用户名: 密码: 验证码:
低反动度附面层抽吸式压气机流动控制及设计方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近些年来,航空发动机和燃气轮机的迅速发展无一例外的都对压气机部件提出了更高压比、更高效率和稳定工作范围的要求。目前,由于材料和结构的约束,出于安全性考虑,压气机转子叶尖切线速度提升的幅度有限,要进一步提高气动负荷将会造成叶栅内严重的流动分离,降低叶栅效率甚至会引起叶片的失速颤振或压气机的喘振,导致严重的事故。基于这样的认识,本论提出了亚声速、高负荷低反动度附面层抽吸式压气机概念及相应的设计方法,通过理论分析和对设计实例的数值模拟、实验研究初步验证了该方法的可行性。
     本文首先通过理论分析阐述了低反动度附面层抽吸式压气机概念及相应的设计方法,同时对该类压气机在不同循环层面上的效率和损失评价方法进行了探讨和研究。采用低速重复级压气机实验数据,验证了本文所采用的数值方法模拟亚声速压气机流场的精度和可靠性。
     首先,将低反动度设计思想应用于低亚声速重复级压气机的改型,设计了一台高负荷的单级附面层抽吸式压气机,分别研究了低反动度动叶流场特点,及附面层抽吸对大折转角静叶流场和气动性能的影响;采用优化设计方法,对静叶前缘加速段及尾缘扩压段进行了细致的修型和调整,使具有附面层抽吸的静叶内流场结构得到进一步的优化,整级性能进一步提高;在设计背压下研究了单级低反动度压气机的变抽吸方案及非定常性能,结果表明,新设计的单级低反动度压气机具有良好的变工况性能;研究了在具有附面层抽吸的大折转角静叶中如何应用弯叶片技术,研究结果指出,由于高负荷静叶端区流动存在着强烈的二次流动,叶片正弯比反弯效果要好,叶片正弯使得端区负荷降低,有利于减少下端壁附面层抽吸槽的额外耗功;叶片反弯增加了端区叶片的负荷,加重了附面层的分离。
     在单级低反动度压气机成功设计的基础上,本文将单级概念推广到多级低反动度压气机概念,对某重型燃气轮机压气机的末三级进行了重新设计,在减少一级(减少4列叶栅)条件下,采用两级低反动度的附面层抽吸式压气机达到了比原三级压气机更高的性能指标。文中分析了这两级高亚声速进口的低反动度压气机的几何特点、总体性能及动静叶的详细流场,总结了改型设计存在的问题,并有针对性地提出了改进的设想和方向。
     为了验证低反动度概念的可行性和数值计算结果的可靠性,对单级低反动度附面层抽吸式压气机进行了实验研究。分别对静叶出口总压、节距平均参数沿叶高分布、等转速特性进行分析,通过对典型工况点下静叶出口流场分布特点和气动性能分析,探讨了附面层抽吸对大折转角扩压静叶内分离流动的控制机理。通过对实验测量数据与数值结果的对比,验证了低反动度附面层抽吸式压气机概念及其设计方法的可行性。
In recent years, the rapid development of aero-engine and gas turbine request higher pressure ratio, higher efficiency and stability for the design of compressor parts. Currently, the tip speed of compressor rotor could not been significantly improved due to the constraints of material, structure and security. Further improvement of aerodynamic loading will lead to large scale separation, low efficiency, stall, fltter or even surge for the compressor. Based on this understanding, a subsonic highly loaded low-reaction boundary layer suction compressor concept and its design method are proposed in this dissertation. It is validated through theoretical analisis, numerical simulation and experiment study.
     In this dissertation, the low-reaction boundary layer suction compressor concept and its design method are firstly described through theorectical analysis. The evaluation method of efficiency and loss for this new tyoe of compressor is discussed at different cycle levels. The accuracy and realability of the numerical software used to simulate the flow field of subsonic compressor is verified by the experiment data of a certain low speed two stage repeated compressor.
     A low speed subsonic two stage repeated compressor is redesigned into a single stage highly loaded compressor by using the low-reaction design concept. The flow field and design feature of the low-reaction rotor blade and stator cascade with boundary layer suction are all studied and analyzed. By using optimization method, the acceleration section near leading edge and the diffusion section near trailing edge of the stator cascade are modified and shaved which leads to a better flow field structure and higher performance. The stage performance with different boundary suction flow rate as well as the unsteady performance is studied under the condition of design back pressure. The numerical results predict that the single stage has a good off-design performance. The bowed blade technique is also studied by applied into the high turning angle stator cascades with boundary layer suction. The results show that positive bowed blades have a better effect than negative ones because of the strong secondary flow at the endwall region of the highly loaded stator cascades. The positive bowed blades reduce the endwall loading and thus the extra consumption work of the endwall boundary layer suction is decreased. The negative bowed blades raise the endwall loading and emphasis the boundary layer separation.
     On the basis of successful design procedure of single stage low-reaction compressor, the single stage low-reaction design concept is developed into a multi-stage low-reaction concept. By using the multi-stage design method, the last three stages of a certain heavy duty gas turbine is redesigned with two stages low-reaction boundary layer suction compressor. The stage counts are reduced by one while it contains one rotor blade and three stator rows. The two stages low-reaction boundary layer suction compressor has higher performance than the original three stages compressor. The geometry features, total performance and detailed flow field of the two stages is then analyzed. The open questions of the redesign work are summarized and the tentative ideas to improve them are given out.
     The experiment investigation of the single stage low-reaction boundary layer suction compressor is carried out to verify the feasibility of the low-reaction design concept and the accuracy of the numerical simulation. The total pressure contours and pitchwised averaged parameters along span at the stator exit as well as the speed line are analyzed. The flow control mechanism of boundary layer suction method is studied by the flow field and performance analysis of typical operation points. At last, the low-reaction boundary layer suction compressor concept and its design method is proved by the comparison of the experiment data and numerical results.
引文
1陈懋章.风扇/压气机技术发展和对今后工作的建议.航空动力学报. 2002, 17(1):1~15
    2江义军.推重比12~15发动机技术途径分析.航空动力学报. 2001, 16(2):103~107
    3梶昭次郎.压缩机技术の现状と将来の展望. GTST, 1995:22~88
    4 C. C. Koch, L. H. Jr. Smith. Loss Sources and Magnitudes in Axial-Flow Compressors. ASME Journal of Engineering for Power. 1976, 98(2):411~416
    5魏兵海,吴克启.高性能弯掠叶片及其对内流影响的研究概况.流体机械. 2001, 29(1):31~34
    6 J. L. Kerrebrock, D. P. Reijnan, W. S. Ziminsky and L. M. Smilg. Aspirated Compressors. ASME Paper. 97-GT-525
    7 D. P. Reijnen. Experimental Study of Boundary Layer Suction in a Transonic Compressor. PhD thesis, MIT, Cambridge, MA. 1997
    8 J. L. Kerrebrock, M. Drela, A. A. Merchant and B. J. Schuler. A Family of Designs for Aspirated Compressors. ASME Paper. 98-GT-196
    9 A. A. Merchant. Design an Analysis of Supercritical Airfoils with Boundary Layer Suction. Master’s thesis, MIT, Cambridge, MA. 1996
    10 A. A. Merchant. Design and Analysis of Axial Aspirated Compressor Stages. PhD thesis, MIT, Cambridge, MA. 1999
    11 A. A. Merchant, M. Drela and J. L. Kerrebrock. Aerodynamic Design and Analysis of a High Pressure Ratio Aspirated Compressor Stage. ASME Paper. 2000-GT-619
    12 A. A. Merchant. Aerodynamic Design and Performance of Aspirated Airfoils. ASME Paper. GT2002-30369
    13 B. J. Schuler, J. L. Kerrebrock, A. A. Merchant and M. Drela. Design, Analysis, Fabrication and Test of an Aspirated Fan Stage. ASME Paper. 2000-GT-618
    14 B. J. Schuler. Mechanical Design of an Experimental Aspirated Compressor. Master’s thesis, MIT, Cambridge, MA. 1998
    15 B. J. Schuler. Experimental Investigation of an Aspirated fan Stage. PhD thesis. MIT, Cambridge, MA. 2001
    16 J. L. Kerrebrock. The Prospects for Aspirated Compressors. AIAA2000-2472
    17王松涛,潜纪儒,冯国泰,王仲奇.壁面吸气抑制分离减少流动损失的研究.工程热物理学报. 2006,27(1):48~50
    18张华良.采用叶片弯/掠及附面层抽吸控制扩压叶栅内涡结构的研究.哈尔滨工业大学博士论文. 2007:150~174
    19方昌德.航空发动机百年回顾.中国航空学会航空百年学术论坛动力分论坛论文集(2). 2003
    20刘大响.航空动力发展的历史性机遇.航空发动机. 2005, 31(2):1~3
    21 W. Koop. The integrated high performance turbine engine technology (IHPTET) program. ISABE97-7175
    22张宝诚.航空发动机的现状和发展.沈阳航空工业学院学报. 2008, 25(3):6~10
    23 Air Force Research Laboratory. FY98 aero propulsion & power technology area plan. AD-A338965. 1998
    24 AIAA Position Paper. The versatile affordable advanced turbine engines (VAATE) initiative. AIAA. 2006
    25刘大响,金捷. 21世纪世界航空动力技术发展趋势与展望.中国工程科学. 2004, 6(9):1~8
    26林左鸣.战斗机发动机的研制现状和发展趋势.航空发动机. 2006, 32(1):1~8
    27刘大响,程荣辉.世界航空动力技术的现状及发展动向.北京航空航天大学学报. 2002, 28(5):490~496
    28刘火星,刘宝杰,陈懋章.国外新概念吸气式发动机的发展.航空制造技术. 2005, (3):32~38
    29李勇.航空发动机产品和新型航空动力发展分析.航空发动机. 2006, 32(2):1~4
    30陈懋章.中国航空发动机高压压气机发展的几个问题.航空发动机. 2006, 32(2):5~11
    31梁春华,刘红霞.美国超高效发动机技术计划.航空发动机. 2004, (4):58
    32梁春华.商用飞机发动机几项关键新技术.国际航空. 2002, (9):52~54
    33梁春华.绿色民用航空发动机关键技术.航空科学技术. 2005, (6):14~15
    34梁春华.未来的航空涡扇发动机技术.航空发动机. 2005, (4):54~58
    35梁春华,刘红霞. TECH56技术计划的发展.航空发动机. 2002, (4):21
    36孙广华. CFMI公司启动前沿航空推进(LEAP)技术计划.航空发动机. 2006,32(2):4
    37陈光.高涵道比涡轮风扇发动机发展综述.中国航空学会2007年学术年会:动力专题07. 2007
    38江泽民.对中国能源问题的思考.上海交通大学学报. 2008, 42(3):345~359
    39 A. W. Layne. The US Department of Energy’s Advanced Turbine Systems Program. ASME Paper. 98-GT-141
    40沈迪刚.国外燃气轮机发展途径及方向.航空发动机. 2000, (1):43~48
    41杨松鹤. GE公司重型燃气轮机系列发展分析.燃气轮机技术. 2000, 13(1):24~27
    42崔平,林汝谋,金红光等.世界燃气轮机市场厂商与产品性能.燃气轮机技术. 2004, 17(2):16~23
    43林公舒.探讨ABB公司燃气轮机产品发展的道路(上).燃气轮机技术. 2000, 13(4):7~12
    44林公舒.探讨ABB公司燃气轮机产品发展的道路(下).燃气轮机技术. 2001, 14(1):37~42
    45叶东平,薛恒,林公舒.大功率发电用燃机的压气机设计思想探讨.汽轮机技术. 2006, 48(4):247~249
    46糜洪元.国内外燃气轮机发电技术的发展现况与展望.电力设备. 2006, 7(10):8~10
    47吴爱中,杨其国.我国发展燃气轮机的问题及途径.汽轮机技术. 2001, 43(1):1~8
    48 C. H. Wu. A General Theory of Three-Dimensional Flow in Subsonic and Supersonic Turbomachines of Axial, Radial and Mixed-Flow Types. NACA TN2604. 1957
    49刘宝杰,邹正平.叶轮机计算流体动力学技术现状与发展趋势.航空学报. 2002, 23(5):394~404
    50程荣辉.轴流压气机设计技术的发展.燃气涡轮试验与研究. 2004, 17(2):1~8
    51 J. A. Dunham. R. Howell-Father of the British Axial Compressor. ASME Paper. 2000-GT-0008
    52高效节能发动机文集(第三分册)--风扇、压气机设计与试验.航空工业出版社. 1991:256~270
    53 M. Vollmuth. MTU to Manufacture Core Engine Component: High Pressure Compressor for PW6000. MTU Report. 2002
    54陈葆实,胡国荣,魏玉冰等.高马赫数、高负荷单级风扇设计和试验研究.航空发动机. 2000, (3):28~35
    55 M. J. Benzakein. Propulsion Strategy for the 21st Century-A Vision into the Future. ISABE Paper. ISABE-2001-1005
    56 L. H. Smith. Axial compressor aerodesign evolution at general electric. Journal of Turbomachinery. 2002, (124):321~330
    57陈光.波音787用发动机设计特点.北京航空航天大学. 2007
    58 A. R. Wadia. Some advances in fan and compressor aero at GE aircraft engines. Lecture at Tsinghua University. 2005
    59 D. Huff. Technologies for turbofan noise reduction. Manchester, United Kingdom. 10th AIAA/CEAS Aeroacoustics Conference. 2004
    60 P. Gliebe, W. Dodds. Practical technology solutions for future aircraft engine noise and emissions reduction. Monterey, California. AIAA/AAAF Aircraft Noise and Emissions Reduction Symposium. 2005
    61 W. K. Lord. Aircraft noise source reduction technology. Palm Springs. Airport Noise Symposium. 2004
    62 W. Waschka, K. Rüd, W. Humhauser, et al. ATFI-HDV: Design of a new 7 stage innovative compressor for 10-18 klbf thrust. ISABE Paper. ISABE-2005-1266
    63 U. L. H. Schmidt-Eisenlohr, O. E. Kosing. Turbo Fans with Very High Bypass Ratio but Acceptable Dimensions. ASME Paper. GT2008-50817
    64陈懋章,刘宝杰.风扇/压气机气动设计技术与挑战.航空制造技术. 2007, (11):36~40
    65 K. D. Broichhausen, K. U. Ziegler. Supersonic and Transonic Compressors: Past, Status and Technology Trends. ASME Paper. GT2005-69067
    66 A. Kantrowitz. The Supersonic Axial-Flow Compressor. NACA Report 974.1950
    67 J. F. Klapproth, G. N. Ullman, E. R. Tysl. Performance of an Impulse-Type Supersonic Compressor with Stators. NACA RME52B22. 1952
    68 H. Simon. A Contribution to the Theoretical and Experimental Examination of the Flow through Plane Supersonic Deceleration Cascades and Supersonic Compressor Rotors. ASME Paper. 73-GT-17
    69 H. E. Gallus, D. Bohn, K. D. Broichhausen. Unsteady Upstream Effects in Axial Flow Supersonic Compressor Stages. ASME Paper 79-GT-55
    70 K. D. Broichhansen, H. E. Gallus. Three-Dimensional Effects in Supersonic and Transonic Compressor Rotors-an Expenmental and Computational Study. ASMEPaper. 82-GT-276
    71 W. W. Wilcox. Investigation of Impulse-Type Supersonic Compressor with Hub-Tip Ratio of 0.6 and Turning toAxial Direction. NACA RME54B25. 1954
    72 W. K. Ritter, I. A. Johnsen. Performance of 24-Inch Supersonic Axial-Flow Compressor at Design TIP Speed of 1600 Feet per Second. NACA RME7L10. 1948
    73 F. A. E. Breugelmans. The Mach 2 Axial Flow Compressor Stage,ASME Paper. 75-GT-22
    74 F. A. E. Breugelmans. The Supersonic Axial Inlet Component in a Compressor. ASME Paper. 75GT-26
    75 B. Becker. Untersuchungen an stark umlenkendenüberschall verz?gerungsgitern und deren Einsatzm?glichkeiten in der Axialverdichterstufe. PhD thesis, RWTH Aaehen. 1970
    76 W. T. Thompkins. An Experimental and Computational Study of the Flow in a Transonic Compressor Rotor. GTL Report No.129. 1975
    77 A. H. Epstein. Quantitative Density Visualization in a Transonic Compressor Rotor. ASME Journal of Engineering for Power. 1977, (2):99~104
    78 H. Weyer, R. Dunker. Laser Anemometry Study of the Flow Field in a Transonic Compressor Rotor. AIAA Paper. AIAA-78-1
    79 W. J. Calvert, A. W. Stapleton. Detailed Flow Measurements and Predictions for a Three-Stage Transonic Fan. ASME Paper. 93-GT-9
    80 A. J. Strazisar. Investigation of Flow Phenomena in a Transonic Fan Rotor Using Laser Anemometry. ASME Paper. 84-GT-199
    81 W. B. Roberts. Axial Compressor Blade Optimization in the Low Reynolds Number Regime. AIAA Journal. 1979, 17(12):1361~1367
    82蒋浩兴. DERA的核心压气机发展验证计划.航空发动机. 2004, (4):56~58
    83 J. D. Bryce, M. A. Cherrett, P. A. Lyes. Three-Dimensional Flow in a Highly Loaded Single-Stage Transonic Fan. ASME Journal of Turbomachinery. 1995, (117):22~28
    84 P. R. Emmerson. Three-Dimensional Flow Calculations of the Stator in a Highly Loaded Transonic Fan. ASME Paper. 96-GT-546
    85 W. J. Calvert, P. R. Emmerson, J. M. Moore. Design, Test and Analysis of a High-Pressure-Ratio Transonic Fan. ASME Paper. GT2003-38302
    86 J. K. Schweitzer, J. W. Fairbanks. 18:1 Pressure Ratio Axial/CentrifugalCompressor Demonstration Program. Journal of Aircraft. 1983, 20(5):404~410
    87 W. A. Tessch, R. L. Pase. Design and Performance of a Low Aspect Ratio, High Tip Speed, Multi-Stage Axial Compressor. AIAA Paper. AIAA-83-1161
    88 H. D. Joslyn, R. P. Dring. Multi-Stage Compressor Airfoil Aerodynamics: Part I - Airfoil Potential Flow Analysis: Part II-Airfoil Boundary Layer Analysis. AIAA Paper. AIAA-86-1744
    89 E. Razinsky. The J402-CA-702-A Modern 1000Lb. Thrust RPV Engine. AIAA Paper. AIAA-88-3248
    90单鹏,陶德平.超音通流风扇发动机循环分析.推进技术. 1991, (2):31~39
    91 E. S. Reddy, E. P. Curtis, M. F. Malak. A performance enhancement tool for a multi-stage compressor. AIAA Paper. AIAA-96-2554
    92 A. Reischke, M. Jung, P. Breuhaus, et al. Numerical and Experimental Investigation of an Aerodynamically High-Loaded Axial Boiler Fan. ASME Paper. 2000-GT-0498
    93 C. J. Chesnakas, Wing F. Ng. Supersonic Through-Flow Fan Blade Cascade Studies Part I: Baseline Cascade. ASME Paper. 2000-GT-0493
    94 Todd Ninnemann, Wing F. Ng. Supersonic Through-Flow Fan Blade Cascade Studies Part II: Riblet Effects. ASME Paper. 2000-GT-0494
    95 Jens Friedrichs, Sven Baumgarten, Gunter Kosyna, et al. Effect of Stator Design on Stator Boundary Layer Flow in a Highly Loaded Single-Stage Axial-Flow Low-Speed Compressor. ASME Paper. 2000-GT-616
    96 Joachim Kurzke, Claus Riegler. A New Compressor Map Scaling Procedure for Preliminary Conceptional Design of Gas Turbines. ASME Paper. 2000-GT-0006
    97江义军.推重比12-15发动机技术途径分析.航空动力学报. 2001, 16(2):103~107
    98 V. E. Garzon, D. L. Darmofal. Using Computational Fluid Dynamics in Probabilistic Engineering Design. AIAA Paper. AIAA2001-2526
    99 S. R. Wellborn, R. A. Delaney. Redesign of a 12-Stage Axial-Flow Compressor Using Multistage CFD. ASME Paper. 2001-GT-0351
    100 Matthias Boese, Leonhard Fottner. Effects of Riblets on the Loss Behavior of a Highly Loaded Compressor Cascade. ASME Paper. GT2002-30438
    101 D. J. Malloy, A. T. Webb, D. S. Kidman. F-22/F119 Propulsion System Ground and Flight Test Analysis Using Modeling and Simulation Techniques. ASME Paper. GT2002-30001
    102 Alexander Karl, Roland Hansen, Michael Pfitzner. Computer Based Optimisation and Automation of Analysis and Design Processes in Aero Engine Development. ASME Paper. GT2002-30498
    103薛恒,林公舒.大功率燃气轮机压气机加级设计的可行性分析及有关试验研究.上海汽轮机. 2002, 12(4):32~37
    104 Frank Sieverding, Beat Ribi, Michael Casey, et.al. Design of Industrial Axial Compressor Blade Sections for Optimal Range and Performance. ASME Paper. GT2003-38036
    105王华青,陈懋章.高负荷高通流跨音压气机的研制和应用.航空动力学报. 2003, 18(2):176~180
    106 Bryce Roth, Chirag Patel. Application of Genetic Algorithms in the Engine Technology Selection Process. ASME Paper. GT2003-38482
    107 T. Q. Dang, M. P. C. van Rooij, L. M. Larosiliere. Design of Aspirated Compressor Blades Using Three-Dimensional Inverse Method. ASME Paper. GT2003-38492
    108 A. J. Medd, T. Q. Dang, L. M. Larosiliere. 3D Inverse Design Loading Strategy for Transonic Axial Compressor Blading. ASME Paper. GT2003-38501
    109 J. H. Horlock, J. D. Denton. A Review of Some Early Design Practice Using CFD and a Current Perspective. ASME Paper. GT2003-38973
    110 J. W. Douglas, S. M. Li, B. Song, et al. Effects of Freestream Turbulence on the Losses of a Highly Loaded Compressor Stator Blade. ASME Paper. GT2003-38604
    111 N. A. Cumpsty, E. M. Greitzer. Ideas and Methods of Turbomachinery Aerodynamics: A Historical View. AIAA Paper. AIAA2004-9176
    112 Lothar. Hilgenfeld, Michael Pfitzner. Unsteady Boundary Layer Development due to Wake Passing Effects on a Highly Loaded Linear Compressor Cascade. ASME Paper. GT2004-53186
    113 R. Yadav, C. R. Jugseniya, A. A. Pashilkar. Thermodynamic Analysis of Turbofan Engine. ASME Paper. GT2005-68244
    114 S. M. Savic, Marco A. Micheli, Andreas C. Bauer. Redesign of a Multistage Axial Compressor for a Heavy Duty Industrial Gas Turbine (GT11NMC). ASME Paper. GT2005-68315
    115 Koji Terauchi, Daisuke Kariya, Seiichirou Maeda, et al. Redesign of An 11-Stage Axial Compressor for Industrial Gas Turbine. ASME Paper. GT2005-68689
    116 Heiko K?rb?cher, Andreas Pfeiffer, Thomas Rothe. Development and Validation of the New Alstom GT24/GT26 Upgrade Compressor. ASME Paper. GT2005-68795
    117 Burak Kaplan, Eberhard Nicke, Christian Voss. Design of a Highly Efficient Low-Noise Fan for Ultra-High Bypass Engines. ASME Paper. GT2006-90363
    118刘科辉,单鹏,李娜等.弹用涡喷发动机加零级压气机设计方法研究.航空动力学报. 2006, 21(6):1098~1102
    119陈懋章,刘宝杰.中国压气机基础研究及工程研制的一些进展.航空发动机. 2007, 33(1):1~9
    120 Liu B J, Yu X J, et al. Application of SPIV in Turbomachinery. Experiments in Fluids. 2006, (40):621~642
    121肖翔.对转冲压压气机冲压叶轮内部流动分析研究.中国科学院工程热物理研究所博士论文. 2007
    122 M. G. Tuener, A. A. Merchant, Dario Bruna. Applications of a Turbomachinery Design Tool for Compressors and Turbines. AIAA Paper. AIAA2007-5152
    123 D. E. Van Zante, G. G. Podboy, C. J. Miller, et al. Testing and Performance Verification of a High Bypass Ratio Turbofan Rotor in an Internal Flow Component Test Facility. ASME Paper. GT2007-27246
    124 Duccio Bonaiuti, Abeetha Pitigala, Mehrdad Zangeneh, et al. Redesign of a Transonic Compressor Rotor By Means of a Three-dimensional Inverse Design Method: A Parametric Study. ASME Paper. GT2007-27486
    125 Hans M?rtensson, J?rgen Burman, Ulf Johansson. Design of the High Pressure Ratio Transonic 1? Stage Fan Demonstrator Hulda. ASME Paper. GT2007-27793
    126 A. D. Grosvenor, D. A. Taylor, J. R. Bucher, et al. Measured and Predicted Performance of a High Pressure Ratio Supersonic Compressor Rotor. ASME Paper. GT2008-50150
    127 C. Clemen, H. Schrapp, V. Gümmer. Design of a Highly-Loaded Four-Stage Low-Speed Research Compressor. ASME Paper. GT2008-50254
    128 Holger Klinger, Waldemar Lazik, Thomas Wunderlich. The Engine 3E Core Engine. ASME Paper. GT2008-50679
    129刘洪波,王荣桥.变循环发动机总体结构和模式转换机构研究.航空发动机. 2008, 34(3):1~5
    130邵卫卫.风扇/轴流压气机最大负荷设计技术探索.中国科学院工程热物理研究所博士论文. 2008
    131周拜豪,尹红顺,苏廷铭等.高性能前掠三级轴流风扇的设计与试验研究.燃气涡轮试验与研究. 2008, 21(2):1~7
    132邹正平,李宇,刘火星等.民用大涵道比涡扇发动机叶轮机某些关键技术.航空动力学报. 2008, 23(8):1504~1518
    133陈懋章,刘宝杰.风扇/压气机气动设计技术发展趋势—用于大型客机的大涵道比涡扇发动机.航空动力学报. 2008, 23(6):961~975
    134宋西镇,周盛,李秋实.提高跨声速风扇转子气动负荷系数途径.航空学报. 2009, 30(1):12~20
    135周正贵,汪光文.超声速风扇叶型设计研究.航空动力学报. 2009, 24(1):127~131
    136李雪松,顾春伟.有大分离的压气机高压级静叶分离涡模拟研究.工程热物理学报. 2009, 30(1):31~34
    137 R. J. Loughery, R. A. Horn, P. C. Tramm. Single Stage Experimental Evaluation of Boundary Layer Blowing and Bleed Techniques for High Lift Stator Blades. NASA CR-54573. 1971
    138 D. E. Culley, M. M. Bright, P. S. Prahst, et al. Active Flow Separation Control of a Stator Vane Using Surface Injection in a Multistage Compressor Experiment. ASME Paper. 2003-GT-38863
    139 T. W. Vandeputte. Effects of Flow Control on the Aerodynamics of a Tandem Inlet Guide Vane. Master’s thesis, Virginia Polytechnic Institute and State University, Blacksburg, Virginia. 2000
    140 A. J. Wennerstrom. Highly Loaded Axial Flow Compressor: History and Current Development. ASME Journal of Turbomachinery. 1990, (112):567~578
    141 J. L. Kerrebrock, A. H. Epstein, A. A. Merchant, et al. Design and Test of an Aspirated Counter-Rotating Fan. ASME Paper. GT2006-90582
    142 W. K. Lord, D. G. MacMartin, G. Tillman. Flow Control Opportunities in Gas Turbine Engines. AIAA Paper. AIAA-2000-2234
    143 N. McCabe. A System Study on the Use of Aspirated Technology in Gas Turbine Engines. Master’s thesis, MIT, Cambridge, MA.2001
    144 M. D. Hathaway. Self-Recirculating Casing Treatment Concept for Enhanced Compressor Performance. ASME Paper. GT2002-30368
    145 K. R. Kirtley, P. Graziosip, P. Wood, et al. Design and Test of an Ultra-LowSolidity Flow Controlled Compressor Stator. ASME Paper. GT2004-53012
    146 B. A. Leishman, N. A. Cumpsty, J. D. Denton. Effects of Bleed Rate and Endwall Location on the Aerodynamicbehaviour of a Circular Hole Bleed Off-Take. ASME Paper. GT2004-54197
    147 B. A. Leishman, N. A. Cumpsty. Mechanism of the Interaction of a Ramped Bleed Slot with the Primary Flow. ASME Paper. GT2005-68483
    148 K. Hubrich, A. B?lcs, P. Ott. Boundary Layer Suction via a Slot in a Transonic Compressor–Numerical Parameter Study and First Experiments. ASME Paper. GT2004-53758
    149 V. Gümmer, M. Goller, M. Swoboda. Numerical Investigation of Endwall Boundary Layer Removal on Highly-Loaded Axial Compressor Blade Rows. ASME Paper. GT2005-68699
    150 A. Hergt, R. Meyer, M. W. Müller, et al. Loss Reduction in Compressor Cascades by Means of Passive Flow Control. ASME Paper. GT2008-50357
    151 A. Hergt, R. Meyer, K. Engel. Experimental Investigation of Flow Control in Compressor Cascades. ASME Paper. GT2006-90415
    152 Y. Guendogdu, A. Vorreiter, J. R. Seume. Design of a Low Solidity Flow-Controlled Stator with Coanda Surface in a High Speed Compressor. ASME Paper. GT2008-51180
    153 Milan Matejka, Lukas Popelka, Pavel Safarik, et al. Influence of Active Methods of Flow Control on Compressor Blade Cascade Flow. ASME Paper. GT2008-51109
    154 B. Dobrzynski, H. Saathoff, G. Kosyna, et al. Active Flow Control in a Single-Stage Axial Compressor Using Tip Injection and Endwall Boundary Layer Removal. ASME Paper. GT2008-50214
    155周海,李秋实,陆亚钧.跨音风扇转子叶片抽吸气数值试验探索.航空动力学报. 2004, 19(3):408~412
    156张华良,王松涛,王仲奇.采用壁面吸气改善叶栅性能的数值研究.动力工程. 2006, 26(6):795~798
    157张华良,王松涛,王仲奇.端壁附面层抽吸对扩压叶栅内分离结构的影响.热能动力工程. 2006, 21(6):565~568
    158张相毅,周敏,王如根.叶片压力面到吸力面射流对其气动特性的影响.空气动力学学报. 2006, 24(2):152~156
    159周杨,邹正平,刘火星等.边界层吹吸气对高负荷扩压叶栅性能的影响.推进技术. 2007, 28(6):647~652
    160南向谊,刘波,靳军等.超声速压气机转子叶片吸力面抽气抑制附面层分离的机理.航空动力学报. 2007, 22(7):1093~1099
    161曹朝辉,王如根,周敏等.从压力面到吸力面开槽后叶栅特性的数值分析.航空动力学报. 2007, 22(5):814~817
    162邓昌清,胡骏.大转角压气机静子叶栅附面层吹吸数值研究.燃气涡轮试验与研究. 2007, 20(1):17~20
    163顾春伟,薛耀华,邓暤.压气机抽气级静叶吸力面抽气方式的研究.工程热物理学报. 2007, 28(4):574~576
    164葛正威,葛治美,朱俊强等.吸附式跨声速压气机叶栅流场数值模拟. 2007, 22(8):1365~1370
    165郭明,郑晓宇,周盛等. BVF在吹气控制压气机叶栅分离流中的应用.航空动力学报. 2008, 23(8):1498~1503
    166周敏,王如根,曹朝辉等.开槽位置和槽道结构对叶栅性能的影响.空气动力学学报. 2008, 26(3):400~404
    167罗建枫,朱俊强,卢新根.吸附式跨声速压气机参数化设计研究.燃气轮机技术. 2008, 21(3):29~32
    168牛玉川,朱俊强,聂超群等.吸附式亚声速压气机叶栅气动性能实验及分析.航空动力学报. 2008, 23(3):483~489
    169王掩刚,程荣辉,兰发祥等.吸附式叶栅抽吸流与激波相干性研究.燃气涡轮试验与研究. 2008, 21(2):15~18
    170陆华伟.轴向间隙对直、弯静叶轴流压气机时序效应影响的研究.哈尔滨工业大学博士论文. 2008

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700