用户名: 密码: 验证码:
天津港风暴潮数值模式的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
天津港沿岸的风暴潮灾害频繁发生,常常造成巨大的经济损失和人员伤亡迫切需要准确的风暴潮预报为当地的防潮减灾工作服务。
     本文应用天津港风暴潮潮位资料、国家常规地面气象观测资料和探空资料、天津自动站资料和美国国家环境预报中心NCEP再分析资料,以渤海风暴潮数值预报模式为基础,采用数值模拟的方法,开展天津港风暴潮数值模式的应用研究。主要研究内容包括:
     1)对1950年-2010年天津港风暴潮历史资料进行了统计,分析天津港风暴潮的历史统计特征。分析结果表明天津港风暴潮一年四季均有发生,其中6月-11月出现较集中,8月份是风暴潮最集中的一个月,历史上有37.8%的风暴潮发生在8月份;历史最高潮位出现在9月份,8月和11月次之;天津港风暴潮发生频率较高,高于470cm的潮位平均每年会出现2.43次,高于500cm的潮位平均每2.5年就会出现一次。
     2)分析了渤海特殊地形作用对天津港风暴潮的影响。表明除了渤海上空持续的向岸大风会造成天津港风暴潮外,即使天津港无风或吹离岸风时,由于渤海特殊地形的作用,如果有较强天气系统(如气旋)作用产生北黄海海域偏东大风,导致北黄海水体大量涌入渤海,天津港附件海面也会异常升高,甚至发生风暴潮。
     3)使用渤海风暴潮数值预报模式对天津港10次风暴潮个例进行模拟试验,针对不同天气系统进一步研究了渤海风暴潮数值模式对天津港风暴潮的模拟能力。结果表明模式对台风型风暴潮的增水模拟结果还是误差偏大;对强孤立气旋型、冷锋低压型、冷锋型风暴潮的增水模拟结果比实际增水偏小,且三者偏小幅度有所不同。
     4)由于在渤海风暴潮的形成中,风应力起决定性作用,通过适当调大风应力拖曳系数,模式的模拟效果有所提高;试验表明风应力拖曳系数修正参数A调整到[0.096,0.16]这个区间时,模式对强孤立气旋型、冷锋低压型和冷锋型风暴潮的模拟误差有所减小,模拟结果更接近实况。
     5)用2011年一次天津港风暴潮应用个例检验了风应力拖曳系数调整方案的实用性,结果表明风应力拖曳系数调整后,有效减小了模拟增水与实测增水的误差,提高了渤海风暴潮数值模式的模拟精度。
Storm surge disasters along Tianjin Port occurr frequently and often cause enormous economic losses and casualties.Accurate prediction of storm surge is urgently needed for services in preventing and reducing storm surge disasters.
     In this paper, the storm surge data of Tianjin Port, the conventional meteorological observation data and sounding data, Tianjin automatic weather station data and the NCEP reanalysis data sets are used; the paper bases on BoHai Storm Surge Model using numerical simulation method to carry out Tianjin Port storm surge numerical model application research. The research topics include:
     1) This paper compiles statistics from 1950-2010 storm surge data of Tianjin Port, and analyzes the characteristics of Tianjin Port's storm surge. The results show that the storm surges throughout the full year have occurred in Tianjin Port, which is concentrated in June to November. August is the most concentrated month. Historically,37.8% of storm surges happened in August. Maximum storm surge tide was in September, August and November followed by; Tianjin Port's storm surges occured frequently, the tide level above 470cm, there will be 2.43 times per year average and higher than 500cm tide level occurs every 2.5 years.
     2) This paper analyzes the special topography of the Bohai sea effects storm surge of Tianjin Port. The results show that not only strong wind over the Bohai Sea continued will cause storm surges,when no wind or offshore wind blowing, if there is a strong weather system (such as cyclones)produced strong easterly winds in the North Huanghai Sea. Because the topography of the Bohai Sea in particular,if a large number of water of the North Huanghai Sea into Bohai Sea, Tianjin Port's tide will be abnormally higher, or even caused storm surges.
     3) BHSSM is used to simulate 10 cases of storm surge in Tianjin Port; capability of the model simulating different types storm surge is analyzed; The results show that the model's simulation results of typhoon storm surges have large error; The model's simulation results of Strong cyclone storm surges, low pressure and cold front storm surges and cold front storm surges are smaller than the actual tide, and the small magnitude of the three is different.
     4) The wind stress plays a decisive role on the formation of Bohai sea storm surge. By increasing the drag coefficient of wind stress appropriately,the simulation results of the mode have improved;Experiment shows that the simulation error on the storm surge of strong isolated cyclones type, low pressure of cold front type and cold front type are reduced and the simulation result is closer to the real condition,when the wind stress drag coefficient correction parameter A is adjusted to [0.096,0.16].
     5) One case of storm surge in 2011 in Tianjin Port is used to test the practicability of adjustment programs on wind stress drag coefficient. The results show that after the adjustment of wind stress drag coefficient, the error between simulated water level and actual water level is effectively decreased, which improves the simulation accuracy of numerical model on Bohai Sea storm surge.
引文
[1]国家海洋局,中国海洋灾害与减灾[J],中国减灾,2000,10(4):27-32
    [2]杨宝国,中国沿海的风暴潮灾及其防御对策,自然灾害学报,1996,5(4):82-88
    [3]张鹰,丁贤荣,中国风暴潮灾害与沿海城市防潮,海洋预报,1996,13(4):47-51
    [4]叶琳,于福江,我国风暴潮灾的长期变化与预测,海洋预报,2002,19(1):89-96
    [5]崔承琦,施建堂,近10年来我国沿海海面变化和风暴潮,海洋通报,2001,20(4)20-25
    [6]张景轩,李秉海,应用现代科技提高防潮减灾工作水平,海洋预报,2002,19(1):51-54
    [7]乐肯堂,我国风暴潮灾害及防灾减灾战略,海洋预报,2002,19(1):9-15
    [8]弓冉,穆仲义,河北沿海风暴潮的危害及防治,地理学与国土研究,1994,10(4):21-24
    [9]张效良,天津沿海风暴潮位的频率分析与海堤建设,中国减灾,1995,5(2):46-58
    [10]许富祥,海浪预报知识讲座,海洋预报,2001,18(3):69-77
    [11]宋珊,马毓倩,谭树志,苗文东,渤海风暴潮监测预报与应急预报防范,海洋预报,2002,19(1):24-28
    [12]吴少华,王喜年,宋珊等,天津沿海风暴潮灾害概述及统计分析,海洋预报,2002,19(1):29-35
    [13]王成刚,王得军,天津市沿海风暴潮成因及防御对策分析,海河水利,2004,(4):27-37
    [14]段志华,再析天津渤海沿岸风暴潮特性及防御减灾对策,海洋预报,2002,19(1):43-50
    [15]Jelesnianski C P., A numerical calculation of storm tides induced by a tropical storm impinging on a continental shelf [J]. Mon Wea Rev,1965,93:343-358
    [16]Jelesnianski C P. Numerical computations of storm surges without bottom stress [J]. Mon Wea Rev,1966,94:379-394
    [17]Jelesnianski C P.SPLASH, Part1, landfall storms [J], NOAA Tech. Mem. NWS TDL, 1972(46):52
    [18]Jelesnianski C P.SPLASH, Part2, General Track and Variant Storm Conditions [J]. NOAA Tech. Mem. NWSTDL,1974(52):55
    [19]Jelesnianski C P, Chen.J, Wilson A. SLOSH:Sea, Lake and overland Surges from Hurricanes. NOAA Technical Report NWS 48,711992
    [20]Heaps, N.S, Storm surge:1967—1982[J].Geophy.J.R.Stron.Soc,1983,74:331-367
    [21]Schwab D.J. An inverse method for determining wind stress from water-evel fluctuation [J]. Dynamics of Atmosphere and Oceans,1982,6:251-278
    [22]Yamashita, Tsuchiya, Y.and Yoshioka. Quasi-three-dimensional model for storm surges and its verification[J].Coastal Engineering,1994,901-915
    [23]Lance B. and Thomas A H. Progress and recent developments in storm surge modeling [J]. Joumal of Hydraulic Engineering,1997,123(4):315-331
    [24]Roy, GD. Estimation of expected maximum possible water level along the meghna Estuary using a tide and surge interaction model [J].Environment International.1995,21 (5):671-677
    [25]Konishi T.,Tsuji Y.Analyses of storm surges in the western part of the Selo Inland Sea of JaPan caused by Typhoon 9119[J]. Continental Shelf Research,1995,15(14):1795-1823
    [26]Jones J.E. Davies A.M.Influence of wave-current interaetion, and high frequeney forcing upon storm induced currents and elevations[J].Estuarine, Coastal and Shelf Science,2001, 53:397-413
    [27]Hubbert G.D. and Mclnnes K.L. A storm surge model for coastal Planning and impact studies[J], Journal of Coastal Research,1999,15(1):168-185
    [28]Xie L. Pietafesa L.J. and M. Peng. An integrated storm surge and inundation modeling system for lakes, esturies and coastal ocean [J]. J.of Coastal Researeh,2004,20:282-296
    [29]Lieberman N.V., Mai S, Zinunermann C. A storm surge management system for the German coast. Proc.of the World Water & Environmental Resources Congress, Orlando,2001
    [30]Mastin M.C., Ousen T.D. Fifty-year storm-tide flood-inundation maps for santa Rose de Aguan, Honduras.U.S.Geological Survey, water-resources investigations report 02-258
    [31]As-Salek, J.A., Yasuda, T. Comparative study of the storm surge models proposed for Bangladesh:Last developments and research needs [J]. Journal of Wind Engineering and Industrial Aerodynamics,1995,54/55,595-610
    [32]Bates, P.D. Development and testing of a subgrid—cale model for moving boundary hydrodynamic problems in shallow water [J]. Costal Engineering,2000,14:2073-2088
    [33]Bode, L., Hardy, T. A. Progress and recent developments in storm surge modeling [J]. Journal of hydraulic Engineering,1997,123(4):315-331
    [34]Casulli, V. Semi-implicit finite difference methods for the two-dimensional shallow-water equation [J]. Journal of computational physics,1990,86:56-74
    [35]Cheung, K.F., Phadke, A.C., Wei, Y. et.Al. Modeling of storm-induced coastal flooding for emergency management[J].Oeean Engineering,2003,30,1353-1386
    [36]Causon, D.M., Ingram, D.M., Mingham, C.G. A Cartesian cut cell method for shallow water flows with moving boundaries [J]. Advances in Water Resources,2001,24:899-911
    [37]Davies, A.M., Hall, P. Numerical problems associated with coupling hydrodynamic models in shelf edge regions:the surge event of February 1994[J]. Applied Mathematical Modelling.2002,26,807-831
    [38]Dutta, D., Herath, S., Musiake, K. A mathematical model for flood loss estimation [J]. Journal of Hydrology,2003,277:24-49
    [39]Fanjul, E.A., Gomez, B.P., Carretero, J.C., Arevalo, I.R.S. Tide and surge dynamics along the Iberian Atlantic coast[J].Oceanologica acta,1998,21:131-143
    [40]Fang, G.H., Kwok, Y.K., Yu, K., Zhu, Y.H. Numerical simulation of Principal tidal constituents in the SouthChina Sea, Gulf of Tonkin and Gulf of Thai land [J]. Continental Shelf Reaearch,2000,19:845-869
    [41]冯士筰.风暴潮导论[M].北京:科学出版社,1982:241.
    [42]孙文心,冯士筰,秦曾灏.超浅海风暴潮的数值模拟(Ⅰ)[J].海洋学报,1979,1(2):193-211
    [43]孙文心,秦曾灏,冯士筰.超浅海风暴潮的数值模拟(Ⅱ)[J].山东海洋学院学报,1980,10(2):7-19
    [44]孙文心.风暴潮的数值模拟[J].风暴潮,1979,77-133
    [45]孙文心,冯士筰.超浅海风暴潮的数值模拟(Ⅲ)[J].风暴潮,1983,47-520
    [46]孙文心,魏更生.交换计算顺序法[J].水动力学研究与进展,1995,A10(4):391-397
    [47]孙文心,杨宗严,史峰岩.风暴潮漫滩数值预报模式分析与探讨[J].青岛海洋大学学报,1994,24(3):293-300
    [48]孙文心.三维浅海流体动力学的一种数值方法一流速分解法.(《物理海洋数值计算》冯士筰和孙文心主编,科学与工程计算丛书,河南科技出版社),1992,100-194
    [49]孙文心.超浅海风暴潮的进一步研究[J].山东海洋学院学报,1987,17(1):34-45
    [50]史峰岩,孙文心.极坐标变换变边界模型及其应用[J].海洋与湖沼,1995,26(4):369-376
    [51]史峰岩,孙文心.渤海局部海域风暴潮漫滩的数值模拟[J].海洋与湖沼,1993,24(1):16-23
    [52]史峰岩,孙文心,魏更生.运动侧边界海洋问题的自适应网格模拟方法[J].海洋学报,1997,19(2):1-9
    [53]唐永明,孙文心,冯士筰.三维浅海流体动力学模型的流速分解法[J].海洋学报,1990,12(2):149-158
    [54]尹庆江,吴少华,王喜年.美国SLOSH模式在我国的应用—杭州湾台风风暴潮的数值模拟[J].海洋预报,1997,14(1):70-74
    [55]孙英兰,张越美.胶州湾三维变动边界的潮流数值模拟[J].海洋与湖沼,2001,32(4):355-362
    [56]张延廷,王以娇.渤海风场的模拟及风暴潮计算[J].海洋学报,1983,,3:261-272
    [57]吴培木.中国东南海岸台风暴潮数值预报模式[J].海洋学报,1983,5(3):273-283
    [58]吴辉旋,季晓阳.台风暴潮的数值预报试验[J].海洋学报,1985,7(5):633-640
    [59]季晓阳,吴辉旋.渤海风暴潮数值预报的个例研究[J].海洋学报,1990,12(3):306-313
    [60]李树华,陈文广,陈波等.广西沿海台风暴潮数值模拟试验[J].海洋学报,1992,14(5):15-25
    [61]江毓武,吴培木,许金殿.厦门港潮汐、风暴潮祸合模型.海洋学报,2000,22(3):1-6
    [62]王喜年.风暴潮预报知识讲座(6).海洋预报,2002,vol.19,No,3:65-72
    [63]端义宏,朱建荣,秦曾灏等.一个高分辨率的长江口台风风暴潮数值预报模式及其应用[J],海洋学报,2005,27(3):11-19
    [64]于宜法,俞聿修.渤海天文2风暴潮数值模拟和一种多年一遇极值水位的计算方法[J].海洋学报,2003,25(4):10-17.
    [65]尹宝树等.渤海波浪和潮汐风暴潮相互作用对波浪影响的数值研究[J].海洋与湖沼,2001,32(1):109-116
    [66]王秀芹,钱成春,王伟.风应力拖曳系数选取对风暴潮数值模拟的影响[J].青岛海洋大学学报,2001,31(5):640-646
    [67]王秀芹,钱成春,王伟.计算域的选取对风暴潮数值模拟的影响[J].青岛海洋大学学报,2001,31(3):319-324
    [68]金正华,王涛,尹宝树.浪、潮、风暴潮联合作用下的底应力效应[J].海洋与湖沼,1998,29(6):604-610
    [69]吴少华,王喜年等.渤海风暴潮概况及温带风暴潮数值模拟[J].海洋学报,2002,24(3):28-34
    [70]冯东太.渤海风潮的联合概率法[J].山东师大学报(自然科学版),1998,13(3):333-335
    [71]易笑园等.几种台风风暴潮预报方法在实际预报中的运用及比较[J].海洋预报,2006,23(4):82-87
    [72]龚强,应用MM5模式对地面大风过程的模拟试验,气象,2005,31(4),53-57.
    [73]王喜年.风暴潮监测、预报系统和预报精确度.海洋预报,2001,18(3),60-64
    [74]史峰岩,孙文心.跳点法在风暴潮数值预报模型中的应用[J].青岛海洋大学学报,1997, 27(3):271-276
    [75]史峰岩,孔亚珍.流速逆变张量隐式求解方法及其在航道港池流场计算中的应用[J].海洋学报,1998,20(4):17-24
    [76]史峰岩.河口海岸动力学数值模型和统计模型研究.华东师范大学博士后研究工作报告,1998
    [77]朱首贤,丁平兴,沙文饪等.近岸非对称台风风场模型[J].华东师范大学学报(自然科学版),2002,2:6-71
    [78]CHEN C S, QIN Z H. Numerical simulation of typhoon surges along t he east coast of Zhejiang and Jiangsu Provinces [J]. Advances in Atmospheric Science,1985,2 (1):829.
    [79]QIN Z. H., DUAN Y. H. Numerical simulation and prediction of storm surge and water levels in Shanghai Harbor and it s vicinity[J]. Natural Hazards,1995 (9):167-188.
    [80]孙英兰.超浅海风暴潮的一个联合模型及其对渤海风潮的初步应用[J].山东海洋学院学报,1984;14(1):54-70
    [81]吴培木.台湾海峡台风暴潮非线性数值计算[J].海洋与湖沼,1981,3(1):28
    [82]柴扉,汪景庸.东海风暴潮与天文潮的非线性相互作用[J].青岛海洋大学学报,1990,20(3):56
    [83]于福江,张占海.一个东海嵌套网格台风暴潮数值预报模式的研制与应用[J].海洋学报(中文版)2002,24(4):23-33
    [84]朱耀华.一个二维和三维嵌套海洋流体动力学数值模式及其在北部湾潮汐和潮流数值模拟中的应用[J],海洋与湖沼,1993,24(2):117-125
    [85]黄华,朱建荣等.长江口与杭州湾风暴潮三维数值模拟[J].华东师范大学学报,2007(4),1-11.
    [86]赵永良,张延廷,陈则实.浅海风暴潮和天文潮相互作用中非线性效应的数值诊断分析[J].海洋学报,1994,16(1):12-22
    [87]张雪莹,邵荣敏,高孟川.天津沿海风暴潮的成因与防灾减灾措施研究[J].天津理工大学学报,2005,21(2):60-63

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700