用户名: 密码: 验证码:
基于光谱和多光谱数字图像的作物与杂草识别方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国的农业生产已经取得了很大成就,但面临着一些重大问题,如农药使用过量而造成的环境污染、机械化程度不足、投入高效率低等等。精细农业是我国农业发展的必然趋势。精细农业是集成了电子、计算机、信息处理技术与智能机械等技术的现代农业技术和体系。机器视觉是其中的关键性基础技术,是作业机械的感觉器官。针对作物早期管理中的自动喷洒作业的需要,重点研究了作物与杂草的识别问题。田间作物与杂草的自动识别,根据研究内容和方法的不同,可以分为以下几类:1)根据作物与杂草的位置信息的区分;2)根据光谱反射率的区分;3)根据形状的区分;4)根据颜色的区分;5)根据纹理的区分。本文的主要研究内容与结果如下:
     (1)采用Vis/NIR光谱技术,区分了苗期的大豆与牛筋草、空心莲子草、凹头苋等几种南方地区常见的植物。用325-1075nm波段的光谱反射率,经过DBN小波在三层分解后,可以将光谱样本压缩到114个数据。光谱样本分两期共采集了360个样本。然后从经过小波变换后的结果中选取250个样本作为输入数据建模,包括了两个阶段的样本数据,剩余的110个样本用于校验。采用了径向基函数神经网络模型,结果表明,识别正确率达到了97.3%,只有3个牛筋草样本被错误识别。所以,应用Vis/NIR光谱技术区分作物与杂草,是一种准确率高、速度快的高效方法。
     (2)研究了基于多光谱成像仪的图像的颜色空间的变换。多光谱成像仪的三个图像信道分别是Gn、Ir、Rd。其Ir信道的图像质量很高,特别适合用来做作物与杂草的区分。可以将多光谱成像仪的图像与其它的颜色空间进行转换(HSV,OHTA,CIE XYZ,CIEL~*A~*B~*,CIEL~*U~*V~*)。比较了原始图像、CIE XYZ颜色空间、CIE LUV颜色空间的图像质量和灰度直方图分布,结果是在CIE XYZ颜色空间中,三个图像分量的灰度直方图和图像质量都有改善,在CIEL~*U~*V~*颜色空间中的V~*空间的灰度直方图类似原始图像中的IR信道,图像更清晰。说明了颜色空间变换对于多光谱图像的处理,可以作为一种重要的预处理手段。
     (3)在图像增强的方法上,分空域增强和频域增强两部分内容。在空域增强部分,研究了平滑、中值滤波、维纳滤波、对比度增强滤波等方法。在频域增强部分,重点研究了基于matlab的数字滤波器处理方法,并分别用IIR、FIR的数字高通、低通滤波器处理模糊的作物与杂草的近红外通道图像,并比较了处理的效果。结果表明,数字滤波器的设计灵活,可以根据需要的幅频响应函数去设计滤波器参数,得到明确的幅频、相频响应函数。在选取截止频率的问题上,提出了用图像的傅立叶变换后的图像的半径来确定截止频率的方法,并研究了其使用效果。证明了基于数字滤波器的处理方法是一种有效的图像增强方法,并且可以用来处理模糊图像,增强作物、杂草与背景的对比和清晰程度,为目标识别作预处理。
     (4)运用阈值分割、数学形态学方法和图像分析等,结合先验知识研究了作物与杂草的识别问题。根据含有牛筋草、空心莲子草和豆苗的多光谱近红外信道的图像,首先用阈值分割将图像上的土壤背景去除。然后,用数学形态学方法,经过连续的腐蚀与膨胀操作,将豆苗与两种杂草分割开。对于仅剩下两种杂草的二值图像,用图像分析工具统计杂草对象的特征,包括长、短轴,面积,实心度,周长等等因子。然后,根据先验知识确定两条简单的规则,识别出两种杂草。实验表明这是一种简单有效的方法。
     (5)研究了多光谱图像的边界提取和图像分割问题,比较了在不同的边界提取算子,包括Roberts、Prewitt、Sobel、Laplacian等边界算子作用下的效果。同时也比较了用数学形态学方法提取边界的效果。研究了基于分水岭模型的图像分割方法和基于邻域的分割方法。
     (6)统计了MS3100多光谱成像仪和普通相机所拍摄的图像特征。分三个通道统计象素的平均亮度、均方差等因子,数据表明,多光谱成像仪的近红外图像分量的亮度适中,明、暗部分变化大,图像清晰。三个信道表现出较大差异,而普通相机的三个图像分量统计特征相似。说明了应用多光谱成像仪识别作物与杂草,有潜在的优势。
Agriculture has developed greatly in our country, but it is facing advent problems now: such as theenvironmental pollution caused by over dosage of herbicide and pesticide, and the low level ofmechanization and efficiency. Precision farming is the inevitable trend of China agriculture. It is anintegration of electronics, computer techniques, information techniques and intelligent mechanics.Machine vision is the principle technique, which makes the agriculture machines can see things andobtain intelligence. To realize the need of early management of crop seedling, weed control applyingmachine vision or other method is one important task. Based on the different method and principle,these kinds of researches may be categorized into five classed: 1) using the location information torecognize weed and crop; 2) using the spectroscopy of weed and crop; 3) using the shape information; 4)using the color information; 5) using the texture information. The main content and result of thisresearch is as following:
     (1) Using Vis/NIR spectroscopy techniques differentiated the soybean seedling, Goose grass,Alligator Alternanthera and Emarginate amaranth, which are often living together in southernChina. By using a hand held type of spectrometer: FieldSpec Pro FR to record the reflectanceof the leaves in 325-1075 nm band. Then using DB12 wavelet analysis to reduce one samplefrom 751 numbers to 114 numbers. All these 360 samples were drawn in two terms. Selecting250 from them to build a radial basis neural network, and using the left 110 samples tovalidating the model. The result showed that only 3 Goose grass samples were classifiedincorrectly. So, using spectroscopy to recognize crop and weed is a high speed and efficientmethod.
     (2) Making research on the translation of multi color space. The three channels of multi-spectralimager are Gn, Ir and Rd, which were in the 400-1100nm band. So, translate the multi-spectralimages into these color spaces such as HSV, OHTA,CIE XYZ, CIEL~*A~*B~* and CIEL~*U~*V~*can obtain some advantages, including the enhanced difference or intensity, or the histogramquality. This demonstrated that the color space translation is a good method to process themulti-spectral images.
     (3) As regards the enhancement of image quality, this work was divided into two parts. Firstlyusing space domain enhancement methods, such as average, winner filter, median value filterand contrast enhancement filter. In frequency domain enhancement, this research used IIR andFIR digital high pass, low pass filters based on MATLAB to process the multi-spectral images,and compared the result with the traditional frequency space enhancement. The result showedthat these kinds of methods own many merits. The frequency and phase response could beobtained as wanted. And the processing quality is higher than the commonly used way.Therefore, digital filters could be used as a highly efficient preprocessing method.
     (4) Based on the combination of threshold segment, morphological operations and image analysis,guided by experimental knowledge, this paper raised new method to identify soybean seedlingsand Goose grass and Alligator Alternanthera. Using threshold of the histogram to divide theplant object and soil background. Then, using continuous dilation and erosion morphologicaloperations to extract the small size weeds(Goose grass and Alligator Alternanthera) from thelarge sized soybean seedlings. Then, using the image analysis tool to compute the long axis,short axis, the centroid, the eccentricity and other characters of the objects in the imagecontained only two weeds. Guided by two experimental rules, these objects could be divided into two classes. The result showed that 90% of the weed blocks could be identified correctly.So, this method is simple and efficient to identify soybean and other two weeds.
     (5) Making research on the edge extraction and object segmentation problem. Comparison of resultbetween different operators, such as Roberts, Prewitt, Sobel and Laplacian was made. Also, thesegmentation result of watershed model and neighbor area were compared.
     (6) Making statistics on multi-spectral images and images taken by common digital camera. Theresult showed that the pixel in infrared channel image is largely different from that of other twochannels. Its average value is medium and with larger RMSE, which means that its contrast andclarity are better than images from other channels. So, this new devices owns advantage toidentify crop and weed.
引文
1.陈坤杰,姬长英.牛肉自动分级技术研究进展分析[J].农业机械学报.2006,37(3):153~157
    2.陈佳娟.基于图像处理和人工智能的植物病害自动诊断技术的研究:[博士学位论文].长春:吉林大学,2001
    3.陈树人,尹建军.GPS技术及其在农业工程中的应用[J].排灌工程,2003,21(5):40~42
    4.成芳.稻种质量的机器视觉无损检测研究:[博士学位论文].杭州:浙江大学,2004
    5.程一松,胡春胜.高光谱遥感在精准农业中的应用[J].农业系统科学与综合研究.2001,17(3):193~195
    6.董代洁,郭怀理,曹春雨.基于FPGA的可编程SOC设计[M].北京航空航天大学出版社,2006,1~17
    7.董美对.何勇,赵云飞.精确农业—21世纪的农业工程技术[J].浙江大学学报(农业与生命科学版),2000,26(4):433~436
    8.方慧,何勇.基于Windows CE的农田信息快速采集技术[J].农业机械学报,2005,36(1):92~96
    9.方慧,邵永华,何勇.基于掌上电脑的农田信息空间分析系统的研究[J].浙江大学学报(农业与生命科学版),2003,29(6):679~683
    10.郭骜.多源遥感图象融合研究:[硕士学位论文].西安:西北工业大学,2000
    11.何勇.精细农业[M],浙江大学出版社,2003
    12.何勇,方慧,冯雷.基于GPS和GIS的精细农业信息处理系统研究[J].农业工程学报,2002,18(1):145~149
    13.何勇.林丽兰,俞海红.基于虚拟仪器技术的土壤电导率测量仪器研究[J].农业工程学报,2004,20(6):31~34
    14.洪添胜.法国精细农业研究概况[J].农机化研究,2000,4:1~6
    15.黄文江,黄木易,刘良云,王纪华,赵春江,王锦地.利用高光谱指数进行冬小麦条锈病严重度的反演研究[J].农业工程学报.2005,21(4):97~103
    16.纪寿文,王荣本,陈佳娟,赵学笃.应用计算机图像处理技术识别玉米苗期田间杂草的研究[J].农业工程学报.2001,17(2):154~156
    17.姜勇.基于FPGA的实时图像处理系统的研究:[硕士学位论文].长春:长春理工大学,2002
    18.李艳萍.基于CCD高速数据采集系统的图像检测;[硕士学位论文].成都:西南交通大学,2001
    19.林开颜.彩色图像处理方法研究及其在现代农业中的应用:[博士学位论文].上海:同济大学,2004
    20.刘刚.支持精细农业的农田空间分布信息处理的方法与试验研究:[博士学位论文].北京:中国农业大学,2001
    21.刘根深.GPS节水灌溉系统的研究[J].农业工程学报,2000,16(2):24~27
    22.刘燕德,应义斌.近红外漫反射式水果糖份含量的测量系统.光电工程.2004.31(2):51~53
    23.罗锡文,张泰岭,洪添胜.“精细农业”技术体系及其应用[J].农业机械学报,2001,32(2):103~106
    24.吕俊伟.在精确农业中机器视觉对作物和杂草识别的研究:[博士学位论文].长春;吉林大学,2001
    25.毛文华,王一鸣,张小超,王月青.基于机器视觉的苗期杂草实时分割算法[J].农业机械学报.2005,36(1):83~86
    26.毛文华,王一鸣,张小超,王月青.基于机器视觉的田间杂草识别技术研究进展[J].农业工程学报.2004,20(5):43~46
    27.彭望禄.Pierre Robert,程惠贤.农业信息技术与精细农业的发展[J].农业工程学报,2001,17(2):9~11
    28.秦江林.中国特色的精细农作的技术支持体系初探[J].农业工程学报,2001,17(3);1~6
    29.邱白晶,刘保玲.吴春笃,史春建,李会芳.近红外图像处理技术在农业工程中的应用[J].农业工程学报.2005,21(5):102~106
    30.裘正军.基于GPS、GIS及虚拟仪器的精细农业信息采集与处理技术的研究:[博士学位论文].杭州:浙江大学,2003
    31.裘正军,应霞芳,何勇.基于GPS模块的便携式农田面积测量仪[J].《浙江大学学报》(农业与生命科学版),2005,31(3):333~336
    32.邝朴生,刘刚,邝继双.精细农业技术体系初探[J].农业工程学报,1999,15(3):1~4
    33.宋海燕.基于光谱技术的土壤、作物信息获取及其相互关系的研究:[博士学位论文].杭州:浙江大学,2006
    34.王克林,李文祥.精确农业发展与农业生态工程创新[J].农业工程学报,2000,16(1):53~56
    35.汪懋华.“精细农业”的发展与工程科技创新[J].农业工程学报,1999,15(1):1~8
    36.王万章,洪添胜.李捷,张富贵,陆永超.果树农药精确喷雾技术[J].农业工程学报.2004,20(6):98~101
    37.王月青,毛文华,王一鸣.麦田杂草的实时识别系统研究[J].农机化研究.2004,(6):63~67
    38.吴曙雯,王人潮,陈晓斌等.稻叶瘟对水稻光谱特性的影响研究[J].上海交通大学学报(农业科学版),2002,20(1):73~84
    39.肖李.多波段图像融合技术研究:[硕士学位论文].武汉:武汉理工大学,2003
    40.徐晓秋,秦玉芳,黄拮.应用线阵CCD图像特点及识别算法适应性研究[J].光电技术.2006,27(2):196~199
    41.徐惠荣.基于机器视觉的树上柑桔识别方法研究:[硕士学位论文].杭州:浙江大学,2004
    42.严继兵.基于机器视觉的苹果自动识别关键技术研究:[硕士学位论文].上海:上海交通大学,2000
    43.尹建军,毛罕平,王新忠,陈树人,张际先.不同生长状态下多目标番茄图像的自动分割方法[J].农业工程学报.2006,22(10):149~153
    44.赵新.GPS和GIS技术在草地资源调查中的应用:[博士学位论文].广州:华南农业大学,2002
    45.张广军.机器视觉[M].北京:科学出版社.2005
    46.张云鹤,乔晓军,张云辉,王成.采用CCD摄像和图像分析技术的作物叶面积测量仪的研发[J].仪器仪表学报.2006,27(4):345~348
    47.<中国农业年鉴>编辑委员会.中国农业年鉴[M].北京:中国农业出版社.2000
    48. Adams M. L., Philpot W. D., Norvell W. A., et al. Yellowness Indexes: An Application of Spectroscopy Derivatives to Estimate Chlorosis of Leaves in Stressed Vegetation[J]. International Journal of Remote Sensing, 1999, 20(18): 3663~3675
    49. Antihus Hernandez Gomez,, Yong He, Annia Garcia Pereira. Non-Destructive Measurement of Acidity, Soluble Solids And Firmness of Satsuma Mandarin Using Vis/NIR-Spectroscopy Techniques[J]. Journal of Food Engineering. 2006, 77(2): 313~319
    50. Biller R. H. Reduced Input of Herbicides by Use of Opto-electronic Sensors [J]. Journal of Agricultural Engineering Research, 1998, 71 : 357~362.
    51. Brivot R, Marchant J. A. Segmentation of Plants and Weeds for a Precision Crop Protection Robot Using Infrared Images. IEE Proceedings: Vision, Image and Signal Processing, 1996, 143(2): 118~124.
    52. Blackmore B. S. Developing the Principles of Precision Farming. Proceeding of international Conference on Engineering and Technological Sciences. October 11, 2000. Beijing,China. 2000, pp: 133~136.
    53. Brown R. B. et al. Remote sensing for Identification of Weeds in On-till Corn [J]. Transactions of the ASAE, 1994, 37(1): 297~302.
    54. Borregaard T , Nielsen H, Norgaard L, et al. Crop-weed Discrimination by Line Imaging Spectroscopy [J]. Journal of Agricultural Engineering Research, 2000, 75 (4) : 389~400
    55. Burks T. F., Shearer S. A., Gates R. S. Backpropagation Neural Network Design and Evaluation for Classifying Weed Species Using Color Image Texture[J]. Transactions of the ASAE, 2000, 43(4): 1029~1037
    56. Chris Gliever, David C. Slaughter. Crop verses Weed Recognition With Artificial Neural Networks. ASAE Annual International Meeting 2001 Paper No: 013104
    57. Daniel Downey, Durham K Giles, David C Slaughter. Ground Based Vision Identification for Weed Mapping Using DGPS. ASAE Annual International Meeting 2003. Paper No: 031005
    58. Di Wu, Yong He, Yidan Bao. Fast Discrimination of Juicy Peach Varieties by Vis/NIR Spectroscopy Based on Bayesian-SDA and PCA. In: D.-S. Huang, K. Li, and GW. Irwin (Eds.): ICIC 2006, Lecture Notes of Computer Science. Vol. 4113 Springer-Verlag Berlin Heidelberg (2006) 931-936.
    59. Dohi M, Fujiura T, Nakao S, et al. Robot and Its Aplication to Weed Control in Hill Space[J]. Journal of the Japanese Society of Agriculture Machinery, 1993, 55(6): 77~84
    60. Earl R., Thomas G., Thomas G, Blackmore B.S. The Potential Role of GIS in Automous Field Operations[J]. Computers and Electronics in Agriculture, 2000, 25(4): 107~120
    61. Elfaki M. S., Zhang N., Peterson D. E. Weed Detection Using Color Machine Vision [J]. ASAE Paper, 1997, No. 97~3134.
    62. El-Faki M. S., Zhang N., Peterson D. E. Factors Affecting Color-Based Weed Detection[J]. Transactions of the ASAE. 2000, 43(4): 1001~1009
    63. Ellis E.A., Nair P.K.R., Linehan P.E. A GIS-based Database Management Application For Agroforestry Planning and Tree Selection[J]. Computers and Electronics in Agriculture, 2002, 27: 41~55
    64. Franz E, Gebhardt M R, Unklesbay K B. Shape Descript Ion Of Completely Visible and Partially Occluded Leaves for Identifying Plants In Digital lmages[J]. Transact ions of the A SA E, 1991, 34 (2): 673~681.
    65. Gillis K P, Giles D K, Slaughter D C, et al. Distance Based Control System For Machine Vision Based Selective Spraying [J]. Transactions of the ASAE, 2003, 45 (5):1255~1262.
    66. Goel P.K., Prasher S. O., Landry J. A., Patel R. M., Viau A. A. Hyperspectral Image Classification to Detect Weed Infestations and Nitrogen Status in Corn[J].Transactions of the ASAE.2003.Vol. 46(2): 539~550
    67. Goel P. K., Prasher S. O., Patel R. M., Smith D. L., Tommaso A. D. Use of Airborne Multi-Spectral Imagery for Weed Detection in Field Crops[J]. Transactions of the ASAE. 2002.45(2): 443~449
    68. Guyer D E; Miles G E; Schreiber M M; Mitchell O R; Vanderbilt V C. Machine Vision And Image Processing for Plant Identification[J]. Transactions of the ASAE, 1986, 29(6): 1500~1507
    69. Hayes J. C., Han Y. J. Comparison of Crop Cover Measuring System[J]. ASAE, 1989, 25(5): 1714~1718
    70. Han Y. J., Hayes J. C. Soil Cover Determination Using Color Image Analysis[J]. Transaction of the ASAE, 1990, 33(4): 1402~1407
    71. Hong Young Jeon,Lei F. Tian, Tony E. Grift.Development of an Individual Weed Treatment System Using A Robotic Arm.ASAE Annual International Meeting. 2005. Paper No: 051004
    72. Jatuphong Varith, Gary M. Hyde,Andre L. Baritelle, John K. Fellman, Thanadon Sattabongkot. Thermal Image Bruise Detection ASAE Annual International Meeting.2001. Paper No: 016031
    73. Israel Broner, Carlton R. Comstock. Combining Expert System and Neural Networks for Learning Site-Specific Conditions [J]. Computers and Electronics in Agriculture, 1997, 19:37~53
    74. Jame H, Everitt. Distinguishing Brush And Weeds on Rangelands Using Video Remote Sensing[J]. Weed Technology, 1992, 64:913~921
    75. Joao Camargo Neto, George E. Meyer, David D. Jones, Alvin J. Surkan.Adaptive Image Segmentation Using a Fuzzy Neural Network and Genetic Algorithm for Weed Detection.ASAE Annual International Meeting.2003, Paper No: 033088
    76. Johnson R.M., Bradow J.M., Potential for Precision Management of Cotton Fiber Quality. Proceedings of Fifth International Conference on Precision Agriculture (CD), July 16~19, 2000.Bloomington, MN, USA
    77. Keith B. Matthews, Alan R. Sibbald, Susan Craw. Implementation of a Spatial Decision Support System for Rural Land Use Planning: Integrating Geographic Information System and Environmental Models With Search and Optimization Algorithms[J]. Computers and Electronics in Agriculture, 1999, 23:9~26
    78. Lei Tian, David. C. Slaughter. Environmentally Adaptive Segmentation Algorithm for Outdoor Image Segmentation[J]. Computers and Electronics in Agriculture, 1998 (21): 153~168.
    79. Lei Tian, John F. Reid, John W. Hummel. Development of a Precision Sprayer For Site Specific Weed Management [J]. Transact ions of the A SA E, 2000, 40 (6): 1761~176.
    80. Linda, Lilburne, Jim Watt, Keith Vincent. A prototype DSS to Evaluate Irrigation Management Plans [J]. Computers and Electronics in Agriculture, 1998, 21: 195~205
    81. LU R, ARIANA D A. Near Infrared Sensing Technique For Measuring Internal Quality Of Apple Fruit [J]. Trans action of the ASAE, 2002,18(5): 585 590.
    82. Malthus T.J. Maderia A.C. High Resolution Spectroradiometry: Spectra Reflectance of Field Bean Leaves Infected By Botrytis Fabae [J]. Remote sensing of Environ, 1993,45:107~116
    83. Manh. A.G., Rabatel G., Assemat L., Aldon M.J. Weed Leaf Image Segmentation By Deformable Templates[J]. J. Agric. Eng. Res. 2001.80:139~146.
    84. Meyer G E, Mehta T, Kocher M F, et al. Textural Imaging And Discriminant Analysis For Distinguishing Weeds For Spot Spraying[J]. Transaction of the ASAE, 1998, 41(4): 1189~1197
    85. Nemenyi. M., P.A. Mesterhazi, Zs. Peceze, Zs.Stepan. The Role Of GIS And GPS In Precision Farming [J]. Computers and electronics in agriculture.2003, 40:45~55
    86. Nordmeyer H, Hansler A; Niemann P. Weed Mapping As A Tool For Patchy Weed Control. Second International Weed Congress, CoBenhagen, 1996,119~124
    87. Okamoto H., Murata T., Kataoka T., Hata S. Weed Detection Using Hyperspectral Imaging in Automation Technology for Off-Road Equipment. ASAE Pub #701P1004.47~55
    88. Petry W; Kuhbauch W. Automatic Discrimination Of Weeds On The Basis Of Shape Parameters Using Quantitative Image Analyses[J]. Journal of Agronomy and Crop Science.1989, 163: 345~351
    89. Phillip. I., T. Path. Improving Plant Discrimination In Image Processing By Use Of Different Colour Space Transformations. Comp. and Elec. Agric. 2002.35:1~15
    90. Richard E. Plant Site-Specific Management: The Application of Information Technology to Crop Production[J]. Computers and Electronics in Agriculture 2001, 30:9~29
    91. Rinehart G.L., Cathoun J.H. and Schabbenberger O. Remote Sensing of Stripe Patch and Dollar Spot on Creeping Bentgrass and Annual Bluegrass Turf Using Visible and Near-infrared Spectroscopy [J]. Australian Turfgrass management. 2002
    92. Robert P.C. Precision Agriculture: An Information Revolution in Agriculture [J]. Agriculture outlook forum. 1999, 1~5
    93. Rosa U.A., Upadhyaya S.K., Koller M. et al. Precision Farming in a Tomato Production System. Proceedings of Fifth International Conference on Precision Agriculture (CD), 2000. Bloomington, MN, USA.
    94. Runquist S, Zhang N., Taylor R. Development a Field-level Geographic Information System [J]. Computers and Electronics in Agriculture, 2001, 31: 201~209.
    95. Shearer S. A., Holmes R. G. Plant Identification Using Color Co-occurrence Matrices[J]. Transactions of the ASAE, 1990, 33(6):2037~2044
    96. Stafford J.V., Implementing Precision Agriculture in the 21st Century [J]. Journal of Agricultural Engineering Research 2000, 76, 267~275
    97. Steward B. L., T ian L. F., Tang L. Injection Mixing System for Boomless Target Actived Herbicide Spraying[J]. Transactions of the ASAE, 2002, 46 (4): 997~1008.
    98. Suk Lee Won. Robotic Weed Control System for Tomatoes Using Machine Vision Systemand Precision Chemical Application. An ASAE Meeting Presentation, 1997, 309(3): 1~14
    99. Tang L., Tian F., Steward B. L., et al. Texture Based Weed Classification Using Gabor Wavelets and Neural Network for Real-time Selective Herbicide Application. ASAE, 1997, 32(4):1494~1490
    100. Tang L., Tian L., Steward B. L. Color Image Segmentation With Genetic Algorithm for In-field Weed Sensing[J]. Transactions of the ASAE. 2000, 43(4): 1019~1027
    101. Visser R. A., Timmermans J.M. WEED-IT: a New Selective Weed Control System. Proceedings of SPIE, Optics in Agriculture, Forestry, and Biological Processing Ⅱ 2907. 1996, 120~129.
    102. Vrindts E, et al. Weed Detection Using Canopy Reflectance. In Precision Agriculture'99: Proceedings of the 2nd European Conference on Precision Agriculture. 1999, 257~264.
    103. Wenhua Mao, Yiming Wang. Real-time Detection of Between-row Weeds Using Machine Vision. ASAE Annual International Meeting. 2003. Paper No: 031004
    104. Woebbecke D M, Meyer G E, Von Bargen K, et al. Color Indices for Weed Identification Under Various Soil, Residue, and Lighting Conditions [J]. Transact ions of the ASAE, 1995, 38 (1): 259~269.
    105. Yonekawa S., Sakai N., Kitani O. Identification of Idealized Leaf Types Using Simple Dimensionless Shape Factors by Image Analysis [J]. Transact ions of the ASAE, 1996, 39(4): 1525~1533.
    106. Yong He, Xiaoli Li, Yongni Shao. Discrimination of Varieties of Apple Using Near Infrared Spectra Based on Principal Component Analysis and Artificial Neural Network Model[J]. Spectroscopy and Spectral Analysis. 2006,26(5):850~853
    107. Yongni Shao, Yong He. A Hybrid Model for Nondestructive Measurement of Internal Quality of Peach. In: D.-S. Huang, K. Li, and G.W. Irwin (Eds.): ICIC 2006, Lecture Notes in Control and Information Sciences. Vol 345, Springer-Verlag Berlin Heidelberg 2006, 42~53.
    108. Zhang N., Chaisattapagon C. Effective Criteria for Weed Identification in Wheat Fields Using Machine Vision[J]. Transactions of the ASAE. 1995, 38(3):965~974
    1.高信曾,汪劲武编.植物学简明教程[M].北京:高等教育出版社,1982.
    2.郭平,覃冬梅,胡占义,杜为民.一种光谱识别的新方法[J].光谱学与光谱分析.2003,23(4):811~815
    3.何勇,李晓丽,邵咏妮.基于主成分分析和神经网络的近红外光谱苹果品种鉴别方法研究[J].光谱学与光谱分析. 2006,26(5):850~853
    4.何勇,宋海燕,安妮娅等.Lecture Notes in Computer Science,3644,2005:859
    5.李燕,王俊德,王连军,人工神经网络法鉴别红外光谱[J].光谱学与光谱分析.2000,20(4):477~479
    6. 吕朝辉,陈晓光,吴文福等.机器视觉田间植物检测与识别技术[J].吉林工业大学自然科学学报.2001,31(3):90~95.
    7.毛建旭,王耀南.径向基函数神经网络的遥感图象分类[J].系统仿真学报.2001,13(11):146~149
    8.毛文华,王月青,王一鸣,张小超.苗期作物和杂草的光谱分析与识别[J].光谱学与光谱分析.2005,25(6):984~987
    9.汤彦丰,张卓勇.范国强等.基于大黄的红外光谱的人工神经网络鉴别研究[J].光谱学与光谱分析.2005,25(5):715~718
    10.张健钦,屈平,邝朴生.计算机视觉技术在杂草识别中的应用研究进展[J].河北大学学报(自然科学版).2002,22(4):410~414
    11.赵云升,黄方,金伦,金锡锋,周淑香.植物单叶偏振反射特征研究[J].遥感学报.2000,4(2):131~135
    12. Borregaard T., Nielsen H., Norgaard L., Havel H. Crop Weed Discrimination by Line Imaging Spectroscopy[J]. J. agric. Engng Res. 2000.75(4):389~400
    13. Brown R. B., et al. Remote Sensing for Identification of Weeds in On-Till Corn[J]. Transactions of the ASAE. 1994, 37 (1) : 297.
    14. Ismail Kavdir. Discrimination of Sunflower, Weed and Soil by Artificial Neural Networks[J]. Computers and Electronics in Agriculture. 2004, (44) 153~160
    15. Jurado Exposito M., Lopez Granados F., Atenciano S., Garcia Tones L., Gonzalez Andujar J.L. Discrimination of Weed Seedlings,Wheat (Triticum aestivum) Stubble and Sunflower (Helianthus annuus) by Near-Infrared Reflectance Spectroscopy (NIRS)[J]. Crop Protection. 2003,(22): 1177~1180
    16. Prasad S. Thenkabail, Eden A. Enclona, Mark S. Ashton, Bauke Van Der Meer. Accuracy Assessments of Hyperspectral Waveband Performance for Vegetation Analysis Applications[J]. Remote Sensing of Environment. 2004, (9): 354~376
    17. Ramesh Gautam, Suranjan Panigrahi, David Franzen. Neural Network Optimisation of Remotely Sensed Maize Leaf Nitrogen with a Genetic Algorithm and Linear Programming using Five Performance Parameters[J]. Biosystems Engineering 2006, 95 (3), 359~370 doi:10.1016/j.biosystemseng. 2006.07.007
    18. Reyer Zwiggelaar. A Review of Spectral Properties of Plants and Their Potential Use for Crop/Weed Discrimination in Row-Crops[J]. Crop protection. 1998, 17 (3): 189~206
    19. Uno Y., Prasher S.O., Lacroix R., Goel P.K., Karimi Y., Viau A., Patel R.M. Artificial Neural Networks to Predict Corn Yield from Compact Airbore Spectrographic Imager Data[J]. Computers and Electronics in Agriculture. 2005, (47)149~161
    20. Vrindts E, et al. Proceedings of the 2nd European Conference on Precision Agriculture, 1999, 257
    21. Yong He, Haiyan Song, Annia Garcia Pereira, Antihus Hernandez Gomez. A New Approach to Predict N, P, K and OM Content in a Loamy Mixed Soil by Using Near Infrared Reflectance Spectroscopy. Lecture Notes of Computer Science, 2005, 3644:859~867
    1.飞思科技产品研发中心,MATLAB6.5辅助图像处理[M].北京:电子工业出版社,2003
    2.冯星奎,李林艳,颜祖泉.一种新的指纹图象细化算法[J].中国图象图形学报.1999,4A(10):835~838
    3.古大治,傅师申,杨仁鸣,色彩与图形视觉原理[M].北京:科学出版社,2000.
    4.郭峰,曹其新,谢国俊,周金良.基于OHTA颜色空间的瓜果轮廓提取方法[J].农业机械学报.2005,36(1):113~116
    5.黄凯奇,王桥,吴镇扬.基于视觉特性和颜色空间的多尺度彩色图像增强算法[J].电子学报.2004,32(4):673~676
    6.林开颜.彩色图像处理方法研究及其在现代农业中的应用:[博士学位论文].上海:同济大学,2004
    7.林仲贤,孙秀如编著,视觉及测色应用[M].北京:科学出版社,1987.
    8.凌贺飞,卢正鼎,杨双远.基于YCbCr颜色空间的二维DCT彩色图像数字水印实用技术[J].小型微型计算机系统.2005,26(3):482~484
    9.马大伟,敬忠良,孙韶媛,肖刚,李振华.基于彩色传递的红外与可见光图像融合方法[J].计算机工程.2006,32(14):172~174
    10.任珂,屠康,潘磊庆,陈育彦.青花菜贮藏期间颜色变化动力学模型的建立[J],农业工程学报.2005,21(8):146~150
    11.于铂,郑丽敏,田立军.基于颜色和纹理特征提取彩色图像的有意义区域[J].计算机工程.2006,32(3):206~208
    12.于烨,陆建华,郑君里.一种新的彩色图像边缘检测算法[J].清华大学学报(自然科学版).2005,45(10)1339~1343
    13.赵晓晖,申铉京.基于亮度的自适应色度空间模型肤色算法研究[J].仪器仪表学报.2005,26(8):591~595
    14. Chen T. Q., Lu Y. Color Image Segmentation-an Innovative Approach[J]. Pattern Recognition, 2002, 35:395~405
    15. Chen X., Welch S. M. et. al. Measurement of Change in Soybean Plant Cross Sectional Area Under Wind Conditions via Image Processing[J]. Transactions of the ASAE, 2001, 44(6): 1923~1929
    16. Cheng H. D., Jiang X. H., Sun Y. et. al. Color Image Segmentation: Advances and Prospects[J]. Pattem Recognition, 2001, 34:2259~2281
    17. Debargha Mukherjee, Chatterji B.N. .Adaptive Neighborhood Extended Contrast Enhancement and Its Modifications[J]. Graphical Models and Image Processing. 1995, 57(3):254~265
    18. Gauch John M. Investigations of Image Contrast Space Defined by Variations on Histogram Equalization[J]. Graphical Models and Image Processing. 1992, 54,( 4): 269~280
    19.Kenneth.R.Castleman著Digital image processing.朱志钢 林学(?) 石定机等译 数字图像处理.北京:电子工业出版社,1998
    20. Ohta Y, Kanade T, Sakai T. Color Information for Region Segmentation[J]. Comput Graphics Image Process, 1980,13:222~241
    21. Pal Sketal. A review on Image Segmentation Techniques[J]. Pattern Recognition ,1993, 29: 1277~1294
    1.陈桂明.应用姒TLAB语言处理数字信号与数字图像[M].北京:科学出版社,2001
    2.飞思科技产品研发中心.MATLAB7辅助信号处理技术与应用技术[M].北京:电子工业出版社,2005
    3.飞思科技产品研发中心.MATLAB6.5辅助图像处理[M]. 北京:电子工业出版社,2003
    4.冯清枝,杨洪臣,单大国.多帧融合处理技术在运动模糊图像复原中的应用[J].光学技术.2002,28(6)
    5.李桂苓,张浩,王楠楠,郝铁乱.提高数字图像清晰度的研究[J].信号处理.2002.16(4):153~156
    6.梁凤岗,徐敏.FIR.数字滤波器设计的小波逼近方法[J].上海交通大学学报.1998,32(7)
    7.林彦杰.基于MATLAB的FIR数字滤波器的设计[J].电子工程师.2005,31(1):57~58
    8.凌朝东,刘蓉,林旭.用CPLD实现的FIR滤波器[J].华侨大学学报(自然科学版).2001,22(1):76~79
    9.刘晓翔,郝重阳,何贵青,冯伟,樊养余.一种基于光照模型的多源遥感图像融合算法[J].西北工业大学学报.2004,22(6):761~764
    10.刘洪梅.IIR数字滤波器的设计与实现[J].电讯技术.1995,35(5):35~39
    11.潘松.VHDL实用教程[M].北京:电子科技大学出版社,2001
    12.苏飞.王兆华.DCT域全相位FIR滤波器的设计与实现.天津大学学报.2004,37(12):1110~1114
    13.孙即祥.图像处理[M]. 北京:科学出版社.2005:144~200
    14.王世一.数字信号处理,修订版.北京:北京理工大学出版社,1997
    15.王文东,张根耀,王文发.数字图像在频域中的处理[J].西安工程科技学院学报.2006.20(4):515~517
    16.王兆华.二维低通序滤波器的研究[J].通信学报,1987,(7):38~48.
    17.杨博.周孝宽.基于低通滤波的彩色图像多模式自适应系统[J].北京航空航天大学学报.2002.28(2):213~215
    18.杨丽娟,张白桦,叶旭桢.快速傅里叶变换FFT及其应用[J].光电工程.2004,31(12):1~4
    19.张宗橙,张玲华,曹雪虹.等.数字信号处理与应用[M].南京:东南大学出版社,1997
    20.朱幼莲.线性相位FIR数字滤波器的CPLD实现[J].工矿自动化.2005,(1):20~22
    1.陈虎,王守尊,周朝辉.基于数学形态学的图像边缘检测方法研究[J].工程图学学报.2004,(02):116~119
    2.崔屹.图像处理和分析数学形态学方法及应用[M].北京:科学出版社,2000
    3.戴青云,余英林.数学形态学在图象处理中的应用进展[J].控制理论与应用,2001,18(04):478~522
    4.董言治,沈同圣,周哓东,刘松涛,娄树理.小波变换和数学形态学在红外图像检测中的应用[J].激光与红外.2003,33(2):94~97
    5.段瑞玲,李庆祥,李玉和.图像边缘检测方法研究综述[J].光学技术.2005,31(03):415~419
    6.靖稳峰,应用数学形态学理论提高扫描二值图像质量的方法[J].西安工业学院学报.2000,20(01):31~34
    7.刘海启,裴志远,张松岭,徐刚.资源一号卫星CCD图像在作物面积监测中的应用[J].农业工程学报.2001,17(4):140~143
    8.刘真.用形态学方法进行数字图象的分析和处理[J].华北电力大学学报(自然科学版).1996,23(03):59~64
    9.罗笑冰,黎湘,庄钊文.基于特征不变量的红外图像识别研究[J].系统工程与电子技术.2004,26(4)
    10.饶海涛,翁桂荣.基于数学形态学的图像边缘检测[J].苏州大学学报(自然科学版),2004,20(2):42~45
    11.沈明霞,李秀智,姬长英.基于形态学的农田景物区域检测技术[J].农业机械学报.2003,34(01):92~94
    12.沈明霞,张瑞合,姬长英.农作物边缘提取方法研究[J].农业机械学报.2000,31(6):49~51
    13.史彩成,赵保军,何佩琨,韩月秋.基于知识的红外图像背景抑制[J].北京理工大学学报.2001,21(5):627~670
    14.徐惠荣,应义斌.近红外图像和光谱分析技术在农产品品质无损检测中的应用与展望[J].浙江大学学报(农业与生命科学版).2002,28(4):460~464
    15.徐或.机器视觉中CCD自然图像的降噪和分割研究:[博士学位论文].成都:电子科技大学,2002.
    16.游安清,程义民,张蓉,郭从良.用数学形态学方法进行红外图像分层解理.光电工程.2004,31(3):52~55
    17.张广军.机器视觉[M]. 北京:科学出版社,2005
    18.张翔,刘媚洁,陈立伟.基于数学形态学的边缘提取方法[J].电子科技大学学报.2002,31(05):492~495
    19.章毓晋.图像处理和分析[M].北京:清华大学出版社,1999.
    20.周南,崔屹.基于数学形态学的骨架抽取算法[J].计算机工程与应用.1997,(05):43~46
    21.周培德,付梦印,张长江.红外图像边缘提取方法[J].计算机辅助设计与图形学学报.2004,16(8):1057~1061
    22.朱志刚,林学阎,石定机等译.K.R.Castleman,Kenneth R,Kenneth R.Castleman著.数字图像处理[M].北京:电子工业出版社,1998

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700