用户名: 密码: 验证码:
风力发电机叶片扭转的动力特性数值分析与研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
风力机是风力发电系统中的关键设备,其动力特性直接影响风力发电系统的效率。为减少风力机叶端漩涡,降低叶轮的流动损失,提高风力机的输出功率,将更多的风能转化为电能,根据风能充分利用和实现分布式风力发电的需求,本文以某200W水平轴小型风力发电机为原始模型,应用基于N-S方程的3维稳态隐式解法、SST k-ω湍流模型、二阶迎风格式离散方法、压力-速度耦合的SIMPLE算法等技术手段,利用计算流体软件FLUENT对扭转叶片风力机的动力性能进行了数值模拟分析与研究。
     本文以原始风力机模型的叶根最大截面扭转角度为基准(0°),分别研究叶尖截面扭转角度γ=+2°,+1°,0°,-1°,-2°,-4°,…,-20°(“+”表示顺时针扭转,“-”表示逆时针扭转,叶根至叶尖的中间截面扭转角度用线性插值法确定)情况下,同一风速不同尖速比、同一尖速比不同风速下的风力机动力特性。得出了与风力机理论相吻合的叶片扭转角度对风力机动力放大的模拟结果和变化规律,验证了研究方法的正确性。在此基础上,选择不同风速下具有最大动力放大能力的扭转叶片(扭转-13°)风力机和原始模型进行对比,通过计算同一尖速比不同风速下的功率变化情况,证明该叶片在不同风速下皆有一定的动力放大作用。随后对原始风力机和叶片扭转-13°风力机叶片的压力特性、速度特性进行了对比分析,获得了风力机叶片扭转后叶端流场的变化。
     本文的研究再现了叶片扭转改变其气动性能和改变风力机的功率、压力、速度特性的客观规律,对小型风力发电机的叶片设计有着指导意义。本文的研究方法与成果可为其它类型的风力机叶片研究所参鉴。
Wind turbine is a critical equipment in wind power generation system, whose dynamic property impacts the efficiency of wind power generation system directly. This paper is a research which the blade of horizontal axis wind turbines is twisted. In order to decrease the vortex on the blade tip and the flow loss and bring the power augmentation, and is that the more wind energy is converted to the electric energy, based on using wind power fully and the need to achieve the aim of the distributional wind power generation, this paper take Nanjing tianneng FDP1.3-200W horizontal axis wind turbine as primitive model , apply technology method based on N-S equation, 3-D, steady, implicit solve, turbulence model of k-ωSST, discretization of SECOND ORDER UPWIND and pressure-velocity coupling of typical SIMPLE scheme, simulate dynamic magnification performance of horizontal axis wind turbine and horizontal axis wind turbine by software of CFD----FLUENT.
     In this paper ,we take the maximal cross section of blade root as a datum( 0°), to research dynamic property of wind turbine under the same wind speed and a range of tip speed ratio or the same wind speed and a range of wind speed, in the condition of different torsion angle of blade tip cross sectionγ= 2°, 1°, 0°, -1°, -2°, -4°,……, -,20°("+" expresses the clockwise torsion, "-" expresses the anticlockwise torsion, the centre cross section torsion angle is computed by linearity interpolation law) . At last , we arrive at a conclusion that wind torsion change regularity of power augmentation of a wind turbine. It accord with the change tendency of the wind turbine theory. Then compare the models of the torsion blade of maximal power amplification and primitive blade, compute the power change condition over the same tip speed ratio and a range of wind speed. The results shows twisting blade have the augmentation action surely. Subsequently the pressure performance and velocity performance of the wind turbine with the blade being twisted are compared with the primitive wind turbine, and we gained the change of the blade tip of the wind turbine with the blade being twisted. Thereby we analyze and disclosure the dynamic augmentation principle of the wind turbine with the blade being twisted.
     The research of this paper show that the twisted blade change the aerodynamic characteristics and the power, pressure, velocity performance of wind turbine, which is the rule. This has a guide meaning to the blade design of miniature wind turbine. And the research method and conclusion can be used by other kind of wind turbine also.
引文
[1]马凯,我国当前的能源形势与“十一五”能源发展,能源技术与管理,2006. 4
    [2]薛桁,朱瑞兆等,中国风能资源储量估计,太阳能学报,2001,2(22),167-170
    [3]王革华等,能源与可持续发展,化学工业出版社,2005.1
    [4]李传统,新能源与可再生能源技术,东南大学出版社,2005.9
    [5]袁玉琪,杨校生,风、风能、风力发电——21世纪新型清洁能源,太阳能, 2002年第2期
    [6]胡鞍钢,吕永龙,能源与发展,中国计划出版社,2001.3
    [7] Global wind energy council, Global wind energy markets continue to boom– 2006 another record year, 2006.
    [8]欧洲风能协会,国际绿色和平编著;中国资源综合利用协会可再生能源专业委员会,绿色和平中国编译.风力12:关于2020年风电达到世界电力总量12%的蓝图,北京:中国环境科学出版社,2004.5
    [9] D.G. Phillips, P.J. Richards, R.G.J. Flay,“Diffuser Development for a Diffuser Augmented Wind Turbine Using Computational Fluid Dynamics”, Department of Mechanical, Engineering, the University of Auckland, New Zealand
    [10] WANG JianWen, SUN Ke, XIN ShiHong, WU KeQi,QUAN JianJun,”The study of flow enhancement of Diffuser Augmented Wind Turbine”, The 3rd World Energy Conference&Renewable Energy Exhibition The 2rd Wind Power Asia, Beijing,China, October 31-November 4,2004.
    [11] Wang Jianwen, Sun Ke, Jia Ruibo, Wu Keqi,”The Mathematic Simulation of Diffuser Augmented Wind Turbines”, The 3rd World Energy Conference &Renewable Energy Exhibition The 2rd Wind Power Asia, Beijing,China, October 31-November 4,2004.
    [12] Shimizu, Y., Yoshikawa, T., and Mastumura, S, 1994,“Power Augmentation Effects of a Horizontal Axis Wind Turbine With a Tip Vane-Part1: Turbine Performance andTip Vane Configuration”, ASME J. Fluids Eng.,Vol.116,.pp287-292.
    [13] Shimizu, Y., Imamura, H., Matsumura, S., and Maeda, T.,1995,“Power Augmentation of a Horizontal Axis Wind Turbine Using a Mie-Type Tip Vane: Velocity Distribution Around the Tip of a HAWT Blade With and Without a Mie Type Tip Vane,”ASME J. Sol. Energy Eng.,117,pp.297-303.
    [14] Shimizu, Y, Maeda, T., Kamada, Y. ,and Seto, H.,2000,“Effects of Mie Tip Vane on Pressure Distribution of Rotor Blade and Power Augmentiom of Horizontal Axis Wind turbine ,”Proc. ISROMAC-8,Hawaii,1,pp.42-48.
    [15] Gyatt,G..W.,and Lissaman, P.B.S.,1985,“Development and Testing of Tip Devices for Horizontal Axis Wind Turbine,”Aero Vironment Inc., DOE/NASA/0341-1, NASA CR-174991, AV-FR-85/802.
    [16] Van Bussel, G.J.W, Use of The Asymptotic Acceleration Potential Method for Horizontal Asix wind turbine Rotor Aerodynamics , Journal of Wind Engineering and Industrial Aerodynamics v 39 n 1-3 May 1992 pp. 161-172,0167-6105.
    [17]杜朝晖,水平轴风力机地几个关键气动问题地探讨,上海气轮机,2002,3.No.1,pp30-35
    [18]叶枝全黄继雄陈严曹人靖,风力机新系列翼型气动性能研究,太阳能学报,2002.4,Vol23,No.2,211-216
    [19]江学忠,叶枝全,叶大均,二维叶片襟翼增升的试验研究,工程热物理学报,第19卷第2期1998年3月
    [20] Beom-Seok Kim,Jeong-Hwan Kim,Yu-Taek Kim,Chung-Do Nam,Young-Ho LEE; A CFD Study on the 3-D Flow Characteristics and Performance Analysis of 1MW HAWT, The 3rd World Wing Energy Conference,Beijing,2004.
    [21] Niels,N. Sorensen, Jess A. Michlesen, Schreck; Detailed Aerodynamic Prediction of the NREL/NASA Ames Wind Tunnel Tests Using CFD,2001 European Wind Energy Conference, Copenhagen, pp. 48-53
    [22] Guanpeng Xu, Laskshmi N. Sankar, 2000,“Computational Study of Horizational Axis Wind Turbines,”ASME J.Sol. Energy Eng.,122pp.35-39.
    [23]杨自栋,杜白石,风力机叶片三维线框图的设计和显示,西北农业大学学报,第25卷第6期1997年12月
    [24]肖劲松,倪维斗,姜桐,大型失速型风力机组的建模与仿真,太阳能学报,第18卷第1期1997年1月
    [25]陈严,胡士山,叶枝全,定桨距风力机气动优化设计优化方向分析,太阳能学报,1997,7,Vol.18,No.3,pp.290-296.
    [26]刘洁薇,谭发生,翁培奋,微小型飞机三维气动力特性的数值分析,上海大学学报(自然科学版),第8卷第2期2002年4月
    [27]袁新江学忠,翼型大攻角低速分离流动地数值模拟,工程热物理学报,1999,20(2),161-165
    [28]袁新徐利军叶枝全,水平轴风力机机翼大攻角分离流动地数值模拟,太阳能学报,1997,18(1),36-40
    [29]陈旭郝辉田杰杜朝晖,水平轴风力机翼型动态失速特性地数值研究,太阳能学报,2003,12,Vol24,No.6,735-740
    [30]马昊旻叶枝全包能胜曹人靖,水平轴风力机桨叶计算模态分析,太阳能学报,2002, 6 ,Vol.23 No.3
    [31] [日本]牛山泉,三野正洋著,汪淑贞译,小型风力机的设计与制作,能源出版社,1982.
    [32]李庆宜等,小型风力机设计,北京:机械工业出版社,1985.
    [33]陈云程,陈孝耀,朱成名,风力机设计与应用,上海科技出版社,1990.5
    [34]苏绍禹,风力发电机设计与运行维护,中国电力出版社,2003,1
    [35]张兆顺,崔贵香,流体力学,清华大学出版社,1999.2
    [36]潘文全,工程流体力学,清华大学出版社,1982,2
    [37]王福军,计算流体动力学分析-CFD软件原理与应用,清华大学出版社, 2004.9
    [38]韩占忠,FLUENT流体工程仿真计算实例与应用,北京理工大学出版社, 2004.7
    [39] [美]S.V.帕坦卡著,张政译,蒋章焰校,传热与流体流动的数值计算,科学出版社,1992
    [40]陶文铨,数值传热学(第二版),西安交通大学出版社,
    [41] Fluent Inc., FLUENT User’s Guide .Fluent Inc.,2003.
    [42] Fluent Inc., FLUENT User Defined Function Manual,FLUENT Inc.2003
    [43] Fluent Inc., GAMBIT Modeling Guide .Fluent Inc.,2003.
    [44]吴苇,谢军龙,吴克启,斜流压缩机转子与蜗壳匹配的内流分析,流体机械, 2004年第32卷第4期,12-15
    [45]陈默,刘红,袁新,振荡射流提高风力机叶型升力的PIV实验,工程热物理学报,July 2005,Vol.26,PP591-592.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700