用户名: 密码: 验证码:
甜橙八氢番茄红素合成酶基因及其启动子的克隆与功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
柑橘果实因富含类胡萝卜素而具有丰富的色泽,并广受消费者的喜爱,因此,具有很重要的经济价值。同时由于不同柑橘品种间类胡萝卜素组成与含量的多样性而具有很高的科学研究价值。前人已针对柑橘类胡萝卜素做了大量的研究,然而类胡萝卜素代谢是许多基因参与并协调互作的过程,只研究主要的类胡萝卜素生物合成基因对研究类胡萝卜素代谢的分子机理是远远不够的。通过对编码类胡萝卜素生物合成限速酶(PSY)的基因启动子的研究可以探究它的作用机理,找到其调控模式,得到上游调控基因的信息。本研究主要包括两个部分内容:分离‘暗柳’甜橙类胡萝卜素关键合成酶CsPsy1a和CsPsy1b基因,并通过工程菌进行体外功能分析比较两个基因编码蛋白的酶活性,为柑橘色泽突变提供更多理论方面的依据;分离
     ‘暗柳’甜橙类胡萝卜素代谢关键基因CsPsy1a和CsPsy1b的启动子序列,连接报告基因并转入模式植物拟南芥,通过检测报告基因的强弱来鉴定控制CsPsy1a和CsPsy1b的启动子的活性。主要研究结果如下:
     1甜橙八氢番茄红素合成酶基因的克隆与功能分析
     (1)利用RT-PCR从‘暗柳’甜橙中克隆到两条CsPsy1基因序列,分别命名为CsPsy1a和CsPsy1b,这两个基因的最大开放读码框分别为1311bp和1317bp,分别编码436和438个氨基酸。序列比对表明两个基因的核酸序列及其推导的氨基酸序列的相似性均在98%左右,序列之间存在16个碱基的差异,将推导的氨基酸序列进行比对后发现,共有9个氨基酸位点发生了改变,其中7个位点是单核苷酸多态性引起的,另2个氨基酸差异则来源于一个简单序列重复多态性(SSR)位点。
     (2)利用Rea1time RT-PCR对CsPsy1a和CsPsy1b在‘暗柳’甜橙果实不同发育时期的表达分析表明,CsPsyIb在果皮与果肉中的表达趋势一致,均在果实发育前期表达量逐渐增强,170DAFB时达到其表达高峰,而后趋于稳定,CsPsy1a在果皮和果肉中的表达量则随着果实的成熟持续上升。果皮中两个等位基因的表达差异较小,果肉中CsPsy1a的表达量显著高于CsPsy1b.
     (3)利用RT-PCR的方法从‘高班’柚克隆Psy1基因,经测序分析,从‘高班’柚中仅克隆到一条Psyl序列,且其编码区的核苷酸序列与‘暗柳’甜橙CsPsy1b完全相同。利用HPLC对‘高班’柚和‘暗柳’甜橙类胡萝卜含量的分析表明,两个品种果肉的颜色不同是由于类胡萝卜素含量有较大的差异。利用实时定量PCR的方法分析类胡萝卜素主要生物合成基因在‘高班’柚和‘暗柳’甜橙成熟时期果肉的表达,结果表明两个品种中类胡萝卜素的差异可能与类胡萝卜素主要合成基因的表达没有直接的联系。
     (4)利用RT-PCR的方法从‘马叙’葡萄柚中克隆Psyl基因,经测序分析,‘马叙’葡萄柚存在两条Psy1基因序列,且其中一个基因CpPsy1a序列与甜橙中的CsPsy1a序列一致,另一个基因CpPsy1b基因编码区核苷酸序列长度为1314bp,与CsPsy1a和CsPsy1b基因均相差3个碱基,分别编码437、436和438个氨基酸,且差异位点恰好出现在微卫星位点。这三个基因编码的氨基酸共有10个差异,其中8个是由单核苷酸多态性引起的差异,而另外2个由简单序列重复数目引起。
     (5)构建了CsPsy1a、CsPsy1b和CpPsy1b基因的原核表达载体pET-CsPSY1a, pET-CsPSY1b和pET-CpPSY1b,并转化含有pACCRT-E质粒的BL21菌株。工程菌功能分析表明,CsPsy1a、CsPsy1b和CpPsy1b基因均可编码功能蛋白,催化两分子GGPP缩合形成八氢番茄红素,然而表达CsPSY1a、CsPSY1b和CpPSY1b蛋白的工程菌株表现出不同程度的八氢番茄红素积累量,表明三个蛋白具有不同的催化效率。而这三个酶的催化效率恰好随着重复单元数目的增多活性逐步下降。
     (6)利用点突变实验定点突变原核表达载体pET-CsPSY1a,构建了四个在微卫星位点含不同数目重复单元突变体(pET-CsPSY1a-1、pET-CsPSY1a-2, pET-CsPSY1a-3(?)pET-CsPSY1a-4),并转化含有pACCRT-E质粒的BL21菌株。工程菌功能分析证实了微卫星重复单元的数目与PSY的酶活有着重要的联系。
     2甜橙八氢番茄红素合成酶基因启动子的克隆与功能分析
     (1)利用染色体步移法从‘暗柳’甜橙基因组中分离得到CsPsy1a启动子序列1476bp,在线分析软件表明其含有多种光调控元件,激素诱导响应元件和非生物逆境相关感应元件。通过5'-RACE技术定位CsPsy1a基因转录起始位点,结果发现CsPsy1a基因在‘暗柳’甜橙果肉中存在两个转录起始位点,一个是胞嘧啶(C),位于翻译起始位点上游186bp处,另一个是腺嘌呤(A),位于翻译起始位点上游518bp处。将后一个转录起始位点(A)设为‘+1’,经PLACE和PlantCARE预测,发现CsPsy1a基因启动子是一个典型的TATA盒型的启动子,TATA box和CAAT box分别位于-33bp和-83bp处。
     (2)将-479nt-+447nt的启动子片段连接GUS报告基因后,通过农杆菌介导的花序侵染法转化拟南芥植株,全发育时期的组织化学染色结果表明,不论是茎生叶还是莲座叶,叶脉的GUS活性最强。充分展开的花朵中,在雄蕊、雌蕊、花托、萼片、花柄以及花萼等组织中均有表达,且集中在叶脉组织,而在花药和花瓣中未检测到GUS的表达。在花和果荚中,GUS活性的表达随着器官的成熟逐渐增强。这些结果表明CsPsyla启动子在光能合成和非光能合成器官中均有活性,并受到发育的调控。
     (3)构建5个CsPsy1ap5'端缺失启动子体,命名为V1-V5。转化拟南芥植株后,组织化学染色表明:除V1外,其他缺失启动子都能有效地驱动GUS表达,表明控制该启动子活性关键位点位于-46nt~+21nt;另外,在-479nt--306nt和-306nt--93nt区域分别存在增强子元件和沉默子元件。转基因拟南芥植株在去黄化过程中经不同光质处理后,携带V5的转基因植株经红光和白光处理后GUS活性相对黑暗处理显著性增强,而经远红光和蓝光处理后GUS活性减弱。缺失分析表明,在-479nt到-306nt区域存在着光调控元件。转基因拟南芥植株经激素和非生物逆境处理后,结果表明:在不同激素和非生物逆境的处理下,仅蔗糖处理后的GUS活性有显著性增强,表明CsPsy1a基因启动子受到高浓度蔗糖的诱导。缺失分析表明,在-479nt到-306nt区域同样存在着蔗糖响应元件。
     (4)利用染色体步移法从‘暗柳’甜橙基因组中分离得到CsPsy1b启动子序列1754bp,在线软件分析元件,并与CsPsy1a启动子鉴定出的顺式元件相比较,发现两个启动子中均含有大量光调控元件,激素诱导响应元件和非生物逆境相关感应元件。尽管两个启动子序列中都存在多种光调控的元件,但类型完全不同,如在CsPsy1b启动子序列中发现多个与光能合成相关的普遍存在的G-Box元件,而CsPsy1a启动子序列中却无该类型光调控元件。这些结果表明,CsPsy1b与CsPsy1a一样,主要受光信号调控,同时受到诸多非生物逆境的诱导。
     (5)将CsPsy1b启动子连接GUS报告基因后,通过农杆菌介导的花序侵染法转化拟南芥植株,全发育时期的组织化学染色结果表明,和CsPsy1a启动子一样,CsPsy1b启动子在光能合成和非光能合成器官中均有活性,并受到发育的调控。
     (6)将携带CsPsy1ap::GUS和CsPsy1bp::GUS的转基因植株经不同光照条件处理,结果表明:在去黄化过程中不同光质的照射下,携带CsPsy1ap::GUS的转基因植株GUS活性相对黑暗处理均显著性上升。在红光处理时GUS活性最强,其次是远红光和蓝光,最后是白光;而携带CsPsy1bp::GUS的转基因植株在远红光处理下GUS活性最强,其次是红光,白光,最后是蓝光。表明两个启动子在去黄化过程中均受到不同光质的调控,但由于启动子序列中光调控元件的数目及类型不一致,因此,两个基因启动子在不同的光质处理下表现不尽相同;在不同强度光照的照射下,携带CsPsy1ap::GUS的转基因植株响应不同强度光照的调控,表现在弱光下启动子活性更强,而携带CsPsy1bp::GUS的转基因植株可能不响应;在不同光周期的处理下,长日照下CsPsy1a启动子活性较强,而CsPsy1b启动子不响应。
Due to the accumulation of specific carotenoids, citrus fruits display a wide range of colorations and are appreciated by consumers with significant economic value. Citrus fruits are also of high scientific value owing to the diversity of carotenoid composition and content among varieties. So far, citrus carotenoids have been well characterized, however, carotenoid metabolism is a complex process with many genes participating in and coordinating interaction. Research on the molecular mechanism of the major carotenoid biosynthetic genes is far from knowing enough, further investigations to understand the regulatory mechanism of carotenoid metabolism is needed. The mechanism has been conducted in this research through the research on the promoter of the gene (Psy) which encoding the rate-limiting enzyme of carotenoid biosynthesis pathway, to find the regulatory pattern and to acquire the information about the upstream regulatory gene. The result was presented as two parts:Two similar but non-identical sequences (CsPsyla and CsPsy1b) were isolated from sweet orange. A functional analysis based on heterologous expression in E. coli indicated that CsPsyla was a more efficient converter of geranylgeranyl diphosphate to phytoene, to understand the mechanism of citrus color trait; The promoters of the sweet orange genes (CsPsy1a and CsPsy1b) were isolated, then fused to the β-glucuronidase (GUS) reporter gene and introduced as a transgene into Arabidopsis thaliana, to investigate the promoter activity based on GUS activity. The main results were as follows:
     1Isolation and functional characterization of phytoene synthase genes from sweet orange
     (1) Two CsPsyl sequences were isolated from sweet orange cv. Anliu, and named as CsPsy1a and CsPsy1b. The two sequences were98.6%identical to one another, one being of length1,311bp and the other1,317bp. They encoded436and438amino acids, respectively. The sequences differed from one another at18nucleotide positions, resulting in nine predicted peptide differences. Seven of which were generated by SNP and the other two by different number of AAT repeat units within a microsatellite.
     (2) Real time RT-PCR was used to study the expression of the two genes during fruit development. Transcription profiling showed that CsPsyla abundance increased throughout fruit development in both the peel and pulp, while that of CsPsy1b increased early in fruit development and then stabilized. The abundance of the two transcripts was similar in the peel, but that of CsPsy1a present was higher in the pulp.
     (3) A full length Psy cDNA was isolated from pummelo cv. Gaophuang. Its sequence proved to be identical to that of CsPsy1b. HPLC was used to compare the composition and content of carotenoids from these two cultivars, the result displayed a pronounced difference in their carotenoid content. The transcription in cv. Gaophuang of main carotenoid biosynthetic genes (except for Hyb) was higher than in cv. Anliu (yellow fleshed fruit), these results showed that the transcription of other major carotenoid synthesis genes could not explain the large difference in carotenoid content between the two species.
     (4) Two CpPsyl sequences were isolated from grapefruit cv. Marsh, and named as CpPsy1a and CpPsy1b. The peptide sequence of CpPsyla was identical to that of CsPsy1a, and CpPsy1b was99%identical to CsPsy1b. The number of residues encoded by these three genes (CsPsy1a, CsPsy1b and CpPsy1b) varies slightly (respectively,437,438and439, due to polymorphism in the number of AAT triplet present. Ten predicted peptide differences were found among the three genes, eight of them were generated by SNP and the other two by different number of AAT repeat units within a microsatellite.
     (5) The full-length coding region of three genes (CsPsy1a, CsPsy1b and CpPsy1b) were amplified using PCR and further inserted into pET-28a (+), resulting in the prokaryotic expression vector pET-CsPsy1a, pET-CsPsy1b and pET-CpPsy1b, respectively. After transformation of E. coli strain BL21which produces the PSY substrate GGPP, the HPLC profile of both types of transgenic cell included a peak with a retention time of19.0-21.5min which was not detectable in the empty vector control. Interesting, there was a demonstrable negative correlation between the number of microsatellite repeat units present and PSY activity.
     (6) An E. coli expression platform was used to test the effect of site-directed mutagenesis in CsPSYla on enzymatic activity, particularly that of the number of microsatellite repeat units presented. Four different variants were generated (pET-CsPSY1a-1, pET-CsPSY1a-2, pET-CsPSYla-3and pET-CsPSYla-4). After transformation of E. coli strain BL21which produces the PSY substrate GGPP, functional analysis suggested that there was a clear correlation between the number of microsatellite repeat units present and PSY activity.
     2Identification and functional characterization of the CsPsyla and CsPsylb promoters from sweet orange
     (1) The promoter of the sweet orange gene CsPsy1a of sweet orange was isolated using chromosome walking. Its sequence included a number of regulatory elements predicted to be responsive to light, hormone and other stress cues. The promoter's transcription start site was determined using5'RACE based on RNA extracted from the pulp of sweet oranges cv. Anliu. Two sites were identified, the first a cytidine (C)186bp upstream of the translation initiation codon and an adenine (A)518bp upstream of translation initiation codon. PLACE and PlantCARE analyses suggested a potential TATA box551bp from the5'end of the ATG and33bp upstream of the potential TSS ('+1') that was further from the translation initiation codon. In addition, a possible CAAT box was located at-83bp.
     (2) The926-bp region upstream of CsPsyla was fused to the β-glucuronidase (GUS) reporter gene, and introduced as a transgene into Arabidopsis thaliana. The pattern of GUS expression in the transgenic plants showed that the CsPsy1a promoter drove expression in the young seedlings, the leaves, the roots and in parts of the flower, in a developmentally regulated fashion. These results included that the CsPsy1a promoter drove expression in photosynthetic and non-photosynthetic tissue, and was induced by developmental cues.
     (3) Five5'-deletions expression vectors named V1~V5were constructed, and transformed into Arabidopsis. A promoter deletion analysis revealed that the region-479nt to-306nt positively regulated expression, the region-306nt to-93nt was associated with negative regulation of expression and the region-46nt to+21nt maintained basal promoter activity. The transgenic Arabidopsis seedlings were treated with different light quality during de-etiolation, A promoter deletion analysis revealed that Two highly repetitive sequences (Spl and A-box), located in the region from-479nt to-306nt, may act as light-responsive elements regulating CsPsy1a transcription during photomorphogenesis. The transgenic plants carrying V5::GUS were treated with various stresses and hormones treatment, of these, sucrose treatment showed a significantly different value from the control by one-sided t tests. The promoter deletion constructs were used to explore the sucrose induction of the CsPsy1a promoter, the results showed that the cis-acing element(s) responsive to sucrose must be located in the region between-479nt to-306nt.
     (4) The promoter of the sweet orange gene CsPsy1b of sweet orange was isolated using chromosome walking. Its sequence included a number of regulatory elements predicted to be responsive to light, hormone and other stress cues, as well as the CsPsy1a promoter sequence. There were many different cis-elements in the two sequences, for example, many light responsive element (G-box) were present in the CsPsy1b promoter sequence, but none was discovered in the CsPsyla promoter sequence. In a word, the bioinformatics analysis indicated that the two promoters was mainly regulated by light, and induced by various stresses.
     (5) The CsPsy1b promoter was fused to the P-glucuronidase (GUS) reporter gene, and introduced as a transgene into Arabidopsis thaliana. The pattern of GUS expression in the transgenic plants included that the CsPsy1b promoter drove expression in photosynthetic and non-photosynthetic tissue, and was induced by developmental cues, as well as the CsPsy1a promoter.
     (6) The transgenic Arabidopsis seedlings carrying CsPsy1ap::GUS and CsPsy1bp::GUS were treated with different light quality treatment (red, far red, blue and white), the results showed that two promoters were induced by different light quality treatment, however, there were some difference maybe due to the different light responsive elements in their promoters; The transgenic plants carrying CsPsy1ap::GUS and CsPsy1bp::GUS were treated with different light intensity treatment, the results showed that CsPsy1a promoter activity was enhanced by dim light, and the CsPsy1b promoter had no response to different light intensity; The transgenic plants carrying CsPsy1ap::GUS and CsPsy1bp::GUS were treated with different photoperiod treatment, CsPsy1a promoter activity was enhanced by long-day, and the CsPsy1b promoter had no response to different photoperiod.
引文
1.蔡萌.病原诱导启动子和组织特异性启动子的分离克隆和功能鉴定.[博士学位论文].武汉:华中农业大学图书馆,2007
    2.曹洪波.转基因调控柑橘类胡萝卜素积累的细胞学和代谢研究.[博士学位论文].武汉:华中农业大学图书馆,2012
    3.邓秀新.世界柑橘品种改良的进展.园艺学报,2005,32(6):1140-1146
    4.刘莉.水稻叶片衰老特异性启动子的克隆和利用及剑叶早期衰老上升表达基因的鉴定.[博士学位论文].武汉:华中农业大学图书馆,2008
    5.路静,赵华燕,何奕昆,宋艳茹.高等植物启动子及其应用研究进展.2008,8(14):865-611
    6.梅丽.早实枳成花相关基因启动子的分离与功能鉴定.[博士学位论文].武汉:华中农业大学图书馆,2009
    7.彭浩,贺红武.类胡萝卜素生物合成抑制剂研究进展.农药学学报,2003,5(4):1-8
    8.檀琮萍,秦松.类胡萝卜素代谢工程研究进展.食物与发酵工业,2008,34(3):120-125
    9.陶能国.甜橙(Citrus sinensis Osbeck)红肉突变体类胡萝卜素合成相关基因的克隆与特性分析.[博士学位论文].武汉:华中农业大学图书馆,2006
    10.文俊香.甜橙番茄红素β-环化酶等位基因的表达和功能活性分析.[硕士学位论文].武汉:华中农业大学图书馆,2012
    11.徐昌杰,张上隆.柑橘类胡萝卜素合成关键基因研究进展.园艺学报,2002,29(增刊):619-623
    12.徐娟,邓秀新.柑橘类果实汁胞的红色现象及其呈色色素.果树学报,2002,19(5):307-313
    13.叶俊丽.甜橙红肉突变体果实EST分析及ABA代谢研究.[博士学位论文].武汉:华中农业大学图书馆,2011
    14.张春晓,王文棋,蒋湘宁,陈雪梅.植物基因启动子研究进展.遗传学报,2004,31(12):1455-1464
    15.张建成.红肉脐橙类胡萝卜素合成基因(CsPSY, CsLCYB)功能分析与CrtB转基因对柑橘类胡萝卜素合成的影响.[博士学位论文].武汉:华中农业大学图书馆,2009
    16.张锐.新疆核桃资源的遗传多样性及系统进化研究.[博士学位论文].武汉:华中农业大学图书馆,2010
    17.周莉,刘莉.类胡萝卜素生物合成的调控因素及其对光合作用的影响.天津农业科学,2011,17(5):5-8
    18.中华人民共和国农业部.中国农业统计资料.北京,中国农业出版社,2010
    19.朱长甫,陈星,王英典.植物类胡萝卜素生物合成及其相关基因在基因工程中的应用.植物生理与分子生物学学报,2004,30(6):609-618
    20.朱玉贤,李毅.现代分子生物学(第2版).北京:高等教育出版社,2002
    21. Agusti J, Zapater M, Iglesias D J, Cercos M, Tadeo F R, Talon M. Differential expression of putative 9-m-epoxycarotenoid dioxygenases and abscisic acid accumulation in water stressed vegetative and reproductive tissues of citrus. Plant Sci, 2007,172(1):85-94
    22. Alba R, Cordonnier-Pratt M M, Pratt L H. Fruit-localized phytochromes regulate lycopene accumulation independently of ethylene production in tomato. Plant Physiol, 2000,123:363-370
    23. Alba R, Payton P, Fei Z, McQuinn R, Debbie P, Martin G B, Tanksley S D, Giovannoni JJ. Transcriptome and selected metabolite analyses reveal multiple points of ethylene control during tomato fruit development. Plant Cell,2005,17:2954-2965
    24. Alquezar B, Rodrigo M J, Zacarias L. Regulation of carotenoid biosynthesis during fruit maturation in the red-fleshed orange mutant Cara Cara. Phytochemistry,2008, 69:1997-2007
    25. Alquezar B, Zacarias L, Rodrigo M J. Molecular and functional characterization of a novel chromoplast-specific lycopene beta-cyclase from Citrus and its relation to lycopene accumulation. J Exp Bot,2009,60:1783-1797
    26. Andrew F, Mark S, Phillip A S.Interactions between RNA polymerase 11, factors, and template leading to accurate transcription. J Biol Chem,1984,259 (4):2509-2516
    27. Anil S, Neville W, Ronald C, Donald B. Sequences responsible for the tissue specific promoter activity of a pea legumin gene in tobacco. Mol Gen Genet,1989, 215:326-331
    28. Anne L F, Manuel C, Claudie D M, Yann F, Manuel T, Patrick O, Raphael M. Changes in carotenoid content and biosynthetic gene expression in juice sacs of four orange varieties (Citrus sinensis) differing in flesh fruit color. J Agric Food Chem, 2008,56 (10):3628-3638
    29. Arango J, Wust F, Beyer P, Welsch R. Characterization of phytoene synthases from cassava and their involvement in abiotic stress-mediated responses. Planta,2010,232 (5):1251-1262
    30. Auldridge M E, Block A, Vogel J T, Dabney-Smith C, Mila I, Bouzayen M, Magallanes-Lundback M, DellaPenna D, McCarty D R, Klee H J. Characterization of three members of the Arabidopsis carotenoid cleavage dioxygenase family demonstrates the divergent roles of this multifunctional enzyme family. Plant J, 2006a,45 (6):982-993
    31. Auldridge M E, McCarty D R, Klee H J. Plant carotenoid cleavage oxygenases and their apocarotenoid products. Curr Opin Plant Biol,2006b,9 (3):315-321
    32. Bae G, Choi G. Decoding of light signals by plant phytochromes and their interacting proteins. Annu Rev Plant Biol,2008,59:281-311
    33. Bai L, Kim E H, DellaPenna D, Brutnell T P. Novel lycopene epsilon cyclase activities in maize revealed through perturbation of carotenoid biosynthesis. Plant J, 2009,59:588-599
    34. Bartley G E, Scolnik P A. Plant carotenoids:pigments for photoprotection, visual attraction, and human health. Plant Cell,1995,7:1027
    35. Bate N, Twell D. Functional architecture of a late pollen promoter:pollen-specific transcription is developmentally regulated by multiple stage-specific and co-dependent activator elements. Plant Mol Biol,1998,37:859-869
    36. Beisel K G, Jahnke S, Hofmann D, Koppchen S, Schurr U, Matsubara S. Continuous turnover of carotenes and chlorophyll a in mature leaves of Arabidopsis revealed by 14CO2 pulse-chase labeling. Plant Physiol,2010,152 (4):2188-2199
    37. Benfey P N, Ren L, Chua N H. Tissue-specific expression from CaMV 35S enhancer subdomains in early stages of plant development. The EMBO Journal,1990,9:1677
    38. Berman H M, Westbrook J, Feng Z, Gilliland G, Bhat T, Weissig H, Shindyalov I N, Bourne P E. The protein data bank. Nucleic Acids Res,2000,28:235-242
    39. Bonk M, Hoffmann B, Von Lintig J, Schledz M, Al-Babili S, Hobeika E, Kleinig H, Beyer P. Chloroplast import of four carotenoid biosynthetic enzymes in vitro reveals differential fates prior to membrane binding and oligomeric assembly. Eur J Biochem, 1997,247,942-950
    40. Bouchez D, Tokuhisa J G, Llewellyn D J, Dennis E S, Ellis J G. The ocs-element is a component of the promoters of several T-DNA and plant viral genes. EMBO J,1989, 8:4197-4204
    41. Bouvier F, D'Harlingue A, Backhaus R A, Kumagai M H, Camara B. Identification of neoxanthin synthase as a carotenoid cyclase paralog. Eur J Biochem,2000,267 (21): 6346-6352
    42. Bouvier F, Hugueney P, d'Harlingue A, Kuntz M, Camara B. Xanthophyll biosynthesis in chromoplasts:isolation and molecular cloning of an enzyme catalyzing the conversion of 5,6-epoxycarotenoid into ketocarotenoid. Plant J,1994, 6:45-54
    43. Bouvier F, Isner J C, Dogbo O, Camara B. Oxidative tailoring of carotenoids:a prospect towards novel functions in plants. Trends Plant Sci,2005,10 (4):187-194
    44. Bouvier F, Keller Y, d'Harlingue A, Camara B. Xanthophyll biosynthesis:molecular and functional characterization of carotenoid hydroxylases from pepper fruits (Capsicum annuum L.). Biochim Biophys Acta,1998,1391 (3):320-328
    45. Botella-Pavia P, Besumbes O, Phillips M A, Carretero-Paulet L, Boronat A, and Rodriguez-Concepcion M. Regulation of carotenoid biosynthesis in plants:evidence for a key role of hydroxymethylbutenyl diphosphate reductase in controlling the supply of plastidial isoprenoid precursors. Plant J,2004,40:188-199
    46. Bouwmeester H J, Roux C, Lopez-Raez J A, Becard G. Rhizosphere communication of plants, parasitic plants and AM fungi. Trends Plant Sci,2007,12 (5):224-230
    47. Bramley P M. Regulation of carotenoid formation during tomato fruit ripening and development. J Exp Bot,2002,53:2107-2113
    48. Breitenbach J, Sandmann G. zeta-Carotene cis isomers as products and substrates in the plant poly-cis carotenoid biosynthetic pathway to lycopene. Planta,2005,220: 785-793
    49. Bugos R C, Yamamoto H Y. Molecular cloning of violaxanthin de-epoxidase from romaine lettuce and expression in Escherichia coli. Proc Natl Acad Sci,1996,93 (13): 6320-6325
    50. Butler J E F, Kadonaga J T. The RNA polymerase Ⅱ core promoter:a key component in the regulation of gene expression. Genes Dev,2002,16:2583-2592
    51. Camara B. Plant phytoene synthase complex:component enzymes, immunology, and biogenesis. Methods Enzymol,1993,214:352-365
    52. Campbell R, Ducreux L J, Morris W L, Morris J A, Suttle J C, Ramsay G, Bryan G J, Hedley P E, Taylor M A. The metabolic and developmental roles of carotenoid cleavage dioxygenase4 from potato. Plant Physiol,2010,154:656-664
    53. Castillon A, Shen H, Huq E. Phytochrome Interacting Factors:central players in phytochrome-mediated light signaling networks. Trends Plant Sci,2007,12:514-521
    54. Cazzonelli C I, Cuttriss A J, Cossetto S B, Pye W, Crisp P, Whelan J, Finnegan E J, Turnbull C, Pogson B J. Regulation of carotenoid composition and shoot branching in Arabidopsis by a chromatin modifying histone methyltransferase, SDG8. Plant Cell,2009,21,39-53
    55. Cazzonelli C I, Pogson B J. Source to sink:regulation of carotenoid biosynthesis in plants. Trends Plant Sci,2010,15 (5):266-274
    56. Cazzonelli C I, Roberts A C, Carmody M E, Pogson B J. Transcriptional control of SET DOMAIN GROUP 8 and CAROTENOID ISOMERASE during Arabidopsis development. Mol Plant,2010,3:174-191
    57. Chai C, Fang J, Liu Y, Tong H, Gong Y, Wang Y, Liu M, Wang Y, Qian Q, Cheng Z, Chu C. ZEBRA2, encoding a carotenoid isomerase, is involved in photoprotection in rice. Plant Mol Biol,2011,75 (3):211-221
    58. Chander S, Guo Y, Yang X, Zhang J, Lu X, Yan J, Song T, Rocheford T, Li J. Using molecular markers to identify two major loci controlling carotenoid contents in maize grain. Theor Appl Genet,2008,116:223-233
    59. Chaudhary N, Nijhawan A, Khurana J P, Khurana P. Carotenoid biosynthesis genes in rice:structural analysis, genome-wide expression profiling and phylogenetic analysis. Mol Genet Genomics,2009,283 (1):13-33
    60. Chen C, Costa M G C, Yu Q, Moore G A, Gmitter F G. Identification of novel members in sweet orange carotenoid biosynthesis gene families. Tree Genet Genomes,2010,6:905-914
    61. Cheng Y J, Guo W W, Yi H L, Pang X M, Deng X X. An efficient protocol for genomic DNA extraction from Citrus species. Plant Mol Biol Rep,2003,21:177-178
    62. Chiou C Y, Pan H A, Chuang Y N, Yeh K W. Differential expression of carotenoid-related genes determines diversified carotenoid coloration in floral tissues of Oncidium cultivars. Planta,2010,232:937-948
    63. Christensen A H, Sharrock R A, Quail P H. Maize polyubiquitin genes:structure, thermal perturbation of expression and transcript splicing, and promoter activity following transfer to protoplasts by electroporation. Plant Mol Biol,1992,18: 675-689
    64. Clough S J, Bent A F. Floral dip:a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J,1998,16:735-743
    65. Coca M A, Almoguera C, Thomas T L, Jordano J. Differential regulation of small heat-shock genes in plant:analysis of a water-stress-induced and developmentally activated sunflower promoter. Plant Mol Biol,1996,3:863-876
    66. Cordoba E, Salmi M, Leon P. Unravelling the regulatory mechanisms that modulate the MEP pathway in higher plants. J Exp Bot,2009,60:2933-2943
    67. Corona V, Aracri B, Kosturkova G, Bartley G E, Pitto L, Giorgetti L, Scolnik P A, Giuliano G. Regulation of a carotenoid biosynthesis gene promoter during plant development. Plant J,1996,9:505-512
    68. Covington M F, Maloof J N, Straume M, Kay S A, Harmer S L. Global transcriptome analysis reveals circadian regulation of key pathways in plant growth and development. Genome Biol,2008,9:R130
    69. Cunningham F X, Gantt E. Genes and enzymes of carotenoid biosynthesis in plants. Ann. Rev. Plant Physiol. Plant Mol Biol,1998,49:557-583
    70. Cunningham F X, Gantt E. One ring or two? Determination of ring number in carotenoids by lycopene epsilon-cyclases. Proc Natl Acad Sci USA,2001,98(5): 2905-2910
    71. DellaPenna D, Pogson BJ. Vitamin synthesis in plants:tocopherols and carotenoids. Annu Rev Plant Biol,2006,57:711-738
    72. Dogbo O, Laferriere A, D'Harlingue A, Camara B. Carotenoid biosynthesis:Isolation and characterization of a bifunctional enzyme catalyzing the synthesis of phytoene. Proc Natl Acad Sci USA,1988,85,7054-7058
    73. Edwards D, Murray J A H, Smith A G. Multiple genes encoding the conserved CCAAT-Box transcription factor complex are expressed in Arabidopsis. Plant Physiology,1998,117:1015-1022
    74. Ellerstrom M, Stalberg K, Ezcurra I, Rask L. Functional dissection of a napin gene promoter:identification of promoter elements required for embryo and endosperm-specific transcription. Plant Mol Biol,1996,32:1019-1027
    75. Facella P, Lopez L, Carbone F, Galbraith D W, Giuliano G, Perrotta G. Diurnal and circadian rhythms in the tomato transcriptome and their modulation by cryptochrome photoreceptors. PLoS One,2008,3:e2798
    76. Fanciullino A L, Dhuique-Mayer C, Luro F, Casanova J, Morillon R, Ollitrault P. Carotenoid diversity in cultivated citrus is highly influenced by genetic factors. J Agr Food Chem,2006,54:4397-4406
    77. Fanciullino A L, Dhuique-Mayer C, Luro F, Morillon R, Ollitrault P. Carotenoid biosynthetic pathway in the citrus genus:number of copies and phylogenetic diversity of seven genes. J Agr Food Chem,2007,55:7405-7417
    78. Fordor I, Kranikova O V, Berets E. Cloning structure and features of a saccharomyces cerevisiae DNA fragment causing the expression of reporter genes. Mol Biol,1990,24:1411-1418
    79. Fraser P D, Bramley P M. The biosynthesis and nutritional uses of carotenoids. Prog Lipid Res,2004,43:228-265
    80. Fraser P D, Enfissi E M A, Halket J M, Truesdale M R, Yu D, Gerrish C, Bramley P M. Manipulation of phytoene levels in tomato fruit:effects on isoprenoids, plastids, and intermediary metabolism. Plant Cell,2007,19:3194-3211
    81. Fraser P D, Kiano J W, Truesdale M R, Schuch W, Bramley P M. Phytoene synthase-2 enzyme activity in tomato does not contribute to carotenoid synthesis in ripening fruit. Plant Mol Biol,1999,40:687-698
    82. Fraser P D, Schuch W, and Bramley P M. Phytoene synthase from tomato (Lycopersicon esculentum) chloroplasts-partial purification and biochemical properties. Planta,2000,211:361-369
    83. Fraser P D, Truesdale M R, Bird C R, Schuch W, Bramley P M. Carotenoid biosynthesis during tomato fruit development:Evidence for tissue-specific gene expression. Plant Physiol,1994,105 (1):405-413
    84. Foster R, Izawa T, Chua N H. Plant bZIP proteins gather at ACGT elements. FASEB J,1994,8:192-200
    85. Fridlender M, Harrison K, Jones J D G, Levy A A. Repression of the Ac-transposase gene promoter by Ac transposase. The Plant Journal,1996,9:911-917
    86. Fukushima A, Kusano M, Nakamichi N, Kobayashi M, Hayashi N, Sakakibara H, Mizuno T, Saito K. Impact of clockassociated Arabidopsis pseudo-response regulators in metabolic coordination. Proc Natl Acad Sci,2009,106:7251-7256
    87. Galpaz N, Wang Q, Menda N, Zamir D, Hirschberg J. Abscisic acid deficiency in the tomato mutant high-pigment 3 leading to increased plastid number and higher fruit lycopene content. Plant J,2008,53 (5):717-730
    88. Garcia-Limones C, Schnabele K, Blanco-Portales R, Luz Bellido M, Caballero J L, Schwab W, Munoz-Blanco J. Functional characterization of FaCCD1:a carotenoid cleavage dioxygenase from strawberry involved in lutein degradation during fruit ripening. J Agric Food Chem,2008,56 (19):9277-9285
    89. Gardner M J, Hubbard K E, Hotta C T, Dodd A N, Webb A A. How plants tell the time. Biochem J,2006,397:15-24
    90. Ghassemian M, Lutes J, Tepperman J M, Chang H S, Zhu T, Wang X, Quail P H, Lange B M. Integrative analysis of transcript and metabolite profiling data sets to evaluate the regulation of biochemical pathways during photomorphogenesis. Arch. Biochem. Biophys,2006,448:45-59.
    91. Gillaspy G, Ben-David H, Gruissem W. Fruits:a developmental perspective. Plant Cell,1993,5:1439-1451
    92. Gilmartin P M, Memelink J, Hiratsuka K, Kay S A, Chua N H. Characterization of a gene encoding a DNA binding protein with specificity for a light-responsive element. Plant Cell,1992,4:839-849
    93. Giovannoni J. Molecular Biology of Fruit Maturation and Ripening. Annu Rev Plant Physiol. Plant Mol Biol,2001,52,725-749
    94. Giuliano G, Al-Babili S, von Lintig J. Carotenoid oxygenases:cleave it or leave it. Trends Plant Sci,2003,8:145-149
    95. Giuliano G, Bartley G E, Scolnik P A. Regulation of carotenoid biosynthesis during tomato development. Plant Cell,1993,5:379-387
    96. Giuliano G, Tavazza R, Diretto G, Beyer P, Taylor M A. Metabolic engineering of carotenoid biosynthesis in plants. Trends Biotechnol,2008,26:139-145
    97. Gomez-Roldan V, Fermas S, Brewer P B, Puech-Pages V, Dun E A, Pillot J P, Letisse F, Matusova R, Danoun S, Portais J C. Strigolactone inhibition of shoot branching. Nature,2008,455:189-194
    98. Goodner K L, Rouseff R L, Hofsommer H J. Orange, mandarin, and hybrid classification using multivariate statistics based on carotenoid profiles. J Agr Food Chem,2001,49:1146-1150
    99. Goodwin TW. The Biochemistry of the Carotenoids. Chapman and Hall, London, 1980, Ed 2, Vol 1
    100.Gross J. Carotenoid. In Pigments in fruits. Academic Press Inc:Orlando, FL,1987: 87-186
    101.Gross J, Timberg R, Graef M. Pigment and ultrastructural changes in the developing pummelo Citrus grandis'Goliath'. Bot Gaz,1983,144:401-406
    102.Harjes C E, Rocheford T R, Bai L, Brutnell T P, Kandianis C B, Sowinski S G, Stapleton A E, Vallabhaneni R, Williams M, Wurtzel E T. Natural genetic variation in lycopene epsilon cyclase tapped for maize biofortification. Science,2008,319: 330-333
    103.He X, Tian J, Yang L, Huang Y, Zhao B, Zhou C, Ge R, Shen Y, Huang Z. Overexpressing a Glycogen Synthase Kinase Gene from Wheat, TaGSKl, Enhances Salt Tolerance in Transgenic Arabidopsis. Plant Mol Biol Rep,2012,30 (4):807-816
    104.Higo K, Ugawa Y, Iwamoto M, Korenaga T. Plant cis-acting regulatory DNA elements (PLACE) database:1999, Nucleic Acids Res,1999,27:297-300
    105.Hirschberg, J. Carotenoid biosynthesis in flowering plants. Curr Opin Plant Biol, 2001,4:210-218.
    106.Howitt C A, Cavanagh C R, Bowerman A F, Cazzonelli C, Rampling L, Mimica J L, Pogson B J. Alternative splicing, activation of cryptic exons and amino acid substitutions in carotenoid biosynthetic genes are associated with lutein accumulation in wheat endosperm. Funct Integr Genomic,2009,9:363-376
    107.Hsieh M H, Goodman H M. The Arabidopsis IspH homolog is involved in the plastid nonmevalonate pathway of isoprenoid biosynthesis. Plant Physiol,2005,138: 641-653
    108.Huang F C, Molnar P, Schwab W. Cloning and functional characterization of carotenoid cleavage dioxygenase 4 genes. J Exp Bot,2009,60 (11):3011-3022
    109.Huh J H, Kang B C, Nahm S H, Kim S, Ha K S, Lee M H, Kim B D. A candidate gene approach identified phytoene synthase as the locus for mature fruit color in red pepper (Capsicum spp.) Theor Appl Genet,2001,102:524-530
    110.Ikoma Y, Komatsu A, Kita M, Ogawa K, Omura M, Yano M, Moriguchi T. Expression of a phytoene synthase gene and characteristic carotenoid accumulation during citrus fruit development. Physiol Plantarum,2001,111:232-238
    111.Ilg A, Beyer P, Al-Babili S. Characterization of the rice carotenoid cleavage dioxygenase 1 reveals a novel route for geranial biosynthesis. FEBS J,2009,276 (3): 736-747
    112.11g A, Yu Q, Schaub P, Beyer P, Al-Babili S. Overexpression of the rice carotenoid cleavage dioxygenase 1 gene in Golden Rice endosperm suggests apocarotenoids as substrates in planta. Planta,2010,232 (3):691-699
    113.Isaacson T, Ronen G, Zamir D, Hirschberg J. Cloning of tangerine from tomato reveals a carotenoid isomerase essential for the production of beta-carotene and xanthophylls in plants. Plant Cell,2002,14:333-342
    114.Javahery R, Khachi A, Lo K, Zenzie-Gregory B, Smale S T. DNA sequence requirements for transcriptional initiator activity in mammalian cells. Molecular and Cellular Biology,1994,14:116-127
    115.Jefferson R A, Kavanagh T A, Bevan M W. GUS fusions:beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. Embo J,1987,6:3901
    116.Jones D H, Winistorfer S C. Sequence specific generation of a DNA panhandle permits PCR amplification of unknown flanking DNA. Nucleic Acids Res,1992,20: 595-600
    117.Jones D H, Winistorfer S C. Amplification of 4-9kb human genomic DNA flanking a known site using a panhandle PCR variant. BioTechniques,1997,23:132-138
    118.Joyard J, Ferro M, Masselon C, Seigneurin-Berny D, Salvi D, Garin J, Rolland N. Chloroplast proteomics and the compartmentation of plastidial isoprenoid biosynthetic pathways. Mol Plant,2009,2:1154-1180
    119.Kashi Y, King D G. Simple sequence repeats as advantageous mutators in evolution. Trends Genet,2006,22:253-259
    120.Kato M, Ikoma Y, Matsumoto H, Sugiura M, Hyodo H, Yano M. Accumulation of carotenoids and expression of carotenoid biosynthetic genes during maturation in citrus fruit. Plant Physiol,2004,134:824-837
    121.Kato M, Matsumoto H, Ikoma Y, Okuda H, Yano M. The role of carotenoid cleavage dioxygenases in the regulation of carotenoid profiles during maturation in citrus fruit. J Exp Bot,2006,57 (10):2153-2164
    122.Khodakovskaya M, McAvoy R, Peters J, Wu H, Li Y. Enhanced cold tolerance in transgenic tobacco expressing a chloroplast co-3 fatty acid desaturase gene under the control of a cold-inducible promoter. Planta,2006,223:1090-1100
    123.Kim I J, Ko K C, Kim C S, Chung W I. Isolation and expression patterns of a cDNA encoding phytoene synthase in Citrus. J Plant Physiol,2001,158:795-800
    124.Kim J, DellaPenna D. Defining the primary route for lutein synthesis in plants:the role of Arabidopsis carotenoid beta-ring hydroxylase CYP97A3. Proc Natl Acad Sci USA,2006,103:3474-3479
    125.Kim J, Smith J J, Tian L, Dellapenna D. The evolution and function of carotenoid hydroxylases in Arabidopsis. Plant Cell Physiol,2009a,50:463-479
    126.Kim J E, Cheng K M, Craft N E, Hamberger B, Douglas C J. Over-expression of Arabidopsis thaliana carotenoid hydroxylases individually and in combination with a beta-carotene ketolase provides insight into in vivo functions. Phytochem,2010,71: 168-178
    127.Kim O R, Cho M C, Kim B D, Huh J H. A splicing mutation in the gene encoding phytoene synthase causes orange coloration in Habanero pepper fruits. Mol Cells, 2010,30:569-574
    128.Kim YG, Maas S. Multiple site-directed mutagenesis in vitro. Met Mol Biol,2002, 182:29-36
    129.Kita M, Komatsu A, Omura M, Yano M, Ikoma Y, Moriguchi T. Cloning and expression of CitPDS1, a gene encoding phytoene desaturase in Citrus. Biosci Biotechnol Biochem,2001,65:1424-1428
    130.Klbti A, Armstrong G A, Schledz M, von Lintig J, Potrykus I. Transgenic rice (Oryza sativa) endosperm expressing daffodil (Narcissus pseudonarcissus) phytoene synthase accumulates phytoene, biosynthesis. Plant J,1997,11:1071-1078
    131.Kolotilin I, Koltai H, Tadmor Y, Bar-Or C, Reuveni M, Meir A, Nahon S, Shlomo H, Chen L, Levin I. Transcriptional profiling of high pigment-2dg tomato mutant links early fruit plastid biogenesis with its overproduction of phytonutrients. Plant Physiol, 2007,145:389-401
    132.Kumpatla S P, Chandrasekharan M B, Iyer L M, Guofu L, Hall T C. Genome intruder scanning and modulation systems and transgene silencing. Trends Plant Sci,1998,3: 97-104
    133.Kyozuka J, McElroy D, Hayakawa T, Xie Y, Wu R, Shimamoto K. Light-regulated and cell-specific expression of tomato rbcS-gusA and rice rbcS-gusA fusion genes in transgenic rice. Plant Physiol,1993,102:991-1000
    134.Lam E, Chua N H. ASF-2:a factor that binds to the cauliflower mosaic virus 35S promoter and a conserved GATA motif in Cab promoters. Plant Cell,1989,1: 1147-1156
    135.Lee H S, Castle W S. Seasonal changes of carotenoid pigments and color in Hamlin, Earlygold, and Budd Blood orange juices. J Agric Food Chem,2001,49:877-882
    136.Leisner S M, Gelvin S B. Structure of the octopine synthase upstream activator sequence. Proc Natl Acad Sci USA,1988,85:2553-2557
    137.Leivar P, Monte E, Oka Y, Liu T, Carle C, Castillon A, Huq E, Quail P H. Multiple phytochrome-interacting bHLH transcription factors repress premature seedling photomorphogenesis in darkness. Curr Biol,2008,18:1815-1823
    138.Leivar P, Quail P H. PIFs:pivotal components in a cellular signaling hub. Trends Plant Sci,2010,16:19-28
    139.Leivar P, Tepperman J M, Monte E, Calderon R H, Liu T L, Quail P H. Definition of early transcriptional circuitry involved in light-induced reversal of PIF-imposed repression of photomorphogenesis in young Arabidopsis seedlings. Plant Cell,2009, 21:3535-3553
    140.Lescot M, Dehais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouze P, Rombauts S. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res,2002, 30:325-327
    141.Li F, Murillo C, Wurtzel E T. Maize Y9 encodes a product essential for 15-cis-zeta-carotene isomerization. Plant Physiol,2007,144:1181-1189
    142.Li F, Tsfadia O, Wurtzel E T. The phytoene synthase gene family in the Grasses: subfunctionalization provides tissue-specific control of carotenogenesis. Plant Signal Behav.2009,4:208
    143.Li F, Vallabhaneni R, Wurtzel E T. PSY3, a new member of the phytoene synthase gene family conserved in the poaceae and regulator of abiotic stress-induced root carotenogenesis. Plant Physiol,2008a,146:1333-1345
    144.Li F, Vallabhaneni R, Yu J, Rocheford T, Wurtzel E T. The maize phytoene synthase gene family:overlapping roles for carotenogenesis in endosperm, photomorphogenesis, and thermal stress tolerance. Plant Physiol,2008b,147: 1334-1346
    145.Li L, Lu S, Cosman K. M, Earle E D, Garvin D F, O'Neill J. β-Carotene accumulation induced by the cauliflower Or gene is not due to an increased capacity of biosynthesis. Phytochemistry,2006,67 (12):1177-1184
    146.Li L, Paolillo D J, Parthasarathy M V, Dimuzio E M, Garvin D F. A novel gene mutation that confers abnormal patterns of β-carotene accumulation in cauliflower (Brassica oleracea var. botrytis). Plant J,2001,26 (1):59-67
    147.Li YC, Korol AB, Fahima T, Beiles A, Nevo E. Microsatellites:genomic distribution, putative functions and mutational mechanisms:a review. Mol Ecol,2002,11: 2453-2465
    148.Li Y C, Korol A B, Fahima T, Nevo E. Microsatellites within genes:structure, function, and evolution. Mol Biol Evol,2004,21:991-1007
    149.Licausi F, Weits D A, Pant B D, Scheible W R, Geigenberger P, van Dongen J T. Hypoxia responsive gene expression is mediated by various subsets of transcription factors and miRNAs that are determined by the actual oxygen availability. New Phytol,2011a,190:442-456
    150.Licausi F, Kosmacz M, Weits D A, Giuntoli B, Giorgi F M, Voesenek L A, Perata P, van Dongen J T. Oxygen sensing in plants is mediated by an N-end rule pathway for protein destabilization. Nature,2011b,479:419-422
    151.Lindgren L O, Stalberg K G, Hoglund A S. Seed-specific overexpression of an endogenous Arabidopsis phytoene synthase gene results in delayed germination and increased levels of carotenoids, chlorophyll, and abscisic acid. Plant Physiol,2003, 132:779-785
    152.Lintig J, Welsch R, Bonk M, Giuliano G, Batschauer A, Kleinig H. Light-dependent regulation of carotenoid biosynthesis occurs at the level of phytoene synthase expression and is mediated by phytochrome in Sinapis alba and Arabidopsis thaliana seedlings. Plant J,1997,12:625-634
    153.Liu Q, Xu J, Liu Y, Zhao X, Deng X, Guo L, Gu J. A novel bud mutation that confers abnormal patterns of lycopene accumulation in sweet orange fruit (Citrus sinensis L. Osbeck). J Exp Bot,2007,58:4161-4171
    154.Liu Q, Zhu A D, Chai L J, Zhou W J, Yu K Q, Ding J, Xu J, Deng X X. Transcriptome analysis of a spontaneous mutant in sweet orange [Citrus sinensis (L.) Osbeck] during fruit development. J Exp Bot,2009,60 (3):801-813
    155.Liu Y G, Whittier R F. Thermal asymmetric interlaced PCR:automatable amplification and sequencing of insert end fragments from PI and YAC clones for chromosome walking. Genomics,1995,25:674-681
    156.Lo K, Smale S T. Generality of a functional initiator consensus sequence. Gene,1996, 182:13-22
    157.Lopez A B, Yang Y, Thannhauser T W, Li L. Phytoene desaturase is present in a large protein complex in the plastid membrane. Physiol Plant,2008,133:190-198
    158.Lois L M, Rodriguez-Conception M, Gallego F, Campos N, Boronat A Carotenoid biosynthesis during tomato fruit development:regulatory role of 1-deoxy-D-xylulose 5-phosphate synthase.Plant J,2000,22:503-513
    159.Lu S, Li L. Carotenoid metabolism:biosynthesis, regulation, and beyond. J Integr Plant Biol,2008,50:778-785
    160.Lu S, Van Eck J, Zhou X, Lopez A B, O'Halloran D M, Cosman K M, Conlin B J, Paolillo D J, Garvin D F, Vrebalov J, Kochian L V, Kupper H, Earle E D, Cao J, Li L The cauliflower Or gene encodes a DnaJ cysteine-rich domain-containing protein that mediates high levels of beta-carotene accumulation. Plant Cell,2006,18:3594-3605
    161.Maass D, Arango J, Wust F, Beyer P, Welsch R. Carotenoid crystal formation in Arabidopsis and carrot roots caused by increased phytoene synthase protein levels. Plos One,2009,4:e6373
    162.Mandel M A, Feldmann K A, Herrera-Estrella L, Rocha-Sosa M, Leon P. CLA1, a novel gene required for chloroplast development, is highly conserved in evolution. Plant J,1996,9 (5):649-658
    163.Mann V, Harker M, Pecker I, Hirschberg J. Metabolic engineering of astaxanthin production in tobacco flowers. Nat Biotechnol,2000,18:888-892
    164.Mares-Perlman J A, Millen A E, Ficek T L, Hankinson S E. The body of evidence to support a protective role for lutein and zeaxanthin in delaying chronic disease. Overview. J Nutr,2002,132 (3):518-524
    165.Mariani C, Beuckeleer M D, Truettner J, Leemans J, Goldberg R B. Induction of male sterility in plants by a chimaeric ribonuclease gene. Nature,1990,347:737-741
    166.Mariani C, Gossele V, de Beuckeleer M, de Block M, Goldberg R B, de Greef W, Leemans J. A chimaeric ribonuclease-inhibitor gene restores fertility to male sterile plants. Nature,1992,357:384-387
    167.Marraccini P, Courjault C, Caillet V, Lausanne F, Lepage B, Rogers W J, Tessereau S and Deshayes A. Rubisco small subunit of Coffea arabica:cDNA sequence, gene cloning and promoter analysis in transgenic tobacco plants. Plant Physiol Biochem, 2003,41:17-25
    168.Martinez-Garcia J F, Huq E, Quail P H. Direct targeting of light signals to a promoter element-bound transcription factor. Science,2000:288-859
    169.Matarasso N, Schuster S, Avni A. A novel plant cysteine protease has a dual function as a regulator of 1-aminocyclopropane-l-carboxylic acid synthase gene expression. Plant Cell,2005,17:1205-1216
    170.Mathieu S, Terrier N, Procureur J, Bigey F, Gunata Z. A carotenoid cleavage dioxygenase from Vitis vinifera L.:functional characterization and expression during grape berry development in relation to C13-norisoprenoid accumulation. J Exp Bot, 2005,56 (420):2721-2731
    171.Matthews P D, Wurtzel E T. Metabolic engineering of carotenoid accumulation in Escherichia coli by modulation of the isoprenoid precursor pool with expression of deoxyxylulose phosphate synthase. Appl Microbiol Biotechnol,2000,53 (4): 396-400
    172.Meier S, Tzfadia O, Vallabhaneni R, Gehring C, Wurtzel ET. A transcriptional analysis of carotenoid, chlorophyll and plastidial isoprenoid biosynthesis genes during development and osmotic stress responses in Arabidopsis thaliana. BMC Syst Biol,2011,5:77
    173.Mendes A F, Chen C, Gmitter F G, Jr., Moore G A, Costa M G. Expression and phylogenetic analysis of two new lycopene β-cyclases from Citrus paradisi. Physiol Plantarum,2011,141 (1):1-10
    174.Merzlyak M N, Solovchenko A E. Photostability of pigments in ripening apple fruit: a possible photoprotective role of carotenoids during plant senescence. Plant Sci, 2002,163 (4):881-888
    175.Mcelroy D, Zhang W, Cao J, Wu R. Isolation of an efficient actin promoter for use in rice transformation. Plant Cell,1990,2:163-171
    176.Millar A J. Input signals to the plant circadian clock. J Exp Bot,2004,55:277-283
    177.Misawa N, Nakagawa M, Kobayashi K, Yamano S, Izawa Y, Nakamura K, Harashima K. Elucidation of the Erwinia uredovora carotenoid biosynthetic pathway by functional analysis of gene products expressed in Escherichia coli. J Bacteriol, 1990,172:6704-6712
    178.Moehs C P, Tian L, Osteryoung K W, Dellapenna D. Analysis of carotenoid biosynthetic gene expression during marigold petal development. Plant Mol Biol, 2001,45 (3):281-293
    179.Moore G A. Oranges and lemons:clues to the taxonomy of Citrus from molecular markers. Trends Genet,2001,17:536-540
    180.Mouly P P, Gaydou E M, Lapierre L, Corsetti J. Differentiation of several geographical origins in single-strength Valencia orange juices using quantitative comparison of carotenoid profiles. J Agr Food Chem,1999,47:4038-4045
    181.Nambara E, Marion-Poll A. Abscisic acid biosynthesis and catabolism. Annu Rev Plant Biol,2005,56:165-185
    182.Nicolosi E, Deng Z, Gentile A, La Malfa S, Continella G, Tribulato E. Citrus phylogeny and genetic origin of important species as investigated by molecular markers. Theor Appl Genet,2000,100:1155-1166
    183.Nitz I, Berkefeld H, Puzio P S, Grundler F M. Pyk10, a seedling and root specific gene and promoter from Arabidopsis thaliana. Plant Sci,2001,161:337-346
    184.Odell J T, Nagy F, Chua N H. Identification of DNA sequences required for activity of the cauliflower mosaic virus 35 S promoter. Nature,1985,313:810-812
    185.Ohmiya A, Kishimoto S, Aida R, Yoshioka S, Sumitomo K. Carotenoid cleavage dioxygenase (CmCCD4a) contributes to white color formation in chrysanthemum petals. Plant Physiol,2006,142 (3):1193-1201
    186.Pan Y, Michael T P, Hudson M E, Kay S A, Chory J, Schuler M A. Cytochrome P450 monooxygenases as reporters for circadian-regulated pathways. Plant Physiol,2009, 150:858-878
    187.Pan Z, Liu Q, Yun Z, Guan R, Zeng W, Xu Q, Deng X. Comparative proteomics of a lycopene-accumulating mutant reveals the important role of oxidative stress on carotenogenesis in sweet orange (Citrus sinensis [L.] osbeck). Proteomics,2009,9 (24):5455-5470
    188.Park H, Kreunen S S, Cuttriss A J, DellaPenna D, Pogson BJ. Identification of the carotenoid isomerase provides insight into carotenoid biosynthesis, prolamellar body formation, and photomorphogenesis. Plant Cell,2002,14:321-332
    189.Pecker I, Gabbay R, Cunningham F X, Jr, Hirschberg J. Cloning and characterization of the cDNA for lycopene beta-cyclase from tomato reveals decrease in its expression during fruit ripening. Plant Mol Biol,1996,30 (4):807-819
    190.Pizarro L, Stange C. Light-dependent regulation of carotenoid biosynthesis in plants. Cienc Inv Agr,2009,36:143-162.
    191.Pozniak C, Knox R, Clarke F, Clarke J. Identification of QTL and association of a phytoene synthase gene with endosperm colour in durum wheat. Theor Appl Genet, 2007,114:525-537
    192.Rachael L N, Robert W W, Raymond L R. Eukaryotic DNA fragments which act as promoters for a plasmid gene. Nature,1979,277:324-325
    193.Rodrigo M J, Alquezar B, Zacarias L. Cloning and characterization of two 9-cz.s-epoxycarotenoid dioxygenase genes, differentially regulated during fruit maturation and under stress conditions, from orange (Citrus sinensis L. Osbeck). J Exp Bot,2006,57 (3):633-643
    194.Rodrigo M J, Marcos J F, Zacarias L. Biochemical and molecular analysis of carotenoid biosynthesis in flavedo of orange (Citrus sinensis L.) during fruit development and maturation. J Agric Food Chem,2004,52 (22):6724-6731
    195.Rodrigo M J, Zacarias L. Effect of postharvest ethylene treatment on carotenoid accumulation and the expression of carotenoid biosynthetic genes in the flavedo of orange (Citrus sinensis L. Osbeck) fruit. Postharvest Biol Tec,2007,43:14-22
    196.Rodriguez-Villalon A, Gas E, Rodrfguez-Concepcion M. Phytoene synthase activity controls the biosynthesis of carotenoids and the supply of their metabolic precursors in dark-grown Arabidopsis seedlings. Plant J,2009,60:424-435
    197.Rodriguez-Conception M, Ahumada I, Diez-Juez E, Sauret-Gueto S, Lois L M, Gallego F, Carretero-Paulet L, Campos N, Boronat A.1-Deoxy-D-xylulose 5-phosphate reductoisomerase and plastid isoprenoid biosynthesis during tomato fruit ripening. Plant J,2001,27:213-222
    198.Rodriguez-Conception M. Supply of precursors for carotenoid biosynthesis in plants. Arch Biochem Biophys,2010,504:118-122
    199.Rodrfguez-Concepcion M. Early steps in isoprenoid biosynthesis:Multilevel regulation of the supply of common precursors in plant cells. Phytochem Rev,2006, 5:1-15
    200.Rodriguez-Villalon A, Gas E, Rodriguez-Conception M. Colors in the dark:a model for the regulation of carotenoid biosynthesis in etioplasts. Plant Signal Behav,2009a, 4 (10):965-967
    201.Rodriguez-Villalon A, Gas E, Rodriguez-Concepcion M. Phytoene synthase activity controls the biosynthesis of carotenoids and the supply of their metabolic precursors in dark-grown Arabidopsis seedlings. Plant J,2009b,60 (3):424-435
    202.Ronen G, Cohen M, Zamir D, Hirschberg J. Regulation of carotenoid biosynthesis during tomato fruit development:expression of the gene for lycopene epsiloncyclase is down-regulated during ripening and is elevated in the mutant delta. Plant J,1999, 17 (4):341-351
    203.Ronen G, Carmel-Goren L, Zamir D, Hirschberg J. An alternative pathway to beta-carotene formation in plant chromoplasts discovered by map-based cloning of beta and old-gold color mutations in tomato. Proc Natl Acad Sci,2000,97:1102-1107
    204.Rouseff R, Raley L, Hofsommer H. Application of diode array detection with a C-30 reversed phase column for the separation and identification of saponified orange juice carotenoids. J Agric Food Chem,1996,44:2176-2181
    205.Ruiz-Sola M A, Rodriguez-Concepcion M. Carotenoid Biosynthesis in Arabidopsis: A Colorful Pathway. The Arabidopsis Book,2012,10
    206.Salinas J, Oeda K, Chua N H. Two G-box-related sequences confer different expression patterns in transgenic tobacco. Plant Cell,1992,4:1485-1493
    207.Sandhu J S, Krasnyanski S F, Domier L L, Korban S S, Osadjan M D, Buetow D E. Oral immunization of mice with transgenic tomato fruit expressing respiratory syncytial virus-F protein induces a systemic immune response.2000,9:127-135
    208.Sandmann G. Evolution of carotene desaturation:the complication of a simple pathway. Arch.Biochem Biophys,2009,483:169-174
    209.Schwartz S H, Tan B C, Gage D A, Zeevaart J A, McCarty D R. Specific oxidative cleavage of carotenoids by VP14 of maize. Science,1997,276 (5320):1872-1874
    210.Schwartz S H, QinX, Loewen M C. The biochemical characterization of two carotenoid cleavage enzymes from Arabidopsis indicates that a carotenoid-derived compound inhibits lateral branching. J Biol Chem,2004,279 (45):46940-46945
    211.Shewmaker CK, Sheehy JA, Daley M, Colburn S, Ke DY. Seed-specific overexpression of phytoene synthase:increase in carotenoids and other metabolic effects. Plant J,1999,20 (4):401-412
    212.Shen H, Zhu L, Castillon A, Majee M, Downie B, Huq E. Light-induced phosphorylation and degradation of the negative regulator PHYTOCHROME-INTERACTING FACTOR1 from Arabidopsis depend upon its direct physical interactions with photoactivated phytochromes. Plant Cell,2008,20: 1586-1602
    213.Shenk T. Transcriptional control regions:nucleotide sequence requirements for initiation by RNA polymerase Ⅱ and Ⅲ. Current Topic in Microbiology and Immunology,1981,93:25-46
    214.Shin J, Kim K, Kang H, Zulfugarov I S, Bae G, Lee C H, Lee D, Choi G. Phytochromes promote seedling light responses by inhibiting four negatively-acting phytochrome-interacting factors. Proc Natl Acad Sci,2009,106:7660-7665
    215.Shyamala V, Ames G F. Genome walking by single-specific-primer polymerase chain reaction:SSP-PCR. Gene,1987,84:1-8
    216.Shyamala V, Ferro-Luzzi Ames G. Genome walking by single specific primer-polymerase chain reaction. Methods in enzymology,1993,217:436-446
    217.Simkin A J, Zhu C, Kuntz M, Sandmann G. Light-dark regulation of carotenoid biosynthesis in pepper (Capsicum annuum) leaves. J. Plant Physiol,2003,160: 439-443
    218.Singh A, Reimer S, Pozniak C, Clarke F, Clarke J, Knox R, Singh A. Allelic variation at Psy1-A1 and association with yellow pigment in durum wheat grain. Theor Appl Genet,2009,118:1539-1548
    219.Smale S T, Kadonaga J T. The RNA polymerase Ⅱ core promoter. Annu Rev Biochem, 2003,72:449-479
    220.Stein N, Feuillet C, Wicker T, Schlagenhauf E, Keller B. Subgenome chromosome walking in wheat:a 450-kb physical contig in Triticum monococcum L. spans the Lr10 resistance locus in hexaploid wheat (Triticum aestivum L.). Proceedings of the National Academy of Sciences,2000,97:13436
    221.Steinmuller D, Tevini M. Composition and Function of Plastoglobuli.1. Isolation and Purification from Chloroplasts and Chromoplasts. Planta,1985,163:201-207
    222.Stephenson PG, Fankhauser C, Terry MJ. PIF3 is a repressor of chloroplast development. Proc Natl Acad Sci,2009,106:7654-7659
    223.Sun Z, Gantt E, Cunningham F X. Cloning and functional analysis of the β-carotene hydroxylase of Arabidopsis thaliana. J Biol Chem,1996,271 (40):24349-24352
    224. Sun Z, Hans J, Walter M H, Matusova R, Beekwilder J, Verstappen F W, Ming Z, van Echtelt E, Strack D, Bisseling T, Bouwmeester H J. Cloning and characterisation of a maize carotenoid cleavage dioxygenase (ZmCCDl) and its involvement in the biosynthesis of apocarotenoids with various roles in mutualistic and parasitic interactions. Planta,2008,228 (5):789-801
    225.Tanaka Y, Sasaki N, Ohmiya A. Biosynthesis of plant pigments:anthocyanins, betalains and carotenoids. Plant J,2008,54:733-749
    226.Telef N, Stammitti-Bert L, Mortain-Bertrand A, Maucourt M, Carde JP, Rolin D, Gallusci P. Sucrose deficiency delays lycopene accumulation in tomato fruit pericarp discs. Plant Mol Biol,2006,62:453-469
    227.Tao N, Hu Z, Liu Q, Xu J, Cheng Y, Guo L, Guo W, Deng X. Expression of phytoene synthase gene (Psy) is enhanced during fruit ripening of Cara Cara navel orange (Citrus sinensis Osbeck). Plant Cell Rep,2007,26:837-843
    228.Taylor J E, Renwick K F, Webb A A, McAinsh M R, Furini A, Bartels D, Quatrano R S, Marcotte Jr W R, Hetherington A M. ABA-regulated promoter activity in stomatal guard cells. Plant J,1995,7:129-134
    229.Thompson A J, Jackson A C, Parker R A, Morpeth D R, Burbidge A, Taylor I B. Abscisic acid biosynthesis in tomato:regulation of zeaxanthin epoxidase and 9-cis-epoxycarotenoid dioxygenase mRNAs by light/dark cycles, water stress and abscisic acid. Plant Mol Biol,2000,42:833-845
    230.Thorup T A, Tanyolac B, Livingstone K D, Popovsky S, Paran I, Jahn M. Candidate gene analysis of organ pigmentation loci in the Solanaceae. PNAS,2000,97 (21):11192-11197
    231.Tian L, Magallanes-Lundback M, Musetti V, DellaPenna D. Functional analysis of beta-and epsilon-ring carotenoid hydroxylases in Arabidopsis. Plant Cell,2003,15: 1320-1332
    232.Tian L, Musetti V, Kim J, Magallanes-Lundback M, Della-Penna D. The Arabidopsis LUT1 locus encodes a member of the cytochrome p450 family that is required for carotenoid epsilon-ring hydroxylation activity. Proc Natl Acad Sci USA,2004,101: 402-407
    233.Toledo-Ortiz G, Huq E, Rodriguez-Conception M. Direct regulation of phytoene synthase gene expression and carotenoid biosynthesis by phytochrome-interaeting factors. P Natl Acad Sci Usa,2010,107:11626-11631
    234.Tran L S P, Nakashima K, Sakuma Y, Simpson S D, Fujita Y, Maruyama K, Fujita M, Seki M, Shinozaki K, Yamaguchi-Shinozaki K. Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter. Plant Cell,2004,16:2481-2498
    235.Tritsch D, Hemmerlin A, Bach T J, Rohmer M. Plant isoprenoid biosynthesis via the MEP pathway:in vivo IPP/DMAPP ratio produced by (E)-4-hydroxy-3-methylbut-2-enyl diphosphate reductase in tobacco BY-2 cell cultures. FEBS Lett,2010,584 (1):129-134
    236.Triglia T, Peterson M G, Kemp D J. A procedure for in vitro amplification of DNA segments that lie outside the boundaries of known sequences. Nucleic Acids Res, 1988,16:8186
    237.Tzvetkova-Chevolleau T, Hutin C, Noel L D, Goforth R, Carde J P, Caffarri S, Sinning I, Groves M, Teulon J M, Hoffman N E, Henry R, Havaux M, Nussaume L. Canonical signal recognition particle components can be bypassed for posttranslational protein targeting in chloroplasts. Plant Cell,2007,19 (5):1635-1648
    238.Umehara M, Hanada A, Yoshida S, Akiyama K, Arite T, Takeda-Kamiya N, Magome H, Kamiya Y, Shirasu K, Yoneyama K. Inhibition of shoot branching by new terpenoid plant hormones. Nature,2008,455:195-200
    239.Vallabhaneni R, Bradbury L M, Wurtzel E T. The carotenoid dioxygenase gene family in maize, sorghum, and rice. Arch Biochem Biophys,2010,504 (1):104-111
    240.Vallabhaneni R, Wurtzel E T. Timing and biosynthetic potential for carotenoid accumulation in genetically diverse germplasm of maize. Plant Physiol,2009,150, 562-572
    241.Vaughan S P, James D J, Lindsey K, Massiah A J. Characterization of FaRB7, a near root-specific gene from strawberry (Fragariaxananassa Duch.) and promoter activity analysis in homologous and heterologous hosts. J Exp Bot,2006,57:3901
    242.Von Gromoff E D, Schroda M, Oster U, Beck C F. Identification of a plastid response element that acts as an enhancer within the Chlamydomonas HSP70A promoter. Nucleic Acids Res,2006,34:4767-4779
    243.Von.. Lintig J, Welsch R, Bonk M, Giuliano G, Batschauer A, Kleinig H. Light-dependent regulation of carotenoid biosynthesis occurs at the level of phytoene synthase expression and is mediated by phytochrome in Sinapis alba and Arabidopsis thaliana seedlings. Plant J,1997,12:625-634.
    244.Wang S, Liu J, Feng Y, Niu X, Giovannoni J, Liu Y. Altered plastid levels and potential for improved fruit nutrient content by downregulation of the tomato DDB1-interacting protein CUL4. Plant J,2008,55 (1):89-103
    245.Welsch R, Arango J, Bar C, Salazar B, Al-Babili S, Beltran J, Chavarriaga P, Ceballos H, Tohme J, Beyer P. Provitamin A accumulation in cassava (Manihot esculenta) roots driven by a single nucleotide polymorphism in a phytoene synthase gene. Plant Cell,2010,22:3348-3356
    246.Welsch R, Beyer P, Hugueney P, Kleinig H, von Lintig J. Regulation and activation of phytoene synthase, a key enzyme in carotenoid biosynthesis, during photomorphogenesis. Planta,2000,211:846-854
    247.Welsch R, Maass D, Voegel T, DellaPenna D, Beyer P. Transcription factor RAP2.2 and its interacting partner SINAT2:stable elements in the carotenogenesis of Arabidopsis leaves. Plant Physiol,2007,145:1073-1085
    248.Welsch R, Medina J, Giuliano G, Beyer P, Von Lintig J. Structural and functional characterization of the phytoene synthase promoter from Arabidopsis thaliana. Planta, 2003,216:523-534
    249.Welsch R, Wiist F, Bar C, Al-Babili S, Beyer P. A third phytoene synthase is devoted to abiotic stress-induced abscisic acid formation in rice and defines functional diversification of phytoene synthase genes. Plant Physiol,2008,147:367-380
    250.Wille A, Zimmermann P, Vranova E, Furholz A, Laule O, Bleuler S, Hennig L, Prelic A, von Rohr P, Thiele L, Zitzler E, Gruissem W, Buhlmann P. Sparse graphical Gaussian modeling of the isoprenoid gene network in Arabidopsis thaliana. Genome Biol,2004,5:R92
    251.Woitsch S, Romer S. Expression of xanthophyll biosynthetic genes during light-dependent chloroplast differentiation. Plant Physiol,2003,132:1508-1517
    252.Xiang T, Wang L, Pang J. Cloning and characterization of a full-length cab gene encoding the light-harvesting chlorophyll a/b-binding proteins in rice (Oryza sativa L.). Acta Agron Sinica,2005,31:1227-1232
    253.Xie X, Yoneyama K, Yoneyama K. The strigolactone story. Annu Rev Phytopathol, 2010,48:93-117
    254.Xu C J, Fraser P D, Wang W J, Bramley P M. Differences in the carotenoid content of ordinary citrus and lycopene-accumulating mutants. J Agric Food Chem,2006,54 (15):5474-5481
    255.Xu D, McElroy D, Thornburg R W, Wu R. Systemic induction of a potato pin2 promoter by wounding, methyl iasmonate, and abscisic acid in transgenic rice plants. Plant Mol Biol,1993,22:573-588
    256.Xu Q, Liu Y, Zhu A, Wu X, Ye J, Yu K, Guo W, Deng X. Discovery and comparative profiling of microRNAs in a sweet orange red-flesh mutant and its wild type. BMC Genomics,2010,11:246
    257.Xu Q, Ruan X, Cheng L et al., The draft genome of sweet orange(Citrus sinensis). Nat Genet,2012,10.1038/ng.2472
    258.Xu Q, Yu K, Zhu A, Ye J, Liu Q, Zhang J, Deng X. Comparative transcripts profiling reveals new insight into molecular processes regulating lycopene accumulation in a sweet orange(Citrus sinensis) red-flesh mutant. BMC Genomics,2009,10:540
    259.Yin H, Zhao X, Bai X, Du Y. Molecular cloning and characterization of a Brassica napus L. MAP kinase involved in oligochitosan-induced defense signaling. Plant Mol Biol Rep,2010,28:292-301
    260.Yan J, Kandianis C B, Harjes C E, Bai L, Kim E H, Yang X, Skinner D J, Fu Z, Mitchell S, Li Q. Rare genetic variation at Zea mays crtRBl increases [beta]-carotene in maize grain. Nat Genet,2010,42:322-327
    261.Yanagisawa S, Schmidt R J. Diversity and similarity among recognition sequences of Dof transcription factors. Plant J,1999,17:209-214
    262.Yang Y, Yang C, Feng G, Cheng Y, Li Z, Chen M, Liao Z. Cloning and FunctionalAnalysis of HDR Gene from Ginkgo biloba L. Agric Sci Technol,2010,11 (3):33-36
    263.Yongzhong L, Qing L, Nengguo T. Efficient isolation of RNA from fruit peel and pulp of ripening navel orange (Citrus sinensis Osbeck). J Huazhong Agr U,2006,25: 300-304
    264.Yuichiro T, Peter M C. Strigolactones:a new hormone with a past. Curr Opin Plant Biol,2009,12:556-561
    265.Zhang F, Liu X, Zuo K, Zhang J, Sun X, Tang K. Molecular cloning and characterization of a novel Gossypium barbadense L. RAD-like gene. Plant Mol Biol Rep,2011,29:324-333
    266.Zhang J, Tao N, Xu Q, Zhou W, Cao H, Xu J, Deng X. Functional characterization of Citrus PSY gene in Hongkong kumquat (Fortunella hindsii Swingle). Plant Cell Rep, 2009,28:1737-1746
    267.Zhang W, Dubcovsky J. Association between allelic variation at the Phytoene synthase 1 gene and yellow pigment content in the wheat grain. Theor Appl Genet, 2008,116:635-645

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700