用户名: 密码: 验证码:
温度响应的超分子纳米管的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在超分子研究领域,主要研究方向之一是构筑结构稳定的超分子纳米结构,并通过各种手段赋予纳米结构以智能的响应特性,实现特殊功能。为了达到这样的目标,越来越多的响应刺激材料被开发出来,例如光刺激响应、电刺激响应、酸碱响应以及溶剂响应的材料等等。这些响应性纳米材料之所以被关注,是由于他们在多种领域巨大的应用价值。在这些响应的材料中,N-异丙基丙烯酰胺以其独特的低温可溶的性质,被研究者所关注,并在载药、生物传感器以及催化等方面得到广泛应用。本论文试图利用N-异丙基丙烯酰胺独特的温度响应特性,进而调控超分子纳米管的形貌,并成功制备了高活性智能人工酶,实现了药物可控释放,利用超分子自组装的概念成功地实现了对纳米管的“焊接”。
     (1)具有温度响应特性的谷胱甘肽过氧化物纳米酶的构筑
     发展了利用两亲性分子自组装构筑纳米管的新方法。以环糊精和金刚烷为构筑的主客体分子,通过自组装的方法,构筑了超分子两亲性分子,这个两亲性分子在疏水力的作用下,在水中组装形成纳米管。这种新的构筑方法和传统的共价化学相比,操作更加的灵活、简单,为以后的超分子材料制备提供了一种新的选择。为了构筑智能纳米酶,我们将具有谷胱甘肽过氧化物酶活性的碲分子通过化学修饰的方法连接到主体分子环糊精上,进而将碲分子引入到纳米管上,为了赋予纳米管以温度响应的特性,我们利用ATRP聚合和点击化学的方法将N-异丙基丙烯酰胺聚合到环糊精的六位端,这样,我们实现了酶催化中心和温度刺激响应基团同时引入到我们的纳米体系中。通过温度的调控,我们得到一个纳米管和囊泡相互可逆转化的系统。在低温下,由于酶的活性中心碲原子暴漏在囊泡外,该囊泡表现相当高效催化活性。在高温情况下,由于构筑单元上亲疏水比例的变化,使得纳米管向着对它更有利的囊泡结构转变,与此同时,由于酶的活性中心碲原子在高温下被包埋在囊泡里面,酶失去催化能力。这样,我们成功地构筑了一个温度响应的纳米酶。
     (2)具有温度响应的纳米管在罗丹明B的释放中的研究
     将β环糊精和具有温度刺激响应的N-异丙基丙烯酰胺通过ATRP聚合的手段,以共聚的方式构筑了一个温敏的环糊精聚合物。利用超分子自组装的方法,将温敏的聚合物环糊精和带有疏水长链的金刚烷分子通过自组装的方法制备成两亲性分子,经过在水中二次组装的方式构筑了具有温度响应的超分子纳米管。通过温度的调节,实现了纳米管和囊泡之间相互转换。通过调节聚合物上N-异丙基丙烯酰胺和环糊精的比例,可以按照我们的需要,合成了不同响应温度的环糊精聚合物,利用温度驱动的球和管的转变实现了对罗丹明的可控释放。
     (3)纳米管的“焊接”
     利用丙烯酸羟乙酯和带双键的罗丹明B分子和带双键的环糊精分子,通过自由基聚合的方式合成了一个带红色荧光的非温敏聚合物。通过它与客体分子复合,得到了一个结构稳定的非温敏性的纳米管。同时构筑了一个带绿色荧光的温敏聚合物,该聚合物是利用带双键的丹磺酰、带双键的环糊精和N-异丙基丙烯酰胺利用ATRP聚合得到。通过它与客体分子的复合,得到了带绿色荧光的纳米管。利用带红色荧光的非温敏聚合物的纳米管做为种子。通过温度温度驱动的球和管的可逆转变实现了纳米管的修复和“焊接”。
One of the main challenges in supramolecular chemistry is the design of structurallywell-defined architectures with dynamic and stimulus-responsive properties that canbe made to assign functions and provide the capability to control these functions.Continuous efforts have been dedicated to the development of nano-platforms withconditional stimulus, such as electrical, thermal, pH and solvent. Thesestimulus-responsive nanomaterials have attracted growing attention because of theirspecial properties and potential applications in a variety of areas. In thesestimulus-responsive nanomaterials, poly (N-isopropylacrylamide)(PNIPAM) iswidely studied due to not only its polymer advantage of that it can fix and stabilizewell-defined nanostructures and enable further modification, but also its lowercritical solution temperature (LCST) of32.8oC, which is closed to the human bodytemperature. Many reports described the LCST triggers in drug delivery, sensing,and catalysis. However, the construction of the reversibly switchable utilized thetemperature-driven shape transition between the nanotubes and the sphericalvesicle-like structures and the collapse of the PNIPAM chains above the LCST hasnot yet been described.
     (1)Temperature-Driven Switching of the Catalytic Activity of ArtificialGlutathione Peroxidase
     Herein, we report a novel construction of a smart artificial glutathioneperoxidase triggered by directed self-assembly of supra-amphiphiles composed ofcyclodextrin (CD)-based host-guest inclusion. The traditional methods for generatingnanostructures put to use covalent synthesis pathways. In recent years,supramolecular amphiphiles formed through noncovalent driving forces have beendeveloped as a new type of building block for future fabrication of supramolecularstructures through multilevel self-assembly. Our previous work suggested that CDand adamantly hydrophobic moieties proved to be a good scaffold for constructingGPx mimics with high catalytic efficiency. However, the inherent instability of thenanotubes structure significantly limits the study of the enzymatic mechanism and itsfurther application. Recently, we designed and synthesized a smart GPx nanoenzymemodel. The spontaneously formed giant nanotubes were catalyst-functionalized andthermosensitivly functionalized through conveniently linking the catalytic center ofGPx and thermosensitive polymer poly (N-isopropylacrylamide) to the hostmolecule CD. Thus we successfully fabricated a controllable artificial GPxnanoenzyme that could turn on and off enzyme activity by thermol stimuli-divenshape transformation from the nanotube to spherical vesicle-like structures and thelow solvation of the PNIPAM chains above the LCST (Figure1). At25oC, the surface of the nanotube had good solubility, and the catalytic center was exposed inthe solution. At45oC, the surface of the sphere had low solubility, and the catalyticcenter was embedded in the sphere. So the activity of the nanoenzyme could turn onand off by controlling temperature. The switches of peroxidase activity via thereversible transformation of nanostructures from the tube to the sphere have beenobserved clearly. We demonstrate that the strategy of CD-based self-assembly ofsupramolecular amphiphiles has great potential for the construction of functionalnanomaterials and could provide the capability to control these functionsintellectively.
     (2)The release of the rhodamine B through a reversible tube-to-spheretransition
     We report a novel way to construct responsive nanostructures triggered by directself-assembly of CD-based host-guest superamphiphiles. The giant nanotubes werethermosensitivly functionalized through conveniently linking the thermosensitivepolymer poly (N-isopropylacrylamide) to the host molecule CD. Changing thetemperature, which results in a shape transformation from the nanotube to thespherical vesicle-like structure. The temperature-dependent morphology changeprocesses have been monitored clearly through the optical microscopy.We couldobserve the whole reversible progress clearly. Furthermore, the thermosensitivematerials are used as a trigger for the release of the rhodamine B through a reversibletube-to-sphere transition. Fortunately, we can control the release at differenttemperature through controlling the ratio of hydrophobic grouping to our need.
     (3)The welding of nanotube used temperature-driven shape transitionbetween the nanotubes and vesicle-like structures
     Thecopolymerscontainwithhydroxyethylacrylate,CDandrhodamineBweresucceed synthetized. The none-thermo–sensitive nanotube was constructed with thispolymer-CD and adamantly hydrophobic moieties. This nanotube was used as seed.The nanostructures with green fluorescence utilized the temperature-driven shapetransition between the nanotubes and the spherical vesicle-like structures wereconstructed as repaired compose. The seed nanotube could be successful repaired byadding the45℃-repaired compose and then cooling to room temperature.
引文
[1] F. Vogtle. Supramolecular Chemistry. England:John Wiley&Sons,1991.
    [2] B. Dietrich,P.Viout,J. M. Lehn,Macrocyclic Chemistry:Aspect of Organic andInorganicSupramolecular Chemistry. Germany:Weinheim,1933.
    [3] J. F. Stoddard,ed. Monographs in Supramolecular Chemistry. Cambridge:RoyalSociety of Chemistry. C. D. Gutsche,No.1. Calixarenes,1989;F. Diederich,No.2. Cyclophanes,1991;G. W. Gokel,No.3. Crown Ethers and Cryptands,1991;J. F. Stoddart,R. Zarzycki,No.4.Cyclodextrins,1992.
    [4] E. Weber. Supramolecular Chemistry I-Directed Synthesis and MolecularRecognition. Germany:Springer-Verlag Topics in Current Chemistry,1993.165.
    [5] V. Balzani,L. D. Cola.Supramolecular Chemistry.The Netherlands:KluwerAcademic Publishers,1992.
    [6] A. D. Buckingham,A. C. Legon,S. M. Roberts. Principle of MolecularRecognition.Glasgow,UK:Blackie Academic&Professional,1993.
    [7] J. E. D. Davies. Spectroscopic and Computational Studies of SupramolecularSystems. The Netherlands:Kluwer Academic Publishers,1992.
    [8] G. W. Gokel,ed. Advances in Supramolecular Chemistry. JAI Press Inc,Ⅰ,1990;Ⅱ,1992;Ⅲ,1993.
    [9] J. P. Behr. The Lock-and-Key Principle: perspectives in SupramolecularChemistry. England:John Wiley&Sons,1994.1.
    [10] F. Vogtle,Cyclophane Chemistry(Eng). England:John Wiley&Sons,1993.
    [11] S. R. Cooper. Crown Compounds:Toward Future Applications. VCH PublishersInc,1992.
    [12] G. R. Newkome. Advances in Dendritic Macromolecules. England:JAI PressInc,1994.1.
    [13] G.Wipff. Computational Approaches inSupramolecular Chemistry. TheNetherlands:Kluwer Academic Publishers,1993.
    [14] T. Bein. Supramolecular Architecture:Synthetic Control in Thin Film and Solids.ACS Symposium Series499. American Chemistry Society,1992.
    [15] N. Kimizuka,T. Kawasaki,K. Hirata,T. Kunitake.Tube-like NanostructuresComposed of Networks of Complementary Hydrogen Bonds. J. Am. Chem. Soc.,1995,117,6360-6361.
    [16] J. M. Lehn. Supramolecular Chemistry,Weinheim:VCH,1995.
    [17] A. Ciferri. Supramolecular Polymers,New York:Marcel,2000.
    [18] A. Ciferri. Supramolecular Polymerizations. Macromol. Rapid Common.,2002,23,511-529.
    [19] L.Brunsveld,B. J. B. Folmer,E. W. Meijer,R. P. Sijbesma. SupramolecularPolymers. Chem. Rev.,2001,101,4071-4097
    [20] J. M. Lehn. Supramolecular polymer chemistry—scope and perspectives.PolymInt.,2002,51,825-839.
    [21] R. P. Sijbesma,E. W. Meijer.Curr.Opin.Colloid Interface Sci.,1999,4,24;J. S. Moore.ibid.,108.
    [22] P. S. Corbin,S. C. Zimmermann.Supramolecular Polymers,A. Ciferri,Ed.,New York:Marcel Dekker,2000.147.
    [23] J. Pranata,S. G. Wierschke,W. L. Jorgensen.OPLS potential functions fornucleotide bases. Relative association constants of hydrogeN-bonded base pairs inchloroform.J. Am. Chem. Soc.,1991,113,2810-2817.
    [24] C. M. Lee,A. C. Griffin.Macromol.Symp.,1997,117,281-290.
    [25] M. Lee,B. K. Cho,Y. S. Kang,W. C. Zin.Macromolecules,1999,32,8531.
    [26] M. Kotera,J. M. Lehn,J. P. Vigneron.Design and synthesis of complementarycomponents for the formation of self-assembled supramolecular rigidrods.Tetrahedron,1995,51,1953-1972.
    [27] S. Choi,X. Li,E. E. Simanek, R. Akaba,G. M. Whitesides.Self-Assembly ofHydrogeN-Bonded Polymeric Rods Based on the Cyanuric Acid·Melamine Lattice.Chem. Mater.,1999,11,684-690.
    [28] N. Kimizuka,T. Kawasaki,K. Hirata,T. Kunitake.Tube-like NanostructuresComposed of Networks of Complementary Hydrogen Bonds. J. Am. Chem. Soc.,1995,117,6360-6361.
    [29] U. Michelsen,C. A. Hunter. Self-Assembled Porphyrin Polymers.Angew.Chem.Int. Ed.,2000,29,764-767.
    [30] F. Oosawa. Supramolecular Polymers,A. Ciferri,Ed.,New York:MarcelDekker,2000.643.
    [31] R. A. Palmans, J. A. J. M. Vekemans, E. E. Havinga, E. W.Meijer.Sergeants-and-Soldiers Principle in Chiral Columnar Stacks of Disc-ShapedMolecules with C3Symmetry.Angew.Chem. Int. Ed. Engl.,1997,36,2648-2651.
    [32] L. Brunsveld,H. Zhang,M. Glasbeek,J. A. J. M. Vekemans,E. W.Meijer.Hierarchical Growth of Chiral Self-Assembled Structures in Protic Media.J.Am. Chem. Soc.,2000,122,6175-6182.
    [33] J. H. K. K. Hirschberg,L. Brunsveld,A. Ramzi,J. A. J. M. Vekemans,R. P.Sijbesma,E. W. Meijer. Helical self-assembled polymers from cooperative stackingof hydrogeN-bonded pairs. Nature,2000,407,167-170.
    [34] G. Gottarelli, G. P. Spada, A. Garbesi. Comprehensive SupramolecularChemistry,J. M. Lehn,Ed.,Oxford:Pergamon Press,1996. Vol9.483.
    [35] H. S. Kim,J. D. Hartgerink,M. R. Ghadiri. Peptide Nanotubes and Beyond.J.Am. Chem. Soc.,1998,120,4417.
    [36] V. Percec,C. H. Ahn,G. Ungar,D. J. P. Yeardly,M. M ller. Controllingpolymer shape through the self-assembly of dendritic side-groups. Nature,1998,391,161.
    [37] V. Abetz. Supramolecular Polymers,A. Ciferri,Ed.,New york:Marcel Dekker,2000.215.
    [38] K. Loos,S. Mu oz-Guerra. Supramolecular Polymers,A. Ciferri,Ed.,Newyork:Marcel Dekker,2000.263.
    [39] A. Klug. From Macromolecules to Biological Assemblies (NobelLecture).Angew.Chem. Int. Ed. Engl.,1983,22,565-582.
    [40] R. P. Sijbesma, F. H. Beijer,L. Brunsveld,B. J. B. Folmer,J. H. K. K.Hirschberg,R. F. M. Lange,J. K.L. Lowe,E.W. Meijer.Science,1997,278,1601.[41]H. J. Schneider. Mechanisms of Molecular Recognition: Investigations of OrganicHost–Guest Complexes. Angew.Chem. Int. Ed. Engl.,1991,30,1417-1436.
    [42] C. M. Paleos,J. Michas. A Si Thin Film as a Photo Receptor forElectro Photography.Liq. Cryst,1992,11,773-778.
    [43] T. Kato,J. M. J. Fréchet.Macaulay Land Use Research Institute, Aberdeen,Scotland.Macromol.Symp.,1995,98,311-326.
    [44] F. M. Raymo,J. F. Stoddart.Supramolecular Polymers,Ciferri,A Ed.,NewYork:Marcel Dekker,2000.323.
    [45] S. J. Roman,S. J. Cantrill,G. R. L. Cousins,J. K. M. Sanders,J. F. Stoddart.Dynamic covalent chemistry.Angew.Chem. Int. Ed.,2002,41,898-952.
    [46] J. M. Lehn. Prog. Dynamers: dynamic molecular and supramolecular polymers.Polym.Sci.,2005,30,814-831.
    [47] X. Arys,A. M. Jonas,A. Laschewsky,R. Legras.Supramolecular Polymers,A. Ciferri,Ed.,New York:Marcel Dekker,2000.505.
    [48] J. Rühe,W. Knoll.Supramolecular Polymers,A. Ciferri,Ed.,New York:Marcel Dekker,2000.565.
    [49] F. Oosawa,S. Asakura.Thermodynamics of the Polymerization of Protein,London:Academic Press,1975,25.
    [50] R. A. Palmans, J. A. J. M. Vekemans, E. E. Havinga, E. W.Meijer.Sergeants-and-Soldiers Principle in Chiral Columnar Stacks of Disc-ShapedMolecules with C3Symmetry.Angew.Chem. Int. Ed. Engl.,1997,36,2648-2651.
    [51]L. Brunsveld,H. Zhang,M. Glasbeek,J. A. J. M. Vekemans,E. W. Meijer.Hierarchical Growth of Chiral Self-Assembled Structures in Protic Media.J. Am.Chem. Soc.,2000,122,6175-6182.
    [52] P. van der Schoot,M. A. J. Michels,L. Brunsveld,R. P. Sijbesma,A.Ramzi.Helical Transition and Growth of Supramolecular Assemblies of ChiralDiscotic Molecules.Langmuir,2000,16,10076-10083.
    [53] J. Van Gestel,P. van der Schoot,M. A. J. Michels. Helical Transition ofPolymer-like Assemblies in Solution. J. Phys. Chem. B.,2001,105,10691-10699.
    [54] J. H. K. K. Hirschberg,L. Brunsveld,A. Ramzi,J. A. J. M. Vekemans,R. P.Sijbesma,E. W. Meijer. Helical self-assembled polymers from cooperative stackingof hydrogeN-bonded pairs. Nature,2000,407,167-170.
    [55] G. Gottarelli, G. P. Spada, A. Garbesi. ComprehensiveSupramolecularChemistry,J. M. Lehn,Ed.,Oxford:Pergamon Press,1996,Vol9,483.
    [56] G. Gottarelli,G. P. Spada,P. Mariani. Crystallography of SupramolecularCompounds,G. Tsoucaris,J. L. Atwood,J. Lipkowski,Eds.,Kluwer AcademicPublishers,1996.307.
    [57] V. Percec,C. H. Ahn,G. Ungar,D. J. P. Yeardly,M. M ller. Controllingpolymer shape through the self-assembly of dendritic side-groups. Nature,1998,391,161-164.
    [58] V. Percec,G. Johansson,G. Ungar,J. P. Zhou. Molecular Materials, Universityof Sheffield, Sheffield.J. Am. Chem. Soc.,1996,118,9855-9866.
    [59] Iijima, S. Helical microtubules of graphitic carbon. Nature1991,354,56-58.
    [60] Iijima, S.; Ichihashi, T. Single-shell carbon nanotubes of1-nm diameter. Nature1993,363,603.
    [61] Schnur, J. M.; Price, R.; Schoen, P.; Yager, P.; Calvert, J. M.; Georger, J.; Singh,Lipid-based tubule microstructures. A. Thin Solid Films1987,152,181-206.
    [62] Schnur, J. M. Lipid Tubules: A Paradigm for Molecularly Engineered Structures.Science1993,262,1669-1676.
    [63] Yager, P.; Schoen, P. E. Molecular Crystals and Liquid Crystals.Mol. Cryst. Liq.Cryst.1984,106,371-381.
    [64] Yager, P.; Schoen, P. E.; Davies, C.; Price, R.; Singh, A. Structure of LipidTubules Formed from a Polymerizable Lecithin.Biophys. J.1985,48,899-906.
    [65] Schoen, P. E.; Yager, P. Spectroscopic studies of polymerized surfactants:1,2-Bis(10,12-tricosadiynoyl)-sN-glycero-3-phosphocholine. J. Polym. Sci., Polym.Phys. Ed.1985,23,2203-2216.
    [66] Shoen, P. E.; Yager, P.; Priest, R. G. Polydiacetylenes. NATO Sci. Ser., Ser. E1985,102,223-232.
    [67] Yamada, K.; Ihara, H.; Ide, T.; Fukumoto, T.; Hirayama, C. Chem. Lett.1984,1713-1716.
    [68]Nakashima, N.; Asakuma, S.; Kim, J.-M.; Kunitake, T. Formation of helicalsuper structure from single-walled bilayers by amphiphiles with oligo-L-glutamicacid-head group.Chem. Lett.1984,1709-1712.
    [69] Nakashima, N.; Asakuma, S.; Kunitake, T. Optical microscopic study of helicalsuperstructures of chiral bilayer membranes.J. Am. Chem. Soc.1985,107,509-510.
    [70] Harada, A.; Li, J.; Kamachi, M. Synthesis of a tubular polymer from threadedcyclodextrins. Nature1993,364,516-518.
    [71] Ghadiri, M. R.; Granja, J. R.; Milligan, R. A.; McRee, D. E.; Khazanovich, N.Self-assembling organic nanotubes based on a cyclic peptide architecture. Nature1993,366,324-327.
    [72] Bong, D. T.; Clark, T. D.; Granja, J. R.; Ghadiri, M. R. Self-AssemblingOrganic Nanotubes. Angew.Chem., Int. Ed.2001,40,988-1011.
    [73] Harada, A.; Kamachi, M. Preparation and Characterization of a PolyrotaxaneConsisting of Monodisperse Poly(ethylene glycol) and.alpha.-Cyclodextrins.J. Am.Chem. Soc.1994,116,3192-3196.
    [74]Ghadiri, M. R.; Granja, J. R.; Buehler, L. K. Artificial transmembrane ionchannels from self-assembling peptide nanotubes.Nature1994,369,301-304.
    [75] Ghadiri, M. R. Self-assembled nanoscale tubular ensembles. Adv. Mater.1995,7,675-677.
    [76]Ghadiri, M. R.; Kobayashi, K.; Granja, J. R.; Chadha, R. K.; McRee, D. E. TheStructural and Thermodynamic Basis for the Formation of Self-Assembled PeptideNanotubes.Angew. Chem., Int. Ed. Engl.1995,34,93-95.
    [77] Hartgerink, J. D.; Granja, J. R.; Milligan, R. A.; Ghadiri, M. R. Self-assemblingpeptide nanotubes. J. Am. Chem. Soc.1996,118,43-50.
    [78]Chung, D. S.; Benedek, G. B.; Konikoff, F. M.; Donovan, J. M. Elastic freeenergy of anisotropic helical ribbons as metastable intermediates in thecrystallization of cholesterol. Proc. Natl. Acad. Sci. U.S.A.1993,90,11341-11345.
    [79] Selinger, J. V.; MacKintosh, F. C.; Schnur, J. M. HydrogeN-effusioN-inducedstructural changes and defects in a-Si:H films: Dependence upon the filmmicrostructure. Phys. Rev. E1996,53,3804-3812.
    [80] Nakashima, N.; Asakuma, S.; Kunitake, T. Optical microscopic study of helicalsuperstructures of chiral bilayer membranes. J. Am. Chem. Soc.1985,107,509-510.
    [81] Stewart, S.; Liu, G. Block Copolymer Nanotubes. Angew.Chem., Int. Ed.2000,39,340-344.
    [82] Porrata, P.; Goun, E.; Matsui, H. Size-Controlled Self-Assembly of PeptideNanotubes Using Polycarbonate Membranes as Templates. Chem. Mater.2002,14,4378-4381.
    [83] Steinhart, M.; Wendorff, J. H.; Greiner, A.; Wehrspohn, R. B.; Nielsch, K.;Schilling, J.; Choi, J.; Goesele, U. Polymer Nanotubes by Wetting of Ordered PorousTemplates. Science2002,296,1997-1997.
    [84] Liang, Z.; Susha, A. S.; Yu, A.; Caruso, F. Nanotubes Prepared byLayer-by-Layer Coating of Porous Membrane Templates. Adv. Mater.2003,15,1849-1853.
    [85]Brumlik, C. J.; Martin, C. R. Template synthesis of metal microtubules. J. Am.Chem. Soc.1991,113,3174-3175.
    [86] Steinhart, M.; Jia, Z.; Schaper, A. K.; Wehspohn, R. B.; Goesele, U.; Wendorff,J. H. Palladium Nanotubes with Tailored Wall Morphologies. Adv. Mater.2003,15,706-709.
    [87] Kim, K.; Jin, J.-I. Preparation of PPV Nanotubes and Nanorods and CarbonizedProducts Derived Therefrom. Nano.Lett.2001,1,631-636.
    [88] Steinhart, M.; Wehrspohn, R. B.; Goesele, U.; Wendorff, J. H. Nanotubes byTemplate Wetting: A Modular Assembly System. Angew, Chem., Int. Ed.2004,43,1334-1344.
    [89]Zhang, Z.; Wei, Z.; Wan, M. Nanostructures of Polyaniline Doped withInorganic Acids. Macromolecules2002,35,5937-5942.
    [90] J. C. Nelson, J. G. Saven,J. S. Moore,P. G. Solvophobically Driven Foldingof Nonbiological Oligomers. Science,1997,277,1793-1796.
    [91]M. R. Ghadiri,J. R. Granja,L.K. Buehler.Artificial transmembrane ion channelsfrom self-assembling peptide nanotubes. Nature,1994,369,301-304.
    [92]A. Harada,J. Li,M. Kamachi. The molecular necklace: a rotaxane containingmany threaded α-cyclodextrins.Nature,1992,356,325-327.
    [93] V. Percec, J. Heck, D. Tomazos, F. Falkenberg, H. Blackwell, G.Ungar.Self-assembly of taper-shaped monoesters of oligo(ethylene oxide) with3,4,5-tris(p-dodecyloxybenzyloxy)benzoic acid and of their polymethacrylates intotubular supramolecular architectures displaying a columnar mesophase J. Chem. Soc.PerkinTrans.1993,1,2799-2811.
    [94] V. Percec,G. Johansson,G. Ungar,J. Zhou. Fluorophobic Effect Induces theSelf-Assembly of Semifluorinated Tapered Monodendrons Containing Crown Ethersinto Supramolecular Columnar Dendrimers Which Exhibit a HomeotropicHexagonal Columnar Liquid Crystalline Phase J. Am. Chem. Soc.1996,118(41),9855-9866.
    [95] M. S. Vollmer,T. D.Clark,C. Steinem,M. R. Ghadiri.PhotoswitchableHydrogeN-Bonding in Self-Organized Cylindrical Peptide Systems.Angew Chem.1999,38,1598-1602.
    [96] R. C. Smith,W. M. Fischer,D. L. Gin. Ordered Poly(p-phenylenevinylene)Matrix Nanocomposites via Lyotropic Liquid-Crystalline Monomers.J. Am. Chem.Soc.,1997,119,4092-4093.
    [97] Senaratne, W., Andruzzi, L.&Ober, C. K. Self-assembled monolayersandpolymer brushes in biotechnology: Current applications and futureperspectives.Biomacromolecules.2005,6,2427–2448.
    [98] Jhaveri, S. J. et al. Release of nerve growth factor from HEMAhydrogelcoatedsubstrates and its effect on the differentiation of neuralcells.Biomacromolecules.2009,10,174–183.
    [99] Hoffman, A. S. The origins and evolution of “controlled” drug deliverysystems.J. Control. Release.2008,132,153–163.
    [100] Bayer, C. L.&Peppas, N. A. Advances in recognitive, conductiveandresponsive delivery systems.J.Control. Release2008,132,216–221.
    [101]Mendes, P. M. Stimuli-responsive surfaces for bio-applications.Chem. Soc. Rev.2008,37,2512–2529.
    [102] Luzinov, I., Minko, S.&Tsukruk, V. V. Responsive brush layers: fromtailoredgradients to reversibly assembled nanoparticles. Soft Matter.2008,4,714–725.
    [103]Motornov, M. et al. Reversible tuning of wetting behaviour of polymersurfacewith responsive polymer brushes. Langmuir.2003,19,8077–8085.
    [104] Liu, Z. S.&Calvert, P. Multilayer hydrogels as muscle-like actuators.Adv.Mater.2000,12,288–291.
    [105] Anker, J. N. et al. Biosensing with plasmonic nanosensors.Nature Mater.2008,7,442–453.
    [106]Tokarev, I.&Minko, S. Stimuli-responsive hydrogel thin films.Soft Matter,2009,5,511–524(2009).
    [107]Tokareva, I., Minko, S., Fendler, J. H.&Hutter, E. Nanosensors basedonresponsive polymer brushes and gold nanoparticle enhancedtransmission surfaceplasmon resonance spectroscopy. J. Am. Chem. Soc.2004,126,15950–15951.
    [108] Lu, Y., Mei, Y., Drechsler, M.&Ballauff, M. Thermosensitivecore-shellparticles as carriers for Ag nanoparticles: Modulating the catalytic activitybya phase transition in networks. Angew. Chem. Int. Ed.45,813–816.
    [109] Lu, Y. et al. Thermosensitive core-shell microgel as a “nanoreactor”forcatalytic active metal nanoparticles.J. Mater. Chem.2009,19,3955–3961.
    [110] Skirtach, A. G. et al. Laser-induced release of encapsulated materialsinsideliving cells.Angew. Chem. Int. Ed.2006,45,4612–4617.
    [111] Kreft, O., Javier, A. M., Sukhorukov, G. B.&Parak, W. J. Polymermicrocapsulesas mobile local pH-sensors.J. Mater. Chem.2007,17,4471–4476.
    [112] Hadjichristidis, N. Pitsikalis, M.; Pispas, S.; Iatrou, H. Polymers with complexarchitecture by living anionic polymerization. Chem. Rev.2001,101,3747-3792.
    [113]Yang, X. M.; Stern, C. L.; Marks, T. J. Iatrou, H. Cationic zirconocene olefinpolymerization catalysts based on the organo-lewis acidtris(pentafluoropheny1)borane. A synthetic, structural, solution dynamic, andpolymerization catalytic study.J. Am. Chem. Soc.1994,116,10015-10031.
    [114]Wang, J. S.; Matyjaszewski, K. Controlled/‘living’ radical polymerization.Atom transfer radical polymerization in the presence of transitioN-metal complexes.J. Am. Chem. Soc.1995,117,5614-5615.
    [115]Chiefari, J; Chong, Y. K.; Ercole, F.; Krstina, J.; Jeffery, J.; Le, T. Living freeradical polymerization by reversible additionfragmentation chain transfer: the RAFTprocess. Macromolecules1998,31,5559-5570.
    [116] Hawker, C. J.; Bosman, A. W.; Harth, E. New polymer synthesis by nitroxidemediated living radical polymerizations. Chem. Rev.2001,101,3661-3688.
    [117] Matyjaszewski, K.; Wang, J. S. WO Pat.Controlled radical polymerization9630421, U.S. Pat.5,-763,548.
    [118] Percec, V.; Barboiu, B.“Living”radical polymerization of styrene initiated byarenesulfonyl chlorides and cul(bpy)ncl. Macromolecules1995,28,7970-7972.
    [119]Matyjaszewski, K.; Patten, T. E.; Xia, J.“Living”radical polymerizationkinetics of the homogeneous atom transfer radical polymerization of styrene.J. Am.Chem. Soc.1997,119(4),674-680.
    [120] Matyjaszewski, K.Wei, M. Xia, J.McDermott, N. E. Controlled/“Living”Radical Polymerization of Styrene and Methyl Methacrylate Catalyzed by IronComplexes.Macromolecules1997,30(26),8161-8164.
    [121] Kotani, Y.; Kamigaito, M.; Sawamoto, Living Radical Polymerization ofPara-Substituted Styrenes and Synthesis of Styrene-Based Copolymers withRhenium and Iron Complex Catalysts。 M. Macromolecules,2000,33,6746-6751.
    [122] Kotani, Y.; Kamigaito, M.; Sawamoto, M.Re(V)-Mediated Living RadicalPolymerization of Styrene:1ReO2I(PPh3)2/R I Initiating SystemsMacromolecules,1999,32,2420-2424.
    [123]Destarac, M.; Bessiere, J.-M.; Boutevin, B. Atom transfer radicalpolymerization of styrene initiated by polychloroalkanes and catalyzed byCuCl/2,2′-bipyridine: A kinetic and mechanistic study J. Polym. Sci., Part A:Polym. Chem.1998,36,2933-2947.
    [124] Percec, V.; Barboiu, B.; Kim, H.-J. Arenesulfonyl halides: A universal class offunctional initiators for metal-catalyzed "living" radical polymerization of styrene(s),methacrylates, and acrylates.J. Am. Chem. Soc.1998,120,305-316.
    [125]Wang, J. S.; Matyjaszewski, K. Control1ed"Living" RadicalPolymerization.Atom Transfer Radical Polymerization in the Presence ofTransitioN-Metal Complexes.J. Am. Chem. Soc.1995,117,5614-5615.
    [126] Wang, J.-S.; Matyjaszewski, K. Controlled/"Living" Radical Polymerization.Halogen Atom Transfer Radical Polymerization Promoted by a Cu(I)/Cu(II) RedoxProcess. Macromolecules,1995,28,7901-7910.
    [127] Davis, K.; Paik, H.-j.; Matyjaszewski, K. Kinetic Investigation of the AtomTransfer Radical Polymerization of Methyl Acrylate.Macromolecules,1999,32,1767-1776.
    [128] Teodorescu, M.; Gaynor, S. G.; Matyjaszewski, K. Halide Anions as Ligands inIroN-Mediated Atom Transfer Radical Polymerization.Macromolecules,2000,33,2335-2339.
    [129]Simal, F.; Demonceau, A.; Noels, A. F. Kharasch addition and controlled atomtransfer radical polymerisation (ATRP) of vinyl monomers catalysed by Grubbs'ruthenium carbene complexes.Angew. Chem., Int. Ed. Engl.1999,38,538-540.
    [130] Grimaud, T.; Matyjaszewski, K. Controlled/“Living” Radical Polymerizationof Methyl Methacrylate by Atom Transfer Radical Polymerization. Macromolecules1997,30,2216-2218.
    [131] Haddleton, D. M.; Jasieczek, C. B.; Hannon, M. J.; Shooter, A. J. AtomTransfer Radical Polymerization of Methyl Methacrylate Initiated by Alkyl Bromideand2-Pyridinecarbaldehyde Imine Copper(I) Complexes. Macromolecules1997,30,2190-2193.
    [132]Matyjaszewski, K.; Wei, M.; Xia, J.; McDermott, N. E. Controlled/“Living”Radical Polymerization of Styrene and Methyl Methacrylate Catalyzed by IronComplexes. Macromolecules,1997,30,8161-8164.
    [133]Xia, J.; Gaynor, S. G.; Matyjaszewski, K. Controlled/“Living” RadicalPolymerization.Atom Transfer Radical Polymerization of Acrylates at AmbientTemperature.Macromolecules1998,31,5958-5959.
    [134]Louie, J.; Grubbs, R. H. Highly active iron imidazolylidene catalysts for atomtransfer radical polymerization.Chem. Commun.2000,1479-1480.
    [135] Granel, C.; Dubois, P.; Je′ro me, R.; Teyssie′, P. Controlled RadicalPolymerization of Methacrylic Monomers in the Presence of a Bis(ortho-chelated)Arylnickel(II) Complex and Different Activated Alkyl Halides. Macromolecules,1996,29,8576-8582.
    [136] Uegaki, H.; Kotani, Y.; Kamigato, M.; Sawamoto, M.NiBr2(PN-Bu3)2-Mediated Living Radical Polymerization of Methacrylates andAcrylates and Their Block or Random Copolymerizations. Macromolecules1998,31,6756-6761.
    [137] Moineau, G.; Minet, M.; Dubois, P.; Teyssie′, P.; Senninger, T.; Je′ro me, R.Controlled Radical Polymerization of (Meth)acrylates by ATRP with NiBr2(PPh3)2asCatalyst. Macromolecules,1999,32,27-35.
    [138]Lecomte, P.; Drapier, I.; Dubois, P.; Teyssie′, P.; Je′ro me, R. ControlledRadical Polymerization of Methyl Methacrylate in the Presence of Palladium Acetate,Triphenylphosphine, and Carbon Tetrachloride. Macromolecules,1997,30,7631-7663.
    [139]Moineau, G.; Granel, C.; Dubois, P.; Je′ro me, R.; Teyssie′, P. ControlledRadical Polymerization of Methyl Methacrylate Initiated by an Alkyl Halide in thePresence of the Wilkinson Catalyst. Macromolecules1998,31,542-544.
    [140]Matyjaszewski, K.; Jo, S. M.; Paik, H.-j.; Shipp, D. A. An Investigation into theCuX/2,2‘-Bipyridine (X=Br or Cl) Mediated Atom Transfer Radical Polymerizationof Acrylonitrile. Macromolecules,1999,32,6431-6438.
    [141] Matyjaszewski, K.; Jo, S. M.; Paik, H.-j.; Gaynor, S. G. Synthesis ofWell-Defined Polyacrylonitrile by Atom Transfer RadicalPolymerization.Macromolecules1997,30,6398-6400.
    [142] Jo, S. M.; Gaynor, S. G.; Matyjaszewski, K. Polym.Prepr.(Am. Chem. Soc.,Polym. Div.)1996,37(2),27-274..
    [143]Huang, X.; Wirth, M. J. Surface Initiation of Living Radical Polymerization forGrowth of Tethered Chains of Low Polydispersity.Macromolecules,1999,32,1694-1696.
    [144] Li, D.; Brittain, W. Synthesis of Poly(N,N-dimethylacrylamide) viaNitroxide-Mediated Radical Polymerization. Macromolecules,1998,31,3852-3855.
    [145] Teodorescu, M.; Matyjaszewski, K. Atom Transfer Radical Polymerization of(Meth)acrylamides. Macromolecules,1999,32,4826-4831.
    [146] Ashford, E. J.; Naldi, V.; O’Dell, R.; Billingham, N. C.; Armes, S. P. Firstexample of the atom transfer radical polymerisation of an acidic monomer: directsynthesis of methacrylic acid copolymers in aqueous media. Chem. Commun.1999,1285-1286.
    [147] Wang, X. S.; Jackson, R. A.; Armes, S. P. Facile Synthesis of AcidicCopolymers via Atom Transfer Radical Polymerization in Aqueous Media atAmbient Temperature. Macromolecules,2000,33,255-257.
    [148] Davis, K. A.; Charleux, B.; Matyjaszewski, K. Preparation of blockcopolymers of polystyrene and poly (t-butyl acrylate) of various molecular weights
    and architectures by atom transfer radical polymerization. J. Polym. Sci., Part A:
    Polym. Chem.2000,38,2274-2283.
    [1] Pirie, A. Glutathione Peroxidase in Lens and a Source of Hydrogen Peroxide inAqueous Humour. Biochem. J.1965,96,244-253.
    [2] Mugesh,G.; Mont,W.W.; Sies,H. Chemistry of biologically important syntheticorganoselenium compounds. Chem.Rev.2001,101,2125–2179.
    [3] Mugesh, G.; Singh, H. B. Acc. Heteroatom-directed Aromatic Lithiation: AVersatile Route to the Synthesis of Organochalcogen (Se, Te) Compounds.Chem. Res.2002,35,226-236.
    [4] Luo, G.M.; Ren, X.J.; Liu, J.Q.; Mu, Y.; Shen, J.C. Towards more efficientglutathione peroxidase mimics: substrate recognition and catalytic groupassembly.Curr. Med. Chem.2003,10,1151-1183.Witus, L. S.; Francis, M. B. Using Synthetically Modified
    [5] Proteins To Make New Materials.Acc. Chem. Res.2011,44,774–783.
    [6] Lobanov i, A. V.; Hatfield, D. L.; Gladyshev, V. N. Eukaryotic selenoproteinsand selenoproteomes. Biochim Biophys Acta.2009,1790,1424-1428.
    [7] Mills, G. C.; Hemoglobin C. I. Glutathione peroxidase, an erythrocyte enzymewhich protects hemoglobinfrom oxidase breakdown. J. Biol. Chem.1957,229,189-197.
    [8] Epp, O.; Ladenstein, R.; Wendel, A. The refined structure of the selenoenzymeglutathione peroxidase at0.2-nm Resolution.Eur. J. Biochem.1983,133,51-69.
    [9] Sies, H.; Masumoto, H. Ebselen as a glutathione peroxidase mimic and as ascavenger of peroxynitrite. Adv. Pharmacol.1997,38,2229-2246.
    [10] Engman, L.; Stern, D.; Cotgrware, I. A.; Andersson, C. M. Thiol peroxidaseactivity of diaryl ditellurides as determined by a1H NMR method. J. Am. Chem. Soc.1992,114,9737-9743.
    [11] Kanda, T.; Engman, L.; Cotgreave, I. A.; Powis, G. Novel water-solublediorganyl tellurides with thiol peroxidase and antioxidant activity. J. Org. Chem.1999,64,8161-8169.
    [12] Stephanopoulos, N.; Carrico, Z. M.; Francis, M. B. Nanoscale Integration ofSensitizing Chromophores and Porphyrins with Bacteriophage MS2.Angew.Chem..Int. Ed.2009,48,9498–9502.
    [13] Hou C X, Luo Q, Liu J L, Miao L, Zhang C Q, Gao Y Z, Zhang Z Y, Xu J Y,Dong Z Y, Liu J Q. Construction of GPx active centers on natural proteinnanodisk/nanotube: a new way to develop artificial nanoenzyme. ACS Nano.2012,6,8692-6701.
    [14] Tang, Y.; Zhou, L. P.; Luo, Q.; Huang, X.; Wu, P.; Wang, Y. G.; Jiang, X.;Shen, J. C.; Liu, J. Q.; Giant Nanotubes Loaded with Artificial Peroxidase Centers:Self-Assembly of Supramolecular Amphiphiles as a Tool To FunctionalizeNanotube.Angew. Chem. Int. Ed.2010,49,3920-3924.
    [15] Yin, Y. Z.; Huang.X.; Lv, C. Y.; Wang, L.; Yv, S. J.; Luo.Q.; Xu.J.Y.; Liu,J.Q.Construetionofartifieialglutathioneperoxidaseactivesiteoneopolymervesieles.Macromolecules2010,10,1505-1516.
    [16] Palmer, L. C.; Stupp, S. I.; Molecular Self-Assembly into One-DimensionalNanostructures. Acc. Chem. Res.2008,41,1674-1684.
    [17] Seeman, N. C.; DNA in a material world. Nature,2003,421,427-431.
    [18] Rudick, J. G.; Percec, V.; Induced Helical Backbone Conformations ofSelf-Organizable Dendronized Polymers. Acc. Chem. Res.2008,41,1641-1652.
    [19] Hoeben, F. J. M.; Jonkheijm, P.; Meijer, E.W.; Schenning, A. P. H. J.;AboutSupramolecular Assemblies of e-Conjugated Systems. Chem. Rev.2005,105,1491-1546.
    [20] Lee, M.; Cho, B.-K.; Zin, W.-C.;Supramolecular Structures from Rod CoilBlock Copolymers. Chem. Rev.2001,101,3869-3892.
    [21] Chen, D. Y.; Jiang, M.; Strategies for Constructing Polymeric Micelles andHollow Spheres in Solution via Specific Intermolecular Interactions. Acc. Chem.Res.2005,38,494-502.
    [22] Azevedo, H. S.; Velichko, Y. S.;.Stupp, S.I; Self-Assembly of Large and SmallMolecules into Hierarchically Ordered Sacs and Membranes.Science,2008,319,1812-1816.
    [23] Yamamoto, Y.; Fukushima, T.; Suna, Y.; Ishii, N.; Saeki, A.; Seki, S.; Tagawa, S.;Taniguchi, M.; Kawai, T.; Aida, T.;Photoconductive Coaxial Nanotubes ofMolecularly Connected Electron Donor and Acceptor Layers. Science,2006,314,1761-1764.
    [24] Ma, Y. J.; Dong, W. F.; Hempenius, M. A.; M_hwald, H.; Vancso, G. J.;Redox-controlled molecular permeability of composite-wall microcapsules. Nat.Mater.2006,5,724-729.
    [25] Yan, D.; Zhou, Y.; Hou J.; Supramolecular Self-Assembly of MacroscopicTubes. Science,2004,303,65-67.
    [26] Menger F. M.,;Self-Assembly in Natural and Unnatural Systems. Angew.Chem.. Int. Ed.1991,103,1104-1118;
    [1] Skirtach, A. G. et al. Laser-induced release of encapsulated materials insidelivingcells. Angew.Chem. Int. Ed.45,4612–4617(2006).
    [2] Kreft, O., Javier, A. M., Sukhorukov, G. B.&Parak, W. J. Polymermicrocapsulesas mobile local pH-sensors. J. Mater. Chem.17,4471–4476(2007).
    [3] Farrar, M. A., Alberol, I.&Perlmutter, R. M. Activation of the Raf-1kinasecascade bycoumermycin-induced dimerization. Nature.1996,383,178–181.
    [4] Hacker, H. et al. Specificity in Toll-like receptor signalling through distincteffector functions of TRAF3and TRAF6. Nature,2006,439,204–207.
    [5] Ehrbar, M. et al. Cell-demanded liberation of VEGF121from fibrin implantsinduces local and controlled blood vessel growth. Circ. Res.2004,94,1124–1132.
    [1] Yager, P.; Schoen, P. E. Molecular Crystals and Liquid Crystals. Mol. Cryst. Liq.Cryst.1984,106,371-381.
    [2] Schoen, P. E.; Yager, P. Spectroscopic studies of polymerized surfactants:1,2-Bis(10,12-tricosadiynoyl)-sN-glycero-3-phosphocholine. J. Polym. Sci., Polym.Phys. Ed.1985,23,2203-2216.
    [3] Shoen, P. E.; Yager, P.; Priest, R. G. Polydiacetylenes. NATO Sci. Ser., Ser. E1985,102,223-232.
    [4] Yamada, K.; Ihara, H.; Ide, T.; Fukumoto, T.; Hirayama, C. Chem. Lett.1984,1713-1716.
    [5] Nakashima, N.; Asakuma, S.; Kunitake, T. Optical microscopic study of helicalsuperstructures of chiral bilayer membranes.J. Am. Chem. Soc.1985,107,509-510.
    [6] Yager, P.; Schoen, P. E.; Davies, C.; Price, R.; Singh, A. Structure of LipidTubules Formed from a Polymerizable Lecithin.Biophys. J.1985,48,899-906.
    [7]Nakashima, N.; Asakuma, S.; Kim, J.-M.; Kunitake, T. Formation of helical superstructure from single-walled bilayers by amphiphiles with oligo-L-glutamicacid-head group. Chem. Lett.1984,1709-1712.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700