[J]. Transaction ASME, J. Engng. Mater. Tech.,1981,103(2):82-90.
    [42]Crossland B. Effect of large hydrostatic pressures on the torsional fatigue strength of an alloy steel[C].//Proceeding of the International Conference on fatigue of metals. London:Institution of Mechanical Engineers,1956:138-156.
    [43]Papadopoulos I V. Long life fatigue under multiaxial loading[J]. Int. J. Fatigue,2001,23(3): 839-849.
    [44]Susmel L, Tovo R, Lazzarin P. The mean stress effect on the high-cycle fatigue strength from a
    multiaxial fatigue point of view[J]. Int. J. Fatigue,2005,27(2):928-943.
    [45]Liu Y M, Mahadevan S. Multiaxial high-cycle fatigue criterion and life prediction for metals[J]. Int.
    J. Fatigue,2005,27(6):790-800.
    [46]Matake T. An explanation on fatigue limit under combined stress[J]. Bulletin of Japan Society of Mechanical Engineering(Bull JSME),1977,20(10):257-263.
    [47]Lee S B. A criterion for fully reversed out-of-phase torsion and bending[M]. Philadelphia:Mercian Society for Testing and Materials (ASTM),1985:553-568.
    [48]McDiarmid D L. A general criterion for high cycle multiaxial fatigue failure[J]. Fatigue Fract.Engng Mater Stuct.,1991,14(4):429-453.
    [49]Robert J L, Bahuaud J, Amzallag C. Comptes Renduces Conf. Sollicitatiaons de Service et Comportement en Fatigue[J]. Societe Francaise de Metallurgie et de Materiaux,1993,30(12):246-255.
    [50]Chen W R, Keer L M. An application of incremental plasticity theory to fatigue life prediction of steals[J]. Trans ASME, J. Engng Mater Technol,1991,113(4):404-410.
    [51]Chen X, Gao Q, Abel A. Evaluation of low cycle fatigue under non-proportional loading[J]. Fatigue Frac. Eng. Mater. Struct.,1996,19(10):1161-1168.
    [52]Chen X, Xu S, Huang D. A critical plan-strain energy density criterion for multiaxial low-cycle fatigue life under non-proportional loading[J]. Fatigue Frac. Eng. Mater. Struct.,1999,22(10):679-686.
    [53]Libertiny G Z. Short life fatigue under combined stresses[J]. J. Strain Analysis,1967,2(9):91-98.
    [54]Brown M W, Miller K J. A theory for fatigue failure under multiaxial stress-strain conditions[J]. Proc. Inst. Mech. Engs.,1973,30(12):745-755.
    [55]Kanazawa K. Cycle deformation of 1%CrMbv steel under out-of phase loads[J]. Fatigue Fract Engne.Mater Struct,1979,2(1):217-228.
    [56]Lohr R D, Ellison E G. A simply theory for low cycle multiaxial fatigue[J]. Fatigue Fract Engng. Mater Struct.,1980,3(3):1-17.
    [57]Soice D. Multiaxial fatigue damage models[J]. Transaction ASME. J. Eng.Mater. Tech.,1987, 109(9):293-298.
    [58]Lin H, Nayeb-Hashemi H. Effects of material anisotropy on cyclic deformation and biaxial fatigue behavior of Al-6061-T6[J]. American Society for Testing and Materials,1993,35(6):151-182.
    [59]Navarro A, Vallellano C. A constitutive model for elast-oplastic deformation under variable amplitude multiaxial cyclic loading [J]. Int. J. Fatigue.,2005,45(27):838-846.
    [60]Fatemi A, Socie D F. A critical plan approach to multiaxial fatigue damage including out-of-loading[J]. Fatigue Fract. Engng Mater. Struct.,1988,11(3):149-165.
    [61]Wang C H, Brown M W. A path-independent parameter for fatigue under proportional and non-proportional loading[J]. Fatigue Fract. Engng. Mater. Strct.,1994,16(3):1285-1298.
    [62]Garud Y S. A new approach to evaluation of fatigue under multiaxial loading[J]. Transaction ASME, J, Eng.Mater.Tech.,1981,103(5):118-125.
    [63]Ellyin F, Golos K. Multiaxial fatigue damage criterion[J]. Transaction ASME,J. Engng.Mater.Tech., 1988,110(3):63-68.
    [64]Glinka F, Shen G, Plumtree A. A multiaxial fatigue strain energy density parameter related to the critical fracture plane[J]. Fatigue Frac. Eng. Mater. Struct.,1995,18(1):37-46.
    [65]Glinka G, Plumtree A, Shen G. A multiaxial fatigue strain energy parameter related to the critical plane[J]. Fatigue Fract Engng Mater Struct,1995,18(1):37-46.
    [66]Glinka G, Wang G, Plumtree A. Mean stress effects in multiaxial fatigue[J]. Fatigue Fract. Engng. Mater. Struct.,1995,18(7):755-764.
    [67]Pan W F, Hung C Y, Chen L L. Fatigue life estimation under multiaxial loading[J]. Int. J. Fatigue,
    1999,21(8):3-10.
    [68]陈旭,高庆,孙训方,等.非比例载荷下多轴低周疲劳研究最新进展[J].力学进展,1997,27(03):313-325.
    [69]尚德广,王德俊,周志革.一种新的多轴疲劳损伤参量[J].东北大学学报,1997,18(02):133-137.
    [70]Farahani A V. A new energy-critical plane parameter for fatigue life assessment of various metallic materials subjected to in-phase and out-of-phase multiaxial fatigue loading conditions[J]. Int. J. Fatigue, 2000,22(3):295-305.
    [71]王雷,王德俊.一种随机多轴疲劳的寿命预测方法[J].机械强度,2003,25(02):204-206.
    [72]郑楚鸿.高周疲劳设计方法—应力场强法的研究[D].北京:清华大学,1984.
    [73]颜永年,俞新陆,郑楚鸿,等.复杂应力场试件的疲劳强度分析[J].清华大学学报(自然科学版),1986,26(02):84-95.
    [74]姚卫星.金属材料疲劳行为的应力场强法描述[J].固体力学学报,1997,18(01):38-48.
    [75]李玉春,姚卫星.复杂载荷下的应力场强法疲劳寿命估算[C].//柳春图.疲劳与断裂2000——第十届全国疲劳与断裂学术会议论文集:第十届全国疲劳与断裂学术会议.中国广州:中国力学学会,2000:98-101.
    [76]尚德广,王大康,李明,等.随机疲劳寿命预测的局部应力应变场强法[J].机械工程学报,2002,38(01):67-70.
    [77]管德清,易伟建.焊接钢结构疲劳强度预测的应力场强模型研究[J].长沙电力学院学报(自然科学版),2004,19(03):59-62.
    [78]郭伟彬,何玉怀,苏彬.应力场强法在旋弯及扭转疲劳极限分析中的应用[J].物理测试,2008,26(02):43-47.
    [79]郭平.基于场强法的焊接接头疲劳寿命预测及机匣寿命研究[D].南京:南京航空航天大学,2009.
    [80]傅祥炯.结构疲劳与断裂[M].西安:西北工业大学出版社,1994.
    [81]孟广喆,贾安东.焊接结构强度和断裂[M].天津:天津大学出版社,1984.
    [82]李志国.既有钢桥裂纹及加固研究[D].成都:西南交通大学,2006.
    [83]史永吉,杨妍曼,陈则淦.我国铁路钢桥疲劳破损事例[J].桥梁建设,1981(04):22-34.
    [84]National Transportation Safety Board. Collapse of U.S. Highway Bridge, Point Pleasant, West Virginia, December 15,1967[R]. Washington D.C.:U.S Department of Transportation,2008. [85] Fisher J. W.Fatigue and Fracture in Steel Bridges[M].New York:Wiley and Sons. Inc,1984.
    [86]严国敏.韩国圣水大桥的倒塌[J].国外桥梁,1996(04):47-50.
    [87]周修南,刘圣根,牛虹.圣水大桥倒塌的教训[J].钢结构,1997,12(01):21-27.
    [88]周修南,刘圣根,牛虹.圣水大桥倒塌的教训(2)[J].钢结构,1997,12(02):47-52.
    [89]魏建东.宜宾小南门大桥的抢修加固与恢复工程[J].公路,2003,04(34-38).
    [90]张秀成,谢奎,任毅勇.浅析“宜宾市小南门金沙江大桥”桥塌原因与修缮方案[J].河南城建高等专科学校学报,2002,11(02):15-17.
    [91]National Transportation Safety Board. Collapse of Ⅰ-35 Highway Bridge[R]. Washington D.C.:U.S Department of Transportation,2008.
    [92]孙莉,刘钊.2000-2008年美国桥梁倒塌案例分析与启示[J].世界桥梁,2009(03):46-49.
    [93]陈惟珍,KosteasD.钢桥疲劳设计方法研究[J].桥梁建设,2000(02):1-3.
    [94]潘际炎.焊接钢结构疲劳——国内外疲劳试验研究现状[J].中国铁道科学,1983,4(01):111-120.
    [95]潘际炎.我国铁路钢桥的发展[J].钢结构,1986,1(01):24-28.
    [96]潘际炎.对15MnVNq钢的性能分析与用于九江长江大桥的改进建议[J].钢结构,1987,1(01):55-63.
    [97]潘际炎.铁路栓焊钢桥疲劳设计理论的研究与革新[J].中国铁道科学,1999,20(02):35-41.
    [98]周尚猛,李亚东.国内外铁路桥梁规范抗疲劳设计方法分析[J].铁道标准设计,2010(3):46-49.
    [99]张玉玲,潘际炎,张建民,等.芜湖长江大桥钢梁细节疲劳强度的研究[J].中国铁道科学,2001,(?)22(05):15-21.
    [100]钱冬生.谈谈中国的铁路桥设计规范[J].桥梁建设,2009(02):9-14.
    [101]史永吉,杨妍曼,李之榕,等.铁路“老龄”铆接钢桥剩余寿命评估[J].中国铁道科学,1994,15(01):66-81.
    [102]潘际炎.铁路钢桥疲劳可靠度设计及铁路桥梁疲劳荷载谱研究[J].铁道学报,1992,14(04):58-66.
    [103]徐济民,涂卫东,唐国翌,等.铁路旧钢桥中疲劳裂纹扩展寿命的研究[J].铁道学报,1994,16(03):106-111.
    [104]王春生,聂建国.波形钢腹板组合梁疲劳性能研究进展[J].哈尔滨工业大学学报,2005,37(8):222-225.
    [105]Anami K, Sause R, Abbas H H. Fatigue of web-flange weld of corrugated web girders:1.Influence of web corrugation geometry and flange geometry on web-flange weld toe stresses[J]. International Journal of Fatigue,2005,27(3):373-381.
    [106]万鹏,郑凯锋.铁路桥梁正交异性钢桥面的疲劳特征[J].世界桥梁,2004(01):44-48.
    [107]Wolchuk R. Lessons from weld cracks in orthotropic decks on three European Bridges.[J]. Structural Engineering,ASCE,1990,116(1):75-84.
    [108]Wanchun J. Strength of steel orthotropic deck with trapezoidal shaped longitudinal stiffeners.[D]. Bethlehem:Lehigh University,2006.
    [109]崔海军.正交异性闭口加劲钢桥面板力学及疲劳性能研究[D].扬州:扬州大学,2009.
    [110]Battista R C, Pfeil M S, Eliane M L, et al. Fatigue life estimates for a slender orthotropic steel deck.[J]. Journal of Constructional Steel Research,2008,64(1):134-143.
    [111]Xiao Z. Fatigue cracks in longitudinal stiffeners of steel orthotropic deck[J]. International Journal of Fatigue,2006,28(3):109-416.
    [112]Paul A. Fatigue performance an design refinements of steel orthotropic deck panels on full-scale laboratory tests.[J]. Steel Structures,2005,35(5):211-223.
    [113]赵欣欣,刘晓光,张玉玲.正交异性桥面板设计参数和构造细节的疲劳研究进展[J].钢结构,2010,25(08):1-7.
    [114]童乐为,沈祖炎.正交异性钢桥面板疲劳验算[J].土木工程学报,2000,33(03):16-21.
    [115]童乐为,沈祖炎.正交异性钢桥面板疲劳验算时的结构分析[J].上海力学,1998,19(3):204-212.
    [116]张玉玲,辛学忠,刘晓光.对正交异性钢桥面板构造抗疲劳设计方法的分析[J].钢结构,2009,24(05):33-37.
    [117]王春生,冯亚成.正交异性钢桥面板的疲劳研究综述[J].钢结构,2009,24(09):10-13.
    [118]王玉春.美国焊接桥梁的疲劳破坏示例[J].铁道标准设计通讯,1984(03):45-48.
    [119]史永吉,杨妍曼,陈则淦.我国铁路钢桥疲劳破损事例[J].桥梁建设,1981(04):22-34.
    [120]Fisher J.W.,三木千寿,史永吉.美国焊接桥梁疲劳破坏事例[J].铁道建筑,1984(01):32-36.
    [121]张玉玲.大型铁路焊接钢桥疲劳断裂性能与安全设计[D].北京:清华大学,2005.
    [122]严琨.钢管混凝土拱桥节点应力集中及疲劳寿命研究[D].昆明:昆明理工大学,2007.
    [123]潘际炎.可靠性理论在铁路钢桥疲劳设计中的应用[J].中国铁道科学,1991,12(02):54-64.
    [124]幸坤涛.在役钢结构吊车梁疲劳可靠性与安全控制研究[D].大连:大连理工大学,2002.
    [125]李莹.公路钢桥疲劳性能及可靠性研究[D].哈尔滨:哈尔滨工业大学,2008.
    [126]程建平,霍永生.洛口黄河特大桥加固与检测[J].铁道建筑,2006(06):9-10.
    [127]史永吉,杨妍曼,曾志斌,等.既有铁路钢桥疲劳损伤的评定[C].//王元清,石永久.中国钢结构协会结构稳定与疲劳分会2000年学术交流会论文集:中国钢结构协会结构稳定与疲劳分会2000年学术交流会暨钢结构教学研讨会.中国湖南长沙:《钢结构》杂志编辑部,2000:228-251.
    [128]曾敏,戴公连.三主桁钢桁拱桥整体节点应力分析[J].山东交通学院学报,2009,17(02):36-42.
    [129]瞿伟廉,何杰,王文利.基于子模型法的钢桁桥整体节点动力响应分析[J].地震工程与工程振动,2009,29(03):95-100.
    [130]瞿伟廉,何杰.钢桥整体节点焊接残余应力三维有限元分析[J].桥梁建设,2009(04):28-31.
    [131]刘超.钢桥整体节点的疲劳性能研究[J].山西建筑,2009(09).
    [132]袁俊,张剑峰,孙立雄,等.铁路钢桥新型桥面整体节点的焊接[J].电焊机,2009,39(10):33-35.
    [133]卫星,李俊,强士中.钢桁梁整体节点典型构造细节的抗疲劳性能分析[J].公路交通科技,2009,26(07):85-89.
    [134]任伟平,李小珍,李俊,等.公轨两用钢桁桥轨道横梁与整体节点连接头的疲劳荷载[J].中国公路学报,2007,20(01):79-84.
    [135]李华基.轨道栋梁与整体节点联接疲劳性能研究[D].成都:西南交通大学,2006.
    [136]张萌.大跨度公轨两用轿轨道横梁与整体节点联接疲劳性能研究[D].成都:西南交通大学,2005.
    [137]任伟平.钢桥整体节点疲劳性能试验与研究[D].成都:西南交通大学,2004.
    [138]罗晋明.钢桥整体节点疲劳性能研究[D].成都:西南交通大学,2004.
    [139]李厚祥,熊健民,李厚民.基于断裂力学的钢梁整体节点疲劳寿命分析[J].湖北工学院学报,2002,17(04):23-27.
    [140]李厚民,熊健民,余天庆,等.钢桁梁整体节点模型强度分析[J].湖北工学院学报,2002,17(01):37-40.
    [141]王天亮,王邦楣,潘东发.芜湖长江大桥钢梁整体节点疲劳试验研究[J].中国铁道科学,2001(05):25-37.
    [142]桂国庆,余长征,潘际炎,等.钢桥钢梁整体节点疲劳试验研究[J].工程力学,2001,18(04):38-44.
    [143]熊刚,丁雪松,谢斌.大跨度钢箱梁斜拉桥索梁锚固结构的发展与应用[J].预应力技术,2009(01):20-23.
    [144]朱劲松,叶俊能.钢箱梁斜拉桥耳板式索梁锚固结构应力分布[J].哈尔滨工业大学学报,2009,41(06):150-154.
    [145]戴清.上海长江大桥索梁锚固区疲劳分析研究[J].世界桥梁,2009(S1):87-89.
    [146]邓德伦.郑州市中心区铁路跨线斜拉桥索梁锚固区应力研究[D].成都:西南交通大学,2009.
    [147]何武超.公轨两用斜拉桥钢锚箱式索梁锚固区足尺模型疲劳试验研究[D].上海:同济大学,2007.
    [148]郑舟军,刘宏,郭志敏.斜拉桥索梁锚固区足尺疲劳试验研究[J].实验室研究与探索,2007,26(11):232-236.
    [149]刘宏,汪双炎,徐海鹰.灌河桥锚拉板模型疲劳试验研究[J].钢结构,2007,22(05):18-21.
    [150]包立新,卫星,李俊,等.钢箱梁斜拉桥索梁锚固区的抗疲劳性能试验研究[J].工程力学,2007,24(08):127-132.
    [151]卫星,李小珍,李俊,等.钢箱梁斜拉桥锚拉板式索梁锚固结构的试验研究[J].工程力学,2007,24(04):135-141.
    [152]任伟平,强士中,李小珍,等.斜拉桥锚拉板式索梁锚固结构传力机理及疲劳可靠性研究[J].土木工程学报,2006,39(10):68-73.
    [153]卫星,李小珍,强士中.湛江海湾大桥索梁锚固结构的疲劳试验研究[J].中外公路,2006,26(05):90-94.
    [154]李乔,唐亮,裴岷山,等.大跨径公路钢斜拉桥索梁锚固区疲劳试验荷载研究[J].公路,2004(12):7-10.
    [155]刘庆宽,王新敏,强士中.南京长江二桥南汊桥索梁锚固足尺模型试验研究[J].土木工程学报,2001,34(02):50-54.
    [156]万鹏,郑凯锋.铁路桥梁正交异性钢桥面的疲劳特征[J].世界桥梁,2004(01):44-48.
    [157]熊健民,叶勇,余天庆.基于正交异性钢桥面板的疲劳寿命分析[J].湖北工业大学学报,2003,18(04):10-13.
    [158]熊健民,叶勇,余天庆.正交异性钢桥面板的疲劳寿命评估[J].世界桥梁,2003(03):24-27.
    [159]童乐为,沈祖炎.正交异性钢桥面板纵肋现场对焊接头的疲劳性能[J].同济大学学报(自然科学版),1998,26(01):86-91.
    [160]童乐为,沈祖炎.开口纵肋的正交异性钢桥面板疲劳试验研究[J].中国公路学报,1997,10(03):59-65.
    [161]钱冬生.关于正交异性钢桥面板的疲劳——对英国在加固其塞文桥渡时所作研究的评介[J].桥梁建设,1996(02):8-13.
    [162]张玉玲,辛学忠,刘晓光.对正交异性钢桥面板构造抗疲劳设计方法的分析[J].钢结构,2009,24(05):33-37.
    [163]余波,邱洪兴,王浩,等.正交异性钢桥面板构造细节疲劳性能及损伤演化研究[J].公路交通科技,2009,26(09):64-69.
    [164]范洪军,刘铁英.闭口肋正交异性板钢桥面的疲劳裂纹及检测[J].中外公路,2009,29(5):171-175.
    [165]荣振环,张玉玲,刘晓光.天兴州桥正交异性板焊接部位疲劳性能研究[J].中国铁道科学,2008, 29(02):48-52.
    [166]童乐为,沈祖炎.正交异性钢桥面板疲劳验算[J].土木工程学报,2000,33(03):17-21.
    [167]李俊,李小珍,任伟平,等.轨道横梁与整体节点连接的疲劳试验[J].西南交通大学学报,2006,41(03):372-375.
    [168]文峰,史永吉.采用热点应力法进行疲劳评定的研究[C].//王元清,石永久.中国钢结构协会结构稳定与疲劳分会2000年学术交流会论文集:中国钢结构协会结构稳定与疲劳分会2000年学术交流会暨钢结构教学研讨会.中国湖南长沙:《钢结构》杂志编辑部,2000:222-227.
    [169]胡正民,范文理.焊接钢梁腹板平面外变形疲劳问题的试验研究[J].铁道师院学报(自然科学版),1994,11(01):2-16.
    [170]张家元,范文理,丁望星,等.固有缺陷法在钢管混凝土拱桥管节点疲劳寿命中的应用研究[J].工业建筑,2009,39(01):128-137.
    [171]高仁良,陈廷国,眭骁,等.管节点疲劳裂纹扩展规律和寿命估算[J].大连理工大学学报,1995,35(02):222-226.
    [172]高仁良,陈廷国,眭骁,等.管节点疲劳裂纹扩展规律及断裂分析[J].中国海洋平台,1994(z1):210-215.
    [173]钱冬生.谈谈钢桥的疲劳和断裂[J].桥梁建设,2009(03):12-21.
    [174]周尚猛.基于有限元法的双轴疲劳行为分析[D].成都:西南交通大学,2007.
    [175]姚卫星.结构疲劳寿命分析[M].北京:国防工业出版社,2003.
    [176]王英玉,姚卫星.材料多轴疲劳破坏准则回顾[J].机械强度,2003,25(03):246-250.
    [177]郑立春,姚卫星.疲劳裂纹形成寿命预测方法综述[J].力学与实践,1996,18(04):9-14.
    [178]郑立春,姚卫星,张云阁.预测疲劳裂纹形成寿命的局部应力应变方法之评述[J].强度与环境,1996,15(02):12-18.
    [179]时新红,张建宇,鲍蕊,等.材料多轴高低周疲劳失效准则的研究进展[J].机械强度,2008,30(03):515-521.
    [180]卢汝生,成彤,王荣辉.桥梁结构疲劳特性分析发展历程与评定设计方法综述[J].公路交通技术,2004(03):49-52.
    [181]史光远.焊接结构设计与制造[M].郑州:黄河水利出版社,2006.
    [182]管德清.焊接结构疲劳断裂与寿命预测[M].长沙:湖南大学出版社,1996.
    [183]陈传尧.疲劳断裂基础[M].武汉:华中理工大学出版社,1991.
    [184]潘际炎.栓焊钢桥的研究[M].北京:中国铁道出版社,1983.
    [185]Gough H G, Pollard H V. Properties of some materials for cast crankshafts, with special reference to combined alternating stresses[J]. Proc.Institution of Automobile Engineers,1937,31(2):821-893.
    [186]Guest J J. The problem of combined stress[J]. Engineering,1943,15(4):21-23.
    [187]Lee S B. A criterion for fully reversed out-of-phase torsion and bending[M]. Philadelphia: American Society for Testing and Materials,1985.
    [188]Kakuno H, Kawada Y. A new criterion of fatigue of a round bar subjected to combined static and repeated bending and torsion[J]. Fatigue Eng Mater. Struct.,1979,02(02):229-236.
    [189]Lazzarin P. A stress-based method to predict lifetime under multiaxial fatigue loadings[J]. Fatigue Fract Engng. Mater. Struct.,2003,26(2):1171-1187.
    [190]Yokobori T. Low cycle fatigue of thin-walled hollow-cylinder specimens of mild steel in uniaxial and torsional tests at constant strain amplitude[J]. Int.J. Fracture mechanics,1965,01(03):3-7.
    [191]Pasco K J, Devilliers J W R. Low cycle fatigue of steels under biaxial straining[J]. J.strain analysis, 1967,02(09):117-125.
    [192]Andrews J M H, Ellison E G. A testing rig for cycling at high biaxial strains[J]. J.strain analysis, 1973,08(04):168-178.
    [193]Liberting G Z. Short-life fatigue under combined stress.[J]. J.strain analysis,1967,02(01):91-105.
    [194]Zamrik S Y, Goto T. The use of octahedral shear strain in biaxial low cycle fatigue[J]. Materials Technology on Inter-American Approach,1968,01(05):551-570.
    [195]尚德广,王德俊.多轴疲劳强度[M].北京:科学出版社,2007.
    [196]ASME. Cyclic plastic strain energy and fatigue of metals[S]. New York,1965.
    [197]ASTM. Fatigue under severe non-proportional loading[S]. New York,1985.
    [198]Ellyin F, Golos K. In-phase and out-of-phase multiaxial fatigue[J]. Transaction ASME, J. Engng. Mater.Tech.,1991,113(2):112-118.
    [199]ASTM. Multiaxial fatigue life estimation technique[S]. Philadelphia,1992.
    [200]ASME. Engineering significance of recent multiaxial research[S]. New York,1988.
    [201]Lee L Y, Ching Y J. Fatigue predictions for components under biaxial reversed loading[J]. J Testing Eval,1991,19:359-367.
    [202]Findley W N. Fatigue of metals under combinations of stress[J]. Tran. ASME,1957,79(1): 1337-1345.
    [203]Findley W N. A theory for the effect of mean stress on fatigue of metals under combined torsion and axial load or bending[J]. Transaction ASME, J.Eng Ind.,1959,81(2):301-306.
    [204]Kanazawa K, Brown M W, Miller K J. Low-cycle fatigue under out-of-phase loading conditions[J]. Transaction ASME, J. Eng. Mater Tech.,1977,99(3):222-228.
    [205]Kandil F A, Brown M, Miller W. Biaxial low-cycle fatigue of 316 stainless of elevated temperature[J]. The Metals Society,1982,28(7):205-210.
    [206]陈旭,许爽燕.多轴低周疲劳研究现状[J].压力容器,1997,14(03):238-241.
    [207]陈旭,安柯,齐荣,等.非比例载荷下304不锈钢低周疲劳寿命预测[J].机械强度,2001,23(03):316-318.
    [208]陈旭,焦荣,安柯,等.多轴低周疲劳寿命预测软件[J].机械设计,2003,20(02):22-24.
    [209]金丹,陈旭,金光洙.S45C钢轴向-扭转两阶段载荷下的疲劳寿命预测[J].天津大学学报,2005,38(07):569-572.
    [210]Itoh T, Nakata T, Sakane M. Nonproportional low cycle fatigue of 6061 Aluminum alloy under 14 strain paths.[C].//Proceeding of 5th InternationalConference on Biaxial/Multiaxial Fatigue and Fracture. Poland:Elsevier International Series on Structural Integrity,1997:173-187.
    [211]Borodii M V. Engineering method of determining nonproportionality parameter under biaxial fatigue loading[J]. ASME Pressure Vessels & Piping Conf. Montreal,1996,21(7):323-332.
    [212]ASTM. Criterion for high-cycle fatigue failure under multiaxial loading[S]. London,1989.
    [213]Carpinteri A, Spangnoli A. Multiaxial high-cycle fatigue criterion for hard metals[J]. Int J Fatigue, 2001,23(5):135-145.
    [214]Spangoli A. A new high-cycle fatigue criterion applied to out-of-phase biaxial stress state.[J]. International Journal of Mechanical Sciences,2001,43(6):2581-2595.
    [215]王雷,王德俊.一种随机多轴疲劳的寿命预测方法[J].机械强度,2003,25(02):204-206.
    [216]王雷,王德俊.多轴随机载荷下断裂平面的确定方法[J].机械工程学报,2003,39(03):90-93.
    [217]赵少汴.有限寿命疲劳设计法的基础曲线[J].机械设计,1999,11(11):5-7.
    [218]王英玉.金属材料的多轴疲劳行为与寿命估算[D].南京:南京航空航天大学,2005.
    [219]胡槿初.《铁路桥涵设计规范》的今昔(上)[J].铁道标准设计通讯,1990(01):7-12.
    [220]胡槿初.《铁路桥涵设计规范》的今昔(下)[J].铁道标准设计通讯,1990(02):23-28.
    [221]张玉玲,潘际炎.高速铁路钢桥疲劳设计研究[J].钢结构,1999,14(3):1-3.
    [222]潘际炎.铁路栓焊钢桥疲劳设计理论的研究与革新[J].中国铁道科学,1999,20(02):35-41.
    [223]铁道部大桥工程局勘测设计院.TB10002.2-2005,铁路桥梁钢结构设计规范[S].北京,中华人 民共和国铁道部,2005.
    [224]英国标准学会.钢桥、混凝土桥及结合桥(第十篇:疲劳设计实用规则)[M].成都:西南交通大学出版社,1986.
    [225]李亚东.桥梁工程[M].成都:西南交通大学出版社,2006.
    [226]李亚东.欧洲规范及其近期进展[J].桥梁建设,1999(03):58-62.
    [227]CEN. EN 1993-1-9:2005 Euro code 3:Design of steel structures, Part 1-9:Fatigue[S]. Brussels, 2005.
    [228]钱冬生.关于正交异性钢桥面板的疲劳——对英国在加固其塞文桥渡时所作研究的评介[J].桥梁建设,1996(02):8-13.
    [229]赵佃龙,方兴,白玲.正交异性钢桥面板构造细节改进的探讨[J].铁道建筑,2011(02):24-28.
    [230]曾志斌.正交异性钢桥面板典型疲劳裂纹分类及其原因分析[J].钢结构,2011,26(02):9-15.
    [231]Jun-Hyeok C, Dohwan K. Stress Characteristics and Fatigue Crack Behaviors of the Longitudinal Rib-to-Cross Beam Joints in an Orthotropic Steel Deck[J]. Advance in Structural Engineering,2008, 11(2):189-198.
    [232]史永吉,杨妍曼,陈则淦.我国铁路钢桥疲劳破损事例[J].桥梁建设,1981(04):22-34.
    [233]史永吉,杨妍曼,陈则淦.铁路焊接钢桥疲劳裂纹原因分析及其对策[J].铁道学报,1986,8(02):83-92.
    [234]Fisher J W, Keating B P. Distortion-induced fatigue cracking of bridge details with web gaps[J]. Journal of Constructional Steel Research,1989,12:215-228.
    [235]Jajich D, Schultz A E. Measurement and Analysis of Distortion-Induced Fatigue in Multi-girder Steel Bridges[J]. Journal of Bridge Engineering,2003,8(2):84-91.
    [236]Berglund E M, Schultz A E. Girder differential deflection and distortion-induced fatigue in skewed steel bridges[J]. Journal of Bridge Engineering,2006,11(2):278-285. [237] Connor R J, Fisher J W. Identifying Effective and Ineffective Retrofits for Distortion Fatigue Cracking in Steel Bridges Using Field Instrumentation[J]. Journal of Bridge Engineering,2006,11(6): 745-752.
    [238]胡正民,王福惠,沈乃昶.焊接钢梁疲劳强度研究——铁路纵梁足尺疲劳试验[J].西南交通大学学报,1983,1(03):1-11.
    [239]胡正民,范文理,刘金哲.上承式铁路桁架桥桥面系纵梁疲劳强度的研究[J].铁道师院学报,1994,11(02):1-22.
    [240]李莹,黄侨,孙永明.焊接钢桥腹板出平面变形疲劳问题的有限元分析[J].公路交通科技,2008,25(01):74-78.
    [241]王春生,成锋.钢桥腹板间隙面外变形疲劳应力分析[J].建筑科学与工程学报,2010,27(1):65-72.
    [242]周尚猛,李亚东.国内外铁路桥梁规范抗疲劳设计方法分析[J].铁道标准设计,2010(03):46-49.
    [243]陈惟珍,Kosteas D.钢桥疲劳设计方法研究[J].桥梁建设,2000(02):1-3.
    [244]姚卫星.应力场强法及其应用[C].//柳春图.疲劳与断裂2000——第十届全国疲劳与断裂学术会议论文集:第十届全国疲劳与断裂学术会议.中国广州:中国力学学会,2000:518-524.
    [245]陈科,王峰.结构有限寿命设计法——名义应力法[J].中国重型装备,2010(02):1-3.
    [246]曾春华.疲劳寿命预计方法的探计[J].机械强度,1981(02):26-38.
    [247]曾春华,伍义生.复杂载荷下疲劳寿命的估算方法[J].固体力学学报,1982(02):292-300.
    [248]郑立春,姚卫星.疲劳裂纹形成寿命预测方法综述[J].力学与实践,1996,18(04):9-14.
    [249]Kloth W. Atlas of the Stress Fields in Structural Components[M].1961.
    [250]王斌杰.高速列车结构热点应力疲劳评定方法及应用研究[D].北京:北京交通大学,2008.
    [251]T.Partanen E. Neimi.Hot spot stress approach to fatigue strength analysis of welded components: Fatigue test for steel plate thickness up to 10mm[J].Engng Mater.Struct.,1996,19(6):709-722.
    [252]Shin S B. The use of hot spot stress for estimating the fatigue strengths of welded componentsstrengths[J]. Steel Research,2000,71(11):466-473.
    [253]周张义,李芾.基于表面外推的热点应力法平板焊趾疲劳分析研究[J].铁道学报,2009(05):90-96.
    [254]贾法勇,霍立兴,张玉凤,等.热点应力有限元分析的主要影响因素[J].焊接学报,2003,24(3):27-30.
    [255]蒋志岩,古长江.船体结构疲劳评估的热点应力分析方法研究[C].//孙培廷.2004年大连国际海事技术交流会论文集(第一卷):2004年大连国际海事技术交流会.中国辽宁大连:辽宁省造船工程学会,2004:228-233.
    [256]武奇,邱惠清.焊接接头疲劳评定的结构热点法研究现状[J].焊接,2008(07):17-21.
    [257]艾智能.钢管混凝土拱桥节点疲劳寿命研究[D].成都:西南交通大学,2005.
    [258]严琨.钢管混凝土拱桥节点应力集中及疲劳寿命研究[D].昆明:昆明理工大学,2007.
    [259]满洪高,李乔,张育智.斜拉桥索梁锚固结构疲劳试验模型设计优化[J].东南大学学报(自然科学版),2007,37(2):301-305.
    [260]Janosch J J, Debiez S. Influence of the shape of undercut on the fatigue strength of fillet welded assemblies-application of the local approach[J]. Welding in the World,1998,41(12):350-360.
    [261]杨新岐,张艳新,霍立兴,等.焊接接头疲劳评定的局部法研究现状[J].焊接学报,2003,24(3):82-86.
    [262]Boukharouba T, Tamine T, Nui L. The use of notch stress intensity factor as a fatigue crack initiation parameter[J]. Engng. Fract.Mech,1995,49:503-512.
    [263]Verreman Y, Nie B. Early development of fatigue cracking at manual fillet welds[J]. Fatigue Fract. Engng.Mater. Struct,1996,19:669-681.
    [264]Lazzarin P, Tovo R. A notch stress intensity factor approach to the stress analysis of welds[J]. Fatigue Fract. Engng.Mater. Struct,1998,21:1089-1103.
    [265]Lazzarin P, Livieri P. Notch stress intensity factors and fatigue strength of Aluminum and steel welded joints[J]. Int. J. Fatigue,2001,23(2):225-232.
    [266]Atzori B, Meneghetti P, Sumel G. Estimation of the fatigue strength of light alloy welds by an equivalent notch stress analysis[J]. Int. J. Fatigue,2002,24(4):591-599.
    [267]Smith R A, Miller K J. Prediction of fatigue regimes in notched components[J]. Int. J. Mech. Sci, 1978,20(2):201-206.
    [268]Radaj D. Design and analysis of fatigue-resistant welded structures[M]. Cambridge(UK):Abington Publishing,1990.
    [269]Taylor D, Zhou W, Ciepalowicz A. Mixed-mode fatigue from stress concentrations:an approach based on equivalent stress intensity[J]. Int. J. Fatigue,1999,21(5):173-178.
    [270]Taylor D, Bologna P, Bel K. Prediction of fatigue location on a component using a critical distance method[J]. Int. J. Fatigue,2000,22(2):735-742.
    [271]Taylor D. Geometrical effects in fatigue:a unifying theoretical model[J]. International Journal of Fatigue,1999,21(9):413-420.
    [272]Ostash O P, Panasyuk V V. Fatigue process zone at notches[J]. Int. J. Fatigue,2001,23(10): 627-636.
    [273]Atzori B, Lazzarin P, Filippi S. Cracks and notches:analogies and differences of the relevant stress distributions and practical consequences in fatigue limit predictions[J]. Int. J. Fatigue,2001,23(4): 355-362.
    [274]Taylor D, Barrett N, Lucano G. Some new methods for predicting fatigue in welded joints[J]. Int. J. Fatigue,2002,24:509-518.
    [275]李玉春.复杂荷载下应力场强度抗疲劳设计方法研究[D].南京:南京航空航天大学,2000.
    [276]Yao W X. Stress field intensity approach for predicting fatigue life[J]. International Journal of Fatigue,1993,15(3):243-249.
    [277]Yao W X. On the notched strength of composite laminates[J]. Composite Science and Technology, 1992,45(7):105-110.
    [278]姚卫星,颜永年,俞新陆.预测复合材料缺口强度的场强法[J].复合材料学报,1994,11(01):67-72.
    [279]姚卫星.论疲劳尺寸系数£[J]机械强度,1994,16(3):69-71.
    [280]尚德广,姚卫星,王大康,等.随机疲劳寿命预测的局部应力应变场强法[J].机械工程学报,2002,38(1):67-70.
    [281]李玉春,姚卫星,等.应力场强法在多轴疲劳寿命估算中的应用[J].机械强度,2002,24(2):258-261.
    [282]姚卫星.金属材料疲劳行为的应力场强法描述[J].固体力学学报,1997,18(1):38-48.
    [283]李玉春,姚卫星,温卫东.应力场强法在多轴疲劳寿命估算中的应用[J].机械强度,2002,24(02):258-261.
    [284]达拉伊D.焊接结构疲劳强度[M].北京:机械工业出版社,1994.
    [285]郭平.基于场强法的焊接接头疲劳寿命预测及机匣寿命研究[D].南京:南京航空航天大学,2008.
    [286]郭海丁,武奇.基于场强法的平板法兰角焊缝接头的疲劳寿命估算方法[J].航空动力学报,2008,23(6):1082-1086.
    [287]Adib-Ramezani H, Jeong J. Advanced volumetric method for fatigue life prediction using stress gradient effects at notch roots[J]. Computational Materials Science,2007,39:649-663.
    [288]Adib H, Pluvinage G. Theoretical and numerical aspects of the volumetric approach for fatigue life
    prediction in notched component[J]. International Journal of Fatigue,2003,23:67-76.
    [289]姚晓鹏.拉扭循环加载下缺口件应力应变分析与寿命预测[D].兰州:兰州理工大学,2010.
    [290]舒陶,任宏光,郭克平.局部应力应变Neuber法与有限元求法的比较[J].弹箭与制导学报,2009,29(1):267-269.
    [291]刘克格.多轴加载下缺口件应力应变分析与寿命预测的研究[D].北京:北京工业大学;,2003.
    [292]傅衣铭,罗松南,熊慧而.弹塑性理论[M].长沙:湖南大学出版社,1996.
    [293]宋天霞,邹时智,杨文兵.非线性结构有限元计算[M].武汉:华中理工大学出版社,1990.
    [294]刘士光,张涛.弹塑性力学基础理论[M].武汉:华中科技大学出版社,2008.
    [295]殷绥域.弹塑性力学[M].北京:中国地质大学出版社,1990.
    [296]张汝清,詹先义.非线性有限元分析[M].重庆:重庆大学出版社,1990.
    [297]姜晋庆,张铎.结构弹塑性有限元分析法[M].北京:宇航出版社,1990.
    [298]杨伯源,张义同.工程弹塑性力学[M].北京:机械工业出版社,2003.
    [299]江见鲸.钢筋混凝土非线性有限元分析[M].西安:陕西科学技术出版社,1994.
    [300]孙炳楠,洪滔,杨骊先.工程弹塑性力学[M].杭州:浙江大学出版社,1998.
    [301]赵少汴.局部应力应变法及其设计数据[J].机械设计,2000(02):1-3.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700