用户名: 密码: 验证码:
基于情景模拟的城市暴雨内涝风险评估
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在气候变暖和快速城市化背景下,城市暴雨内涝风险日趋加剧。因此,为协调好人地关系,促进人与自然和谐发展,开展暴雨内涝风险评估显得尤为重要,可以为上海市暴雨内涝风险管理、应急预案和可持续发展提供理论基础和科学依据。
     在国家自然科学基金重点项目“沿海城市自然灾害风险应急预案情景分析(40730526)”和上海市科技启明星计划项目“基于情景分析的上海市自然灾害风险评估与区划研究(09QA1401800)”的资助下,本研究系统分析了上海暴雨内涝形成机理,运用SWMM水文模型,通过数值计算和水文分析相结合的方法,构建了上海市暴雨内涝模型,并结合暴雨内涝灾害风险评估理论,在情景模拟基础上,对城市主要承灾体-道路交通进行了风险评估,本研究的主要成果如下:
     (1)系统总结了国内外排水模型的现状与发展趋势,阐述了SWMM模型的概况与计算原理。分析了城市内涝风险评估的过程与方法,并在此基础上,首次提出了小尺度基于情景模拟的指标体系风险评估方法。
     (2)运用SWMM模型,在地形,土地利用类型,排水管网等数据的支持下,通过基础数据的导入、汇水区划分、参数预估与率定等过程构建了适合上海地区的城市暴雨内涝模型。根据上海市暴雨强度公式合成了4种情景的芝加哥降雨过程,并利用模型对4种降雨情景进行模拟计算。结果显示:在不同情景中,随着重现期增大,积水节点的个数逐渐增加,积水时间提前,积水历时显著增长,平均深度增加,节点径流洪峰流量和总流量增大,从而导致地面积水程度加重,并带来一定的内涝灾害。
     (3)选取城市道路作为承灾体,在情景模拟的基础上选取积水深度和积水历时指标,对承灾体道路交通选取车流量和车速两项指标,将情景模拟和指标体系方法相结合来开展暴雨内涝风险评估。结果显示:普善和华昌排水片因地势低洼,不能有效及时排除积水,结果导致永兴路、徐家宅路、育婴堂路、新路、新马路、京江支路等部分路段始终处于高风险值状态。在建模区北部和周围区域,因泵站在排水中发挥的作用,在四种情景中,潘家弯路、大统路、百禄路、七浦路、华星路、山西北路、乍浦路、海南路、北海宁路和余杭路等路段均处于低风险状态。
     (4)根据城市内涝风险评估结果,提出完善排水体系整体规划、规范排水管网设计标、完善泵站规划、加强排水管网的维护与管理等城市排水设施建议与对策。
Under the situation of climate change and fast urbanization, the risk of waterlogging is getting greater. Therefore, it is of great significance to carry out waterlogging risk assessment for promoting the harmony between human being and nature, and providing scientific basis for waterlogging risk anagement, contingency plans and sustainable development of shanghai.
     This dissertation was supported by the National Natural Science Foundation of China (No.40730526, No.40571006) and Shanghai Science and Technology Venus Project (No.09QA1401800). This paper systematically analyzed the formation mechanism of waterlogging, and then established a rainstorm waterlogging model basing on the SWMM hydrologic model. Combining with natural disaster risk assessment theory, a risk assessment on roads and traffic was carried out in different scenarios. Some main conclusions are obtained listed below.
     (1) Basing on the overview of the drainage system models home and abroad, the profiles and calculation principle of the SWMM model has been systematically summarized. With the analysis on the process and methods of risk assessment, the index system method basing on the scenario simulation in a small scale was initially issued in the field of risk assessment.
     (2) Using the data of topography, land use, drainage network and etc., the urban rainstorm waterlogging model fit to Shanghai was established by basic data import, watershed classification, parameter estimation and calibration. Four Chicago rainfall scenarios have been synthesized according to the Shanghai storm intensity formula, from which the rainstorm waterlogging in four scenarios was simulated by the SWMM model. The simulation showed that with the increase of the return period, the number of puddles grew quickly, the peak time of the waterlogging came earlier, the duration of the waterlogging lasted longer, and the average water depth increased significantly. In addition, the peak flow of runoff and total flow increased respectively. All these results revealed that waterlogging disasters would be further aggravated.
     (3) Using the urban road network as the hazard affected body, take scenario simulation as a base, the index system including indicators such as water depth, duration, traffic flow and traffic speed was screened out. The results showed that wanterlogging was extremely serious in Pu Shan and Hua Chang drainage area due to low-lying. As a result, Yong xing Road, Xu jia zhai Road, Yu ying tang Road, Xin road, Xin ma Road, Jingjiang Road were in a high-risk status in four scenarios. Around the study area, the drainage pump played an important role in reducing the risk of storm caused waterlogging. The Pan Jiawan Road, Da tong Road, Bai lu Road, Seven pu Road, Hua xing Road, Shan xi North Road, Zha pu, Hai nan Road, Bei hai ning Road,Yu hang Road and other Roads were in low-risk.
     (4) On the basis of waterlogging risk assessment, several risk management measures and suggestions such as improving urban drainage systems designing, drainage system maintainence and etc.have been proposed basing on the theory of risk precaution.
引文
1. Arnold M, Chen R, Deichmann U, et al. Natural Disaster Hotspots Case Studies, Washington DC:Hazard Management Unit [R]. World Bank:2006,1-181.
    2. Alley W M, Smith P E. Estimation of accumulation parameters for urban runoff quality modelling. Water Resour. Res.1981,17(6):1657-1664.
    3. Cardona O D, Hurtado J E, Chardon A C. et al. Indicators of Disaster Risk and Risk Management Summary Report for WCDR. Program for Latin America and the Caribbean IADB UNC/IDEA,2005,1-47.
    4. Cutter S L, Vulnerability to Environmental Hazards [J]. Progress in Human Geography, 1996, (20):529-539.
    5. Cutter S L, The Vulnerability of Science and the Science of Vulnerability. Annals of the Association of American Geographers,2003,93(1):1-12.
    6. Cutter S L, Mitchell J T, Scott M S. Revealing Vulnerability of People and Places: A Case Study of Georgetown County, South Carolina. Annals of the Association of American Geographer,2000, (90):713-737.
    7. Dales Y M, Reed W D. Regional flood and storm hazard assessment[M]. UK:Institute of Hydrology,1989.
    8. Demirkesen A. C, Evrendilek F, Berberoglu S, et al., Coastal Flood Risk Analysis Using Landsat-7 ETM+Imagery and SRTM DEM:A Case Study of Izmir, Turkey [J]. Environ Monit Assess,2007,131:293-300.
    9. Department of Environment U K. Design and analysis of urban storm drainage the Wallingford procedure [M]. Oxford shire:Hydraulics Research Limited,1989.
    10. Dilley M, Chen R. S, Deichmann U, et al.Natural Disaster Hotspots:A Global Risk Analysis Synthesis Report [R]. Washington DC:Hazard Management Unit, World Bank,2005,1-132.
    11. Djordjevic S, Prodanovic D, Maksimovic, C. An approach to simulation of dual drainage. Water Science and Technology.1999,39(9):95-103.
    12. Dutta D, Tingsanchali T. Development of Loss Functions for Urban Flood Risk Analysis In Bangkok[C]. Proceedings of the 2nd International Symposium on New Technologies for Urban Safety of Mega Cities in Asia, ICUS. The University of Tokyo,2003,229-238.
    13. EERI, Guidelines for Developing an Earthquake Scenario[R]. Report of Endowment Fund of the Earthquake Engineering Research Institute and FEMA.2006.
    14. Fedeski M, Gwilliam J. Urban Sustainability in the Presence of Flood and Geological Hazards:The Development of a GIS-based Vulnerability and Risk Assessment Methodology[J]. Landscape and Urban Planning,2007,83:50-61.
    15. Gabriele Freni, Marco Maglionico, Vittorio Di Federico. State of the art in Urban Drainage Modelling,2003,9-170.
    16. Gambolati G, Teatini P. GIS Simulations of the inundation risk in the coastal lowlands of the Northern Adriatic Sea [J]. Mathematical and Computer Modelling,2002,35:963-972.
    17. Gaume E, Villeneuve J, Desbordes, M, Uncertainty assessment and analysis of the calibrated parameter values of an urban storm water quality model. J. Hydrol.1998,210,38-50.
    18. Gheorghe V A, Mock R, Kriger W. Risk assessment of regional systems [J]. Reliability Engineering &System Safety,2000,70(2):141-156.
    19. Hsu M H, Chen S H, Chang T J. Inundation simulation for urban drainage basin with storm sewer system[J]. Journal of Hydrology,2000,234(2):21-37.
    20. Klugel U J, Mualchin L, Panza F G. A scenario-based procedure for seismicrisk analysis[J]. Engineering Geology,2006,88(1):1-22.
    21. Knuson T. R, Tuleya R. E, Kurihara Y., Simulated Increase of Hurricane Intersities in a CO2 Warmed Climate [J]. Science,1998,279:1018-1020.
    22. Kreimer A. Arnold M, Carlin A. Building Safer Cities:The Future of Disaster Risk [M]. Washington DC: Hazard Management Facility, World Bank:2003,1-298.
    23. Lewis A Rossman. Storm Water Management Model Qualitsurance Report:Dynamic Wave Flow Routing. USA: EPA, Water Supply and Water Resources Division National Risk Management Research Laboratory,2004,6-12.
    24. Manny. Total Disaster Risk Management Approach:Towards Effective Police Action in Disaster Reduction and Response [A]. Regional Workshop on Total Disaster Risk Management[C]. August 7-9,2002, Kobe, Japan.
    25. Nishikawa S. Total Disaster Risk Management for Sustainable Development [A]. Proceedings of the International Conference on TDRM[C]. December 2-4,2003, Kobe, Japan.
    26. Okada N, Amendola A. Research Challenges for Integrated Disaster Risk Management [R]. Presentation to the First Annual IIASA-DPR IM meeting on Integrated Disaster Risk Management:Reducing Socio Economic Vulnerability, at IIASA, Laxenburg, Austria (Aug 1-4,2001),2001.
    27. Pelling M. Visions of Risk:A Review of International Indicators of Disaster Risk and Its Management [R]. ISDR/UNDP,2004,1-56.
    28. Pelling M, Maskrey A, Ruiz P. United Nations Development Programme[R]. A Global Report Reducing Disaster Risk:A Challenge for Development. New York: UNDP,2004, 1-146.
    29. Pullar D, Springer D. Towards integrating GIS and catchment models [J]. Environmental Modeling and Software,2000,15(5):451-459.
    30. Scofield R A. The ESDIS operational convective precipitation estimation technique [J]. Mon. Wea. Rev.1987,115(8):1773-1792.
    31. Theo G Schmitt, Martin Thomas, Norman Ettrich. Analysis and modeling of flooding in urban drainage systems [J]. Journal of Hydrology,2004, (299); 300-311.
    32. Thorndahl S, Willems P, Probabilistic modelling of over-flow, surcharge, and flooding in urban drainage using the first order reliability method and parameterization of local rain series. Water Res.2008,42(1),455-466.
    33. Urban Water Resources Research Council of the ASCE. Design and construction of urban storm water management system [M]. New York:ASCE,1992.
    34. Yin Jian min, Gu Xiao qing, Cai Zhe, et al. Study and application of rainstorm waterlogging mathematical simulation in Nanchang city[J]. SPIE, Doi:10.1117/12.697800.
    1. 白海玲,黄崇福.自然灾害的模糊风险[J].自然灾害学报,2000,09(1):47-53.
    2. 白景昌.基于遥感与地理信息系统的洪灾风险区划研究[D].中国科学院遥感应用研究所.北京:中国科学院,2004.
    3. 岑国平,詹道江,洪嘉年.城市雨水管道计算模型[J].中国给水排水,1993,9(1):37-40.
    4. 陈利群SWMM在城镇排水规划设计中适用性研究[J].给水排水,2010,36(5):34-36.
    5. 陈守珊.城市化地区雨洪模拟及雨洪资源化利用研究[D].南京:河海大学,2007.
    6. 陈谊娜,任明.企业合同风险辨识及评价分析[J].天津大学学报(社会科学版),2009,1 1(2):138-143.
    7. 陈振楼,王军,刘敏等.上海市主要自然灾害特点与应对策略[J].华东师范大学学报(自然科学版),2008,5(3):116~125.
    8. 丛翔宇,倪广恒,惠士博等.基于SWMM的北京市典型城区暴雨洪水模拟分析[J].水利水电技术,2006,37(4):64-67.
    9. 董欣,杜鹏飞,李志一等SWMM模型在城市不透水区地表径流模拟中的参数识别与验证[J].环境科学,2008,29(6):1495~1500.
    10.董颖.排水管网系统改扩建优化设计研究[D].西安:西安理工大学水利水电学院,2006.
    11.龚伟.针对暴雨积水灾害的城市防汛决策支持系统研究[D].南京:河海大学,2007.
    12.胡坚,喻一萍.计算机模拟技术在镇江市城区排水管理中的应用[J].中国给水排水,2007,23(19):106-108.
    13.黄崇福,刘新立,周国贤等.以历史灾情资料为依据的农业自然灾害风险评估方法[J].自然灾害学报,1998,7(2):1~8.
    14.黄崇福.自然灾害风险评价理论与实践[M].北京:科学出版社.2005.
    15.黄大鹏,刘闯,彭顺风.洪灾风险评价与区划研究进展[J].地理科学进展,2007,26(4):11-22.
    16.黄金良,杜鹏飞,何万谦等.城市降雨径流模型的参数局部灵敏度分析[J].中国环境科学,2007,27(4):549~553.
    17.减敏.北京城市积涝的减灾措施和对策研究[J].防汛抗旱,2009,(2):4-6.
    18.解以扬,韩素芹,由立宏等.天津市暴雨内涝灾害风险分析[J].气象科学,2004,24(3):342-349.
    19.解以扬.城市暴雨内涝数学模型的研究与应用[J].水科学进展,2005,16(3):384-390.
    20.李娜.天津市城区暴雨沥涝仿真模拟系统的研究[J].自然灾害学报,2002,11(2):112-118.
    21.刘俊,徐向阳.城市雨洪模型在天津市区排水分析计算中的应用[J].海河水利,2001,(1):9-11.
    22.刘翔.城市雨洪关系分析与模拟[D].南京:河海大学,2005.
    23.刘兴坡,刘遂庆,李树平等.镇江市主城区排水管网计算机建模方法[J].中国给水排水,2007,23(11):42-46.
    24.陆敏博,张卫萍.苏州某区域暴雨积水原因分析与防治措施[J].城市道路与防洪,2007,(2):59-64.
    25.罗培.基于GIS的地质灾害风险评估信息系统探讨[J].灾害学,2005,20(4):57-61.
    26.欧进萍,段忠东,常亮.中国东南沿海重点城市台风危险性分析[J].自然灾害学报,2002,11(4):9-17.
    27.潘淑庆,李淑阔.水利工程风险辨识的方法和应用[J].科学之友,2010,(12):50~51.
    28.邵尧明.城市雨水排水管网系统设计方法的研究[J].给水排水,2005,31(11):46-49.
    29.史培军.三论灾害研究的理论与实践[J].自然灾害学报,2002,11(3):1-9.
    30.苏桂武,高庆华.自然灾害风险的行为主体特性与时间尺度问题[J].自然灾害学报,2003,12(1):9-16.
    31.孙桂华,王善序,王金銮等.洪水风险分析制图实用手册[M].北京:水利电力出版社,1992.
    32.孙欣.城市雨水系统工况模拟与内涝风险评价[D].天津:天津大学,2009.
    33.谭琼,李田,冯沧等.居住小区雨水优化管理方法的效果评价[J].给水排水,2007,23(19):10-14.
    34.王海鲲,陈长虹.上海市城区典型道路形式特征分析[J].交通环保,2005,26(3):35-39.
    35.王浩昌,杜鹏飞,赵冬泉等.城市降雨径流模型参数全局灵敏度分析[J].中国环境科学,2008,28(8):725~729.
    36.王珏,聂文东,王静爱.中国大都市群地区的水灾风险与应急管理研究[J].自然灾害学报,2005,14(6):59-64.
    37.王红军,刘文菁,刘培宁等.2008年深圳洪涝灾害的气候背景和环流条件[J].气象科学,2010,30(2):256-261.
    38.王梦江,张强.“麦莎”台风期间上海市区道路积水原因和对策[J].城市道桥与防洪,2006,(1):74-76.
    39.王绍玉,冯百侠.城市灾害应急与管理[M].重庆:重庆出版社.2005.
    40.王绍玉.中国构建和谐社会条件的综合灾害风险管理研究[J].中国人口·资源与环境,2008,18(4):1-9.
    41.魏风华.河北省唐山市地质灾害风险区划研究[D].北京:中国地质大学,2006.
    42.魏一鸣,张林鹏,范英.基于Swarm的洪水灾害演化模拟研究.管理科学学报,2002,5(6):39-46.
    43.夏富强,康相武,吴绍洪等.黄河下游不同洪水情景决溢风险评价[J].地理研究,2008,27(1):229~239.
    44.谢翠娜.上海沿海地区台风风暴潮灾害情景模拟及风险评估[D].上海,华东师范大学,2010.
    45.徐向阳,刘俊,郝庆庆等.城市暴雨积水过程的模拟[J].水科学进展,2003,14(2):193~196.
    46.徐向阳,马秀梅,刘翔.湖南省城市洪水成因及防治对策[J].灾害学,2005,20(4):79-82.
    47.徐向阳.平原城市雨洪过程模拟[J].水利学报,1998,(8):34-37.
    48.徐振辞,郭永辰.城市不同下垫面条件的降雨径流模拟试验研究[J].南水北调与水利科技,2007,5(1),64-66.
    49.许世远,王军,石纯等.沿海地区自然灾害风险研究[J].地理学报,2006,61(2):127-138.
    50.扬郁华.美国田纳西河是怎样变害为利的[J].地理译报,1983,(3):1-5.
    51.杨威,济南“7.18”暴雨洪涝灾害及其启示[J].中国防汛抗旱,2007,(6):19-20.
    52.姚春梅,周纪明,雷廷武等.奥运期间北京内洪灾害防范问题探讨[J].北京水利,2004,(4):29-30.
    53.叶明武,陈振楼,王军等.情景分析在区域生态环境安全预警研究中的应用~以上海崇明岛主要城镇为例[J].叶资源环境与发展,2007,(4):8-12.
    54.尹占娥,许世远,殷杰等.基于小尺度的城市暴雨内涝灾害情景模拟与风险评估[J].地理学报,2010,65(5):553-562.
    55.袁志伦.上海水旱灾害[M].河海大学出版社,1999.
    56.张继权,冈田宪夫,多多纳裕一.综合自然灾害风险管理~全面整合的模式与中国的战 略选择[J].自然灾报,2006,15(1):29-37.
    57.张建涛.上海市中心城区雨洪模型研究[D].南京:河海大学,2007.
    58.张小娜,冯杰,刘方贵.城市雨水管网暴雨洪水计算模型研制及应用[J].水电能源科学,2008,26(5):41-43.
    59.赵彩萍,荆肖军,李艳红等.城市暴雨内涝预报研究[J].科技情报开发与经,2008,18(29):114~116.
    60.赵冬泉,陈吉宁,佟庆远等.基于GIS构建SWMM城市排水管网模型[J].中国给水排水,2008,24(7):88-91.
    61.赵冬泉,陈吉宁,佟庆远等.子汇水区的划分对SWMM模拟结果的影响研究[J].环境保护,2008,394(4):56-59.
    62.赵冬泉,陈吉宁,王浩正等.城市降雨径流污染模拟的水质参数局部灵敏度分析[J].环境科学学报,2009,29(6):1170~1177.
    63.赵冬泉,盛政,王浩正等.数字排水技术在雨水管网溢流管理中的应用[J].给水排水动态,2008,8(4):9-11.
    64.赵树旗,晋存田,李小亮等SWMM模型在北京市某区域的应用[J].给水排水,2009,增刊(35):449~451.
    65.赵思健,陈志远,熊利亚.利用空间分析建立简化的城市内涝模型[J].自然灾害学报,2004,13(6):8-14.
    66.赵文双,商彦蕊,黄定华等.农业旱灾风险分析研究进展水科学与工程技术[J].2007,(6):1-4.
    67.赵雅娟.深圳罗湖小区排水系统模型研究[D].广州:中山大学地理科学与规划学院,2001.
    68.周玉文,赵洪宾.城市雨水径流模型研究[J].中国给水排水,1997,13(4):4-6.
    69.朱婷.雨水管网运行风险分析和模拟方法[D].上海:同济大学环境科学与工程学院,2008.
    70.周健,丛林,许彰珉.上海地区沿海岸线工程相对海平面上升影响浅析[J].中国给水排水,2000,(1):6-9.
    71.张典.基于SWMM的地下河流域水文过程模拟研究—以重庆青木关岩溶地下河为例[D].重庆:西南大学,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700