用户名: 密码: 验证码:
重组人胸腺素β16的表达、纯化和胸腺素β16的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Tβ16作为胸腺素β家族成员之一,可通过抗感染和免疫调节作用、刺激成纤维细胞的增殖、促进上皮细胞角化、刺激内皮细胞移动以及促进血管形成等作用来促进创伤修复。
     本课题应用基因工程重组技术,设计构建含SUMO-Tβ16融合基因的重组质粒SUMO-Tβ16/pET3c,将该质粒转化大肠杆菌BL21(DE3)中,经克隆筛选获得了两株DNA测序完全正确的重组工程菌SUMO-Tβ16/pET3c/BL21。该工程菌连续传代100代,经各项指标检测,遗传稳定性很好。重组SUMO-Tβ16融合工程菌,经0.8mmol/L的IPTG诱导,30℃培养6h后,SDS-PAGE电泳显示为可溶性表达。通过DEAE阴离子交换层析→疏水层析→SUMO蛋白酶(Ulp1)剪切→凝胶过滤层析→获得纯度大于95%、比活性为5.3×105IU/mg的Tβ16。体内外生物学活性实验证明:Tβ16具有促进成纤维细胞增殖;促进兔角膜细胞增殖;促进鸡胚绒毛膜尿囊膜的血管增殖;Tβ16凝胶能够促进家兔皮肤烫伤和碱烧伤的愈合。
     总之,本课题研究结果表明Tβ16可以通过抗感染、促进成纤维细胞增殖和促进血管的再生等作用对创伤进行修复,初步确定Tβ16有效剂量为5~10μg/克,研究结果为Tβ16药物的开发提供实验依据。
Trauma repair is a complex regulatory process which includes following phases: (1)Hemostasis.(2)Inflammation phase, which is involved with neutrophils, macrophages, lymphocytes and mastocytes.(3)Fibroblast proliferation.(4)Neovascularization, which includes endothelial cell transformation, differentiation and maturation. (5)Wound and scar hyperplasia and contraction, which is involved with myofibroblast contraction and epithelial cells proliferation.(6)Re-epithelialization, a complex dynamic process which is consisted with hom cells transformation, proliferation and maturation.
     Currently, drugs for trauma repair mainly refer to growth factors, such as EGF, FGE, KGF and etc. According to their different bioactivities, the deficiencies are as follows: (1) EGF mainly participates in late re-epithelialization, while FGF mainly participates in early growth of granulation, thus bFGF is usually recommended in patient with large area of wound injury where granulation tissues deposition are needed, and KGF is usually recommended in patient with light skin injury where re-epithelialization are needed.(2) Growth factor drugs can promote cell proliferation while without any effect of anti-inflamation. (3) Most growth factors use tyrosine protein kinase system for signal transduction,which is related with cancer formation, for which FDA didn’t approve any FGF-drug for clinic applications until now.
     Tβ16, consisted with 45 amino acids, having a molecular weight of 5 KDa is firstly found in human neuroblastoma cells, which wildly exists in nerve, parotid, and testis tissues and superficial cells in healthy person.
     As a member of thymosin family, the functions of Tβ16 are different from other commercial available or developing drugs, which characteristics are as follows:
     (1) Function combination of both anti-infection and immune regulation.
     (2)Specificly stimulating proliferation of fibroblasts and improving keratinization of epithelial cells.
     (3)Specificly stimulating transformation of endothelial cells and formation of blood vessel.
     (4)Low molecular weight including 45 amino acids which make it easy to spread in tissues (opposite to other growth factors having high molecular weight).
     (5) Simple constructions with definite and specific functions and light adverse reactions which make it can be applied locally and repeatedly.
     (6) Having multiple administration routes (such as inhale and percutaneous absorption) with long effect and limited times of application as being a polypeptide drug.
     (7) Participating in the construction of cytoskeleton system and the maintaince of cell construction stability.
     (8) Participating in the hair follicle development process by improving hair follicle stem cells migration, differentiation and extracellular matrix reconstruction. For all above reasons, the research of Tβ16 on trauma repair is considered with important clinical significance which may be applied wildly in the future. Current research on Tβ4 synthesized by chemical method in abroad has come into phase II clinical trial. But the high costs and environment pollution during preparation limits its application extraordinarily. Tβ16 has similarly functions with Tβ4, while its research history and relative reports especially on genetic engineering are still short and rare. In this paper, the author describes the expression process of fusion protein SUMO-Tβ16 in prokaryotic expression system and the isolation and purification process technique for expressed protein through ion exchange chromatography (atmospheric pressure). It is easy to operate with low cost and fitting for industrialized manufacture.
     As a small peptide, Tβ16 has only 45 animo acids that its expression product of routine expression vectors in Ecoli could be degraded easily, while its detection standards are limited, and the yield and recovery rate can not reach the qualification for industrialization. In this study, the author used fusion protein expression system for the expression of Tβ16. Moreover, with SUNO fusion tag the expression of Tβ16 has been optimized obviously, which advantages are as follows: (1) Anti proteolysis.(2) Enhancement on protein expression and maintenance of protein stability.(3) Improvement on correct protein folding and solubility.
     In this study, fusion protein expression vector SUMP- Tβ16/pET3c was constructed successfully and transferred into E.coli. BL21 (DE3) for screening and sequencing. Recombinant engineering stain SUMO- Tβ16/pET3c/BL21 with correct DNA sequence of Tβ16 were passaged for 100 passages in which no significant morphological characteristic changes were observed. Target gene of the engineering strain was analysised by PCR, restriction endonuclease digestion reactions and electrophoresis, which was proved to be specific and stable; The expression level of the engineering strain was evaluated through whole stain SDS-PAGE electrophoresis, which results showed there wasn’t any significant differences among the recombinant strain of every passage; The sequence among different passage was analysised, and the result showed there existed sequence consistency among strains from the original passage to the 100th; Antigenicity of His-SUMO- Tβ16 of the expressed product among each passage was evaluated, in which Western blot tests all demonstrated positive reactions. In other relative tests, the genetic stability of the recombinant strain showed extremely well.
     The study has established a fermentation and purification process technology for industrialized manufacture ofβ16. After induction by 0.8mol/L IPTG at 30℃for 6 hours, SDS-PAGE electrophoresis of the expressed product of recombinant engineering strain SUMO-Tβ16 showed soluble expression. The purification process of the protein was: DEAE anion-exchange chromatography→hydrophobic interaction chromatography→SUMO Protease digestion→Gel filtration chromatography. The purification of purified product was more than 95%, and the activity was 5.3×105 IU/mg.
     The purification and digestion process in this study is easy and effective. Since SUMO tag can lead soluble expression, the expressed protein needs no denaturation and renaturation. And because SUMO tag can be recognized by SUMO enzyme and digested exactly without any extended N-ends left, many problems caused by other chemical or enzymologic digestions methods, such as low yield, formation of protein precipitation, complex digestion conditions, high cost of protease, formation of undesirable N-ends and ect by Factor Xa and thrombase are avoided. Else, protein expressed in the form of inclusion body led by GST expression tag which needs denaturation and renaturation are also avoided.
     Protease SUMO (Ulp 1) used in this study was prepared by our research department. The preparation process was as follows: Analysis prepared His-Ulpl/pET3c/BL21(DE3) engineering strain to proof the correction of target DNA sequences; Induce the expression strain in high density fermentation by 1.0mmol/L IPTG at 30℃for 6 hours; Analysis the expression scale using SDS-PAGE electrophoresis, which result was 24.3%; Purify expressed Ulpl through CM anode exchange one step purification process which protein purification was more than 98% in SDS-PAGE electrophoresis analysis, which equivalently 355mg of pure Ulpl was obtained per liter fermentation broth;Evaluate the immune response between expressed Ulpl and 6xHis antibody through Western blot analysis, which results showed obvious antigenicity against 6xHis antibody. The results of in vitro or in vivo biological activity tests indicated:Τβ16 could promote cell proliferation of fibroblasts and rabbit corner cells, migration of human umbilical vein endothelial cells and vascular proliferation of chorioallantoic membrane in vitro, and the healing of rabbit skin and alkali burn in vivo effectively.
     All in all, this study has primarily analysised the bioactivity ofΤβ16 in vitro and in vivo. The results indicate thatΤβ16 participate trauma repair both by anti-infection and promotion functions on fibroblast and vascular proliferation and etc. The preliminary effective dosage ofΤβ16 is 5~10μg/gram, which provides a good basis for further research.
引文
[1] Goldstein AL,Low TL, McAdoo M, et al. Thymosinα1:isolation and sequence analysis of an immunologically active thymic peptide[J]. Proc Natl Acad Sci USA,1977, 74(2): 725-729.
    [2] Low TL,Goldstein AL. Thymic hormones:an overview[J]. Meth Enzymol, 1985, 116: 213-219.
    [3]唱韶红,巩新,刘波等.重组人胸腺素α原的制备及理化鉴定[J].免疫学杂志, 2008, 24(6):692-696.
    [4] Huff T,Muller CS,Otto AM,et al. Beta-Thymosins,small acidic peptides with multiple functions[J].int J Biochem Cell Biol,2001,33(3):205-220.
    [5] Simenel C,Van Troys M, Vandekerckhove Ampe C, et al. Structural requirements for thymosin beta 4 in its contact with actin. An NMRP-analysis of thymosin beta 4 mutants in solution and correlation with their biologicalactivity[J]. Eur J Biochem, 2000,267(12):3530-3538.
    [6] Huff T,Rosoriu SO, Otto AM,et al. Nuclear localisation of the G-actin sequestering peptide thymosin beta 4[J]. J Cell Sci,2004,117(22):5333-5341.
    [7] Smart N, Rossdeutsch A, Riley P. Thymosin beta 4 and angiogenesis Modes of action and therapeutic potential[J]. Angiogenesis,2007,10:229-241.
    [8] Malinda KM, Sidhu GS, ManiH, et al. Thymosin beta 4 accelerates wound healing[J]. J Invest Dermatol, 199,114(3):364-368.
    [9] Philp D, Nguyen M, Scheremeta B, et al. Thymosin beta 4 increases hair growth by activation of hair follicle stem cells[J]. FASEBJ, 2004,18(2):384-387.
    [10] Bock-Marquette I, Saxena A, White MD, et al. Thymosinβ4 activates integrin-linked kinase and promotes cardiac cell migration, survival and cardiac repair[J]. Nature, 2004, 432(7016):466-472.
    [11] Chen C, Li M, Yang H, et al. Roles of thymosins in cancers and other organ systems [J]. World J Surg,2005,29(3):264-270.
    [12]陈妍柯,杨辉,路凡,等.人胸腺肽β4基因的克隆表达及活性检测[J].生物化学与生物物理学报,2002,34(4):502-505.
    [13] Gondo H, Kudo J, White J W, et al. Differential expression of the human thymosin beta4 gene in lymphocytes, macrophages, and granulocytes[J]. J Immunol,1987,139 (11):3840-3848.
    [14] Young J D, Lawrence A J, MacLean A G, et al.Thymosin beta 4 sulfoxide is an anti-inflammatory agent generated by monocytes in the presence of glucocorticoids[J]. Nat Med, 1999,5(12):1424-1427.
    [15] Defard M, Lemoine FM, Bonnet ML, et al.Comparison of the effects of AcSDKP, thymosin beta4, macrophage inflammatory protein 1alpha and transforming growth factor beta on human leukemic cells[J]. Leuk Lymphoma,1997 ,27(5-6):487-494.
    [16] Moscinski LC, Naylor PH, Oliver J, et al. Thymosin beta 4 synergizes with human granulocyte-macrophage colony-stimulating factor in maintaining bone marrow proliferation[J]. Immunopharmacology. 1993 ,26(1):83-92
    [17] Rudin CM, Engler P, Storb U. Differential splicing of thymosin beta 4 mRNA[J].J Immunol, 1990 ,144(12):4857-2862
    [18]Shahabuddin M, McKinley G, Potash M J, et al. Modulation of cellular gene expression of HIV type 1 infection as determined by subtractive hybridization cloning: Down regulation of thymosin beta4 in vitro and in vivo[J]. AIDSRes Hum Retroviruses, 1994,10(11):1525-1530.
    [19] Badamchian M, Fagarasan MO, Banner RL. Thymosin beta4 reduces lethality and downregulates inflammatory mediators in endotoxin-induced septic shock[J].Int Immunopharmacol, 2003,3(8):1225-1233.
    [20] Sosne G, Chan CC, Thai K. Thymosin b4 promotes corneal wound healing and modulates inflammatory mediators in vivo[J]. Exp Eye Res.2001,72(5):605-608.
    [21] Sosne G, Hafeez S, Greenberry AL, et al. Thymosin beta4 promotes human conjunctival epithelial cell migration. Curr Eye Res,2002,24(4):268-273.
    [22] Girardi M, Sherling MA, Filler RB, et al. Anti-inflammatory effeets in the skin of thymosin beta4 spliee-variants[J]. Immunology. 2003,109(1):1-7.
    [23] Sosne G, Szliter EA, Barrett R, et al. Thymosin beta4 promotes corneal wound healing and decreases inflammation in vivo following alkali injury[J]. Exp Eye Res, 2002, 74(2): 293-299.
    [24] Hannappel E, van Kampen M. Determination of thymosin beta4 in buman blood cells and serum. J Chromatogr,1987,397:279-285.
    [25] Schobitz B, Netzker R, Hannappel E, et al. Cell-cycle-regulated expression of thymosin beta4 iny thymocytes[J]. Eur J Biochem,1991,199(2):257-262.
    [26] Frohm M, Gunne H, Bergman AC, et al. Biochemical and anti-bacterial analysis of human wound and blister fluid[J]. Eur J Biochem,1996,237(1):86-92.
    [27] Huff T, Otto A M, Muller C S, et al. Thymosin beta4 is released from human blood platelets andattached by factorⅩⅢa(transglutaminase) to fibrin and collagen [J]. FASEB J, 2002,16(7):691-696.
    [28]陆树良.进一步理解烧伤创面修复中的免疫学问题.中华烧伤杂志, 2004, 20(6): 324-326.
    [29] Alexander M, Daniel T, Chaudry IH, et al. T cells of theγδT cell receptor lineage play an important role in the postbum wound healing process [J].J Burn Care Res, 2006, 27(1):18-25.
    [30] Loddick S, Rothwell N. Immune and Inflammatory Responses in the nervous System[J].Cytokines and Neurodegeneration, 2002: 90.
    [31] Sosne G, Hafeez S, Christopherson PL, et al. Thymosin beta 4 supp ression of corneal NFkappaB: a potential anti2inflammatorypathway[J]. Exp Eye Res, 2007, 84 (4) 663-669.
    [32]李艳,于虎,许松山,等.胸腺素β4调节皮肤创伤愈合时ICAM-1及VEGF的表达.中国现代药物应用,2008,2(24):21-23.
    [33]Koutrafouri V,Leondiadis L,Avgoustakis K, et al.Effeet of thymosin peptites on the chick chorioallantoic membrane angingenesis model[J]. Biochim Biophys Acta, 2001, 1568(1):60-66.
    [34] Philp D, Goldstein AL, Kleinman HK. Thymosin beta4 promotes angiongenesis, wound healing, and heir folliele development[J]. Mech Ageing Dev, 2004, 125(2):113-115.
    [35] Philp D, Huff T, Gho YS et al. The actin binding site on thymosin b4 promotes angiogenesis[J].FASEB J, 2003,17(14):2103-2105.
    [36] Malinda KM, Goldstein AL,Kleinman HK.Thymosinβ4 stimulates directional migration of human umbilical vein endothelial cell[J].FASEB J, 1997,11(6):474-481.
    [37] Malinda KM, Sidhu GS, Banaudha KK et al. Thymosin 1 stimulates endothelial cell migration, angiogenesis and wound healing[J]. J Immunol,1998,160(2):1001-1006
    [38] Francis Godschalk M. Pressure ulcers: a role for thymosin beta4[J]. Ann NY Acad Sci,2007;1112:413-417
    [39] Philp D, Huff T, Gho YS, et al. The actin binding site on thymosin b4 promotes angiogenesis[J]. FASEB J ,2003;17:2103-2105
    [40] Malinda KM, Sidhu GS, Mani H, et al. Thymosin beta4 accelerates wound healing[J]. J Invest Dermatol, 1999,113(3):364-368.
    [41] Sosne G, Qiu P, Kurpakus-Wheater M. Thymosin beta-4 and the eye: I can see clearly now the pain is gone[J].Ann N Y Acad Sci ,2007,1112:114-122.
    [42] Goldstein AL, Hannappel E, Kleinman HK. Thymosin b4:actin-sequestering protein moonlights to repair injured tissues[J]. Trends Mol Med, 2005;11:421-429
    [43] Sosne G, Siddiqi A, Kurpakus-Wheater M. Thymosin-beta4 inhibits comeal epithelial cell apoptosis after ethanol exposure in vitro, Invest.Ophthalmol Vis Sci , 2004; 45: 1095-1100.
    [44] Sosne G, Albeiruti AR, Hollis B, et al. Thymosin beta4 inhibits benzalkonium chloride-mediated apoptosis in corneal and conjunctival epithelial cells in vitro[J]. Exp Eye Res, 2006,83(3):502-507.
    [45] Smart N,Risebro CA, Melville AAD et al. Thymosin beta 4 induces adult epicardial progenitor Mobilization and neovascularization[J].Nature,2007,445(7124):177-182.
    [46] Bock-Marquette I, Saxena A, White MD et al. Thymosin beta4 activates integrin-linked kinase And promotes cardiac cell migration, survival and cardiac repair[J]. Nature,2004,432(7016):466-472.
    [47] Bonnet D, Lemoine FM, Frobert Y, et al . Thymosin beta4, inhibitor for normalhematopoietic progenitor cells[J].Ex p Hematol , 1996 , 24 (7) : 776—782.
    [48] Armstrong DG,Jude EB. The role of matrix metalloproteinases in wound healing[J]. J Am Podiatr Med Assoc,2002,92(1):12-18
    [49]许静,狄正鸿,周卓,等.瘢痕疙瘩及增生性瘢痕中MMP-2、MMP-9的表达[J].中国组织化学与细胞化学杂志,2007,16(1):67-70.
    [50] Sosne G, Patricia L, Christopherson PL et al. Thymosin-beta4 modulates corneal matrix metalloproteinase levels and polymorphonuclear cell infiltration after alkali injury[J]. Invest Ophthalmol Vis Sci, 2005,46(7):2388-2395.
    [51]陆培荣,李龙标,张学光.小鼠角膜碱烧伤后前炎性因子、趋化因子及其受体的表达[J].眼科研究,2007,25(4):256-260
    [52] Qiu P, Kurpakus-Wheater M, Sosne G. Matrix metalloproteinase activity is necessary for thymosin beta 4 promotion of epithelial cell migration[J].J Cell Physiol, 2007, 212(1):165-173.
    [53] Ghosh M,Song X, Mouneimne G et al.Cofilin promotes actin polymerization and defines the direction of cell motility [J].Science ,2004,304(5671):743-746.
    [54] Francis Godschalk M. Pressure ulcers: a role for thymosin beta4[J]. Ann N Y Acad Sci. 2007;1112:413-7.
    [55] Philp D, Badamchian M, Scheremeta B,et al. Thymosin beta4 and synthetic peptide containing its aclin-binding domain promote dermal wound repair in dh/db diabetic mice and in aged miee[J]. Wound Repoir Regen. 2003,11(1):19-24.
    [56] Reti R, Kwon E, Qiu P,et al. Thymosin beta4 is cytoprotective in human gingival fibroblasts[J]. Eur J Oral Sci. 2008 ,116(5):424-30.
    [57] Carpinterio P, Anadón R, del Amo FF, et al. The thymosin beta 4 gene is strongly activated in neural tissues during early postimplantation mouse development[J]. Neurosci Lett, 1995,184 (1) :63-66.
    [58] Voisin PJ, Pardue S, Morrison-Bogorad M,et al. Developmental characterization of thymosin beta 4 and beta 10 expression in enriched neuronal cultures from rat cerebella[J]. J Neurochem, 1995, 64 (1) : 109-120.
    [59] Carpintero P, Anadón R, Díaz-Regueira S, et al. Expression of thymosin beta4messenger RNA in normal and kainate-treated rat forebrain[J].Neuroscience, 1999,90 (4) : 1433-1444.
    [60] Lugo D I ,Chen S C , Hall A K, et al . Developmental regulation of beta-thymosins in t he rat cent ral nervous system[J ] . J Neurochem , 1991 , 56 (2) :457 - 461.
    [61] Rot h L W A , Bormann P , Bonnet A , et al . Thymosin is requiredfor axonal t ract formation in developing zebrafish brain[J ] . Development , 1999 , 126 (7) :1365 -1374.
    [62] Safer D, Elzinga M, Nachmias VT. Thyomsinβ4 and Fx, an actin-aequestering peptide, are indistinguishable[J]. J Biol Chem, 1991,266(7):4029-4032.
    [63] Huff T, Zerzawy D, Hannappel E. Interactiona ofβ-thymosin, thymosinβ4-sulfoxide,And N-terminally truncaled thymosinβ4 with actin atudied by equilibrium centrifugation, chemical cross-linking and viscometry[J]. Eur J Biochem,1995,230(2):650-657.
    [64] Carlier MF,Jean C, Rieger KJ, et al. Modulation of the interaction belween G-aclin and thymosinβ4 by the ATP/ADP ratio: possible implication in the regulation of actin dynamics[J]. Proc Natl Acad Sci USA, 1993,90(11):5034-5038.
    [65] Goldschmida-clermont PJ, Furman MI,Wachsstock D, et al.The control of actin nucleotide exchange by thymosinβ4 and profiling. A potential regulatory mechanism for actin polymerization in cells[J]. Mot Biol Cell, 1992,3(9):1015-1024.
    [66] Atkinson SJ, Hosford MA, Molitoris BA. Mechanism of actin polymerization in cellular ATP depletion[J]. J Biol Chem,2004,279(7):5194-5199.
    [67] Kang F,Purich DL, Southwick FS.Profilin promotes barbed-end actin filament assembly without lowering the critical concentration[J]. J Biol Chem, 1999, 274(52): 36963-36972. [68 ] Philp D, Huff T, Gho YS, et al. The actin binding site on thymosin beta4 promotes angiogenesis[J ]. FA SEB J , 2003, 17 (14) :2103-2105. [ 69] IrobiE,A guda AH,L arsson M , et al. Structural basis of actin sequestration by thymosin-beta4: imp lications fo r WH2 proteins[J ]. EMBO J , 2004, 23 (18) 3599-3608.
    [ 70] Domansk iM , HertzogM , Coutant J , et al. Coup ling of fo lding and binding of thymosin beta4 upon interaction w ith monomeric actin monito red by nuclear magnetic resonance [ J ]. Bio l chem, 2004,279 (22) : 23637-23645. [ 71] HertzogM , van Heijenoort C,Didry D, et al. The beta-thymosin/WH2 domain structural basis for the switch from inhibition to promotion of actin assembly[J ].Cell, 2004, 117 (5) : 6112623.
    [72] Safer D, Sosnick TR, Elzinga M. Thymosin beta4 binds actin in an extended conformation and contacts both the harbed and pointed ends[J]. Biochemistry, 1997, 36(19):5806-5816.
    [73] Buubb MR. Thymosin beta4 interactions[J]. Vitam Horm,2003,66(1):297-316.
    [74] Simenel C,Van Troys M, Vandekerckhove J, et al. Structural requirementa of thymosin beta4 in its contacl with actin. An NMR-analysis of thymosin beta4 mutants in solution and correlation with their biological activity[J].Eur J Biochem, 2000, 267(12):3530-3538.
    [75] Van Troys M, Dewitte D, Goethals M, et al. The actin binding site of thymosin beta4 mapped by mutational analysis[J]. EMBO J,1996,15(2):201-210.
    [76] Rossenu S, Leyman S, Dewitte D, et al. A phage displaybased method for the determination of relative affinities of mutants.Application of the actin-binding motifa in thymosinβ4 and the villin headpiece[J]. J Biol Chem, 2003,278(19):16642-16650.
    [77] Eadie JS, Kim SW, Allen PG, et al. C-terminal variations in beta-thymosin family members specify functional differences in actin-binding properties[J]. J Cell Biochen, 2000,77( 2):277-287.
    [78] De La Cruz EM, Ostap EM, Brundage RA, et al. Thymosinβ4 changes the conformation and dynamics of actinmonomers[J]. Biophys J,2000,78(5):2516-2527.
    [79] Yarmola EG, Parikh S, Bubb MR. Formation and implications of a ternary complex of profiling, thymosinβ4, and actin[J]. J Biol Chem,2001,276(49):45555-45563.
    [80] Vigneswaran N, Wu J, Sacks P, et al. Microarray gene expression profiling of cell lines from primary and metastatie tongue squanious cell carcinoma: possible insights from emerging technology[J]. J Oral Pathol Med,2005,34(2):77-86.
    [81] Diamond DL, Zhang Y, Gaiger A, et al. Use of Protein-Chip array surface enhanced laser desorption/ionization time-of-flight mass spectrometry(SELDI-TOF MS) toidentify thymosin beta4, a differentially secreted protein from lymphoblastoid cell lines[J]. J Am Soc Mass Spectrom,2003,14(7):760-765. [ 82 ] Kobayashi T ,Okada F ,Fujii N , et al . Thymosin-beta4 regulates motility and metastasis of malignant mouse fibrosarcoma cells[J ] Am J Pat hol , 2002 ,160 (3) :869 - 882. [ 83 ] Ji P , Diederichs S , Wang W,et al . MALAT-1 ,a novel noncodin-gRNA , and Thymosin beta4 predict metastasis and survival in early-stage non-small celllung cancer [ J ] . Oncogene , 2003 ,22 (39) :6087 - 6097. [ 84] Cha H J , J eong M J , Kleinman H K. Role of t hymosin beta4 in tumor metastasis and angiogenesis [J ] . J Natl Cancer Inst ,2003 ,95 (22) :1674 - 1680. [ 85 ] Huff T , Müller C S , Otto A M , et al .β-Thymosins , small acidicpeptides with multiple functions[J ] . IntJ Biochem Cell Biol , 2001 ,33 (3) : 205 - 220. [
    [86 ] Philp D , Huff T , Gho YS ,et al . The actin binding site on Thymosin beta 4 promotes angiogenesis [ J ] . FASEB J , 2003 ,17 (12) :2103 - 2105.
    [87] Wang W S ,Chen P M, Hsiao H L ,et al. Overexpression of the thymosin beta-4 gene is associated with malignant progression of SW480 colon cancer cells[J ] Oncogene ,2003 ,22(21) :3297 - 3306.
    [88] Muller-Tidow C, Diederichs S, Thomas M, et al. Genome-wide screening for prognosis-predicting genes in early-stage non-small-cell lung cancer[J]. Lung Cancer,2004,45(Suppl 2):S145-S150. [ 89 ] Olave I A , Reck-Peterson S L , Crabt ree G R. Nuclear actin-related proteins in chromatinremodeling[J ] . Annu Rev Bioc-hem ,2002 ,71 (1) :755 - 781.
    [90] Geiss-Friedlander R, Melchior F. Concepts in sumoylation: a decade on[J].Nat Rev Mol Cell Biol, 2007,8(12):947-956.
    [91] Yeh E T, Gong L, Kamitani T. Ubiquitin-like proteins: new wines in new bottles [J].Gene,2000,248(12):1~14.
    [92] Hay R T. SUMO-specific proteases: a twist in the tail [J]. Trends Cell Biol,2007,17(8):370~376.
    [93] Grace Gill. SUMO and ubiquitin in the nucleus: different functions, similar mechanisms[J]? Gene and Development, 2004,18(17): 2046~2059
    [94]陈泉,施蕴渝.小泛素相关修饰物SUMO研究进展.生命科学, 2004, 16 (1) : 1~6. Chen Q, Shi Y Y. Chinese Bulletin of Life Sciences, 2004. 16(1) : 1~6.
    [95] KroetzM B. SUMO: a ubiquitin2like p rotein modifier[J].Yale J Biol Med, 2005, 78 (4) : 197~201
    [96] AlexisVerger, Jose Perdomo,Merlin Crossley. Modification with SUMO a role in transcrip tional regulation[J].European Molecular Biology Organization, 2003, 4 (2) : 137~142
    [97] Pichler A,Melchior F. Ubiquitin-related modifer SUMO-1 and nucleo-cytop lasmic transport[J]. Traffic, 2002, 3(6): 381~387
    [98]叶晓峰,吴乔.类泛素蛋白-SUMO.细胞生物学杂志,2004, 26 (1) : 10~14Ye X F, Wu Q. Chinese Journal of Cell Biology, 2004. 26 ( 1) :10~14
    [99] Saitoh H, Hinchey J. Functional heterogeneity of small ubiquitin-related protein modifiers SUMO21 versus SUMO22 /3[J]. J BiolChem, 2000, 275(9): 6252~6258
    [100] R. S. Hilgarth,L. A. Murphy, H. S. Skaggs, et al. Regulation and function of SUMO modification[J]. J Biol Chem, 2004, 279 ( 52) :53899~53902
    [101] Tianwei Li, Rasa Santockyte, Rong-Fong Shen, et al. Exp ression of SUMO-2 /3 induced senescence through p53- and pRB- mediated pathways[J]. J Biol Chem, 2006, 281(47):36221-36227.
    [102] Guo D, LiM, Zhang Y, et al. A functional variant of SUMO4,a new I kappa B alpha modifier, is associated with type 1diabetes[J]. Nat Genet, 2004, 36(8): 837~841.
    [103] Johnson E S. Protein modification by SUMO[J]. Annu Rev Biochem, 2004, 73: 355~382
    [104] Geiss-Friedlander R, Melchior F. Concep ts in sumoylation: a decade on[J].Nat RevMol Cell Biol, 2007, 8 (12) : 947~956
    [105] Müller S, Hoege C, Pyrowolakis G, et al. SUMO, ubiquitin's mysterious cousin[J]. Nat Rev Mol Cell Biol, 2001, 2(3): 202~210.
    [106] Sternsdorf T, Jensen K, Freemont P S. SUMO[J].Curr Biol, 2003, 13(7) : R258~R259.
    [107]刘世荣. SUMO化修饰:一种多功能的蛋白质翻译后修饰方式.医学分子生物学杂志,2006,3(3):212-215.
    [108] Lin X, LiangM, Liang Y Y, et al. SUMO-1 /Ubc9 p romotes nuclear accumulation and metabolic stability of tumor supp ressor Smad4[J].J Biol Chem, 2003, 278(33): 31043~31048.
    [109] Steffan J S, AgrawalN, Pallos J, et al. SUMO modification of Huntingtin and Huntington’s disease pathology[J]. Science, 2004,304(5667): 100~104. [ 110] Hoege C, Pfander B, Moldovan G L, et al. RAD6-de-pendent DNA repair is linked tomodification of PCNA by ubiquitinand SUMO[ J ].Nature, 2002, 419 (6903) : 135-141. [ 111] Papouli E, Chen S, DaviesA A, et al.Crosstalk between SUMO and ubiquitin on PCNA is mediated by recruitment of the Helicase Srs2p [ J ].Mol Cell, 2005, 19 (1) : 123-133.
    [112] Pfander B, Moldovan G L, Sacher M, et al. SUMO-modified PCNA recruits Srs2 to prevent recombination during Sphase[ J ].Nature, 2005, 436 (7049) : 428-433.
    [113] Zhao J. Sumoylation regulates diverse biological p rocesses[J].Cell Mol Life Sci, 2007, 64 (23) : 3017~3033.
    [114] Andrews E A, Palecek J, Sergeant J, et al. Nse2, a component of the Smc5-6 comp- lex, is a SUMO ligase required for the response to DNA damage[J].Mol Cell Biol,2005, 25(1): 185~196.
    [115] McDonaldW H, Pavlova Y, Yates J R, et al. Novel essential DNA repair proteins Nse1 and Nse2 are subunits of the fission yeast Smc5-Smc6 complex[J].J Biol Chem, 2003, 278(46): 45460~45467. [116 ] Zhao X, Blobel G. A SUMO ligase is part of a nuclear multi protein complex that affects DNA repair and chromosomal organization[J].Proc Natl Acad Sci USA, 2005, 102(13): 4777~4782.
    [117] Potts P R, Yu H. Human MMS21 /NSE2 is a SUMO ligase required for DNArepair[J]. Mol Cell Biol, 2005, 25(16): 7021~7032.
    [118] GillG. Post-translational modification by the small ubiquitin related modifierSUMO has big effectson transcripti on factor activity[J].Curr Opin in Gene Devel, 2003, 13: 108~113
    [119] Schwartz D C, Hochstrasser M. A superfamily of protein tags: ubiquitin, SUMO and related modifiers[J]. Trends in Biochem Sci, 2003, 28(6): 321~328
    [120] Dadke S, Cotteret S, Yip S C, et al. Regulation of p rotein tyrosine phosphatase 1B by sumoylation[J]. Nat Cell Biol, 2007,9(1): 80~85 [121 ] Fei E, J ia N, Yan M, et al. SUMO21 modification increases human SOD1 stability and aggregation[J]. Biochem Biophys Res Commun, 2006, 347(2): 406~412
    [122] Hay R T. Protein modification by SUMO[J].Trends in Biochem Sci, 2001, 26(5): 332~333
    [123] Wilkinson C R M. New tricks for ubiquitin and friends[J].Trends in Cell Biol, 2002, 12(12): 545~546
    [124] Boggio R, Colombo R, Hay R T, et al. A mechanism for inhibiting the SUMO pathway[J]. Mol Cell, 2004, 16(4): 549~561
    [125] Boggio R, Chiocca S. Gam1 and the SUMO pathway[J].Cell Cycle, 2005, 4(4): 533~535
    [126] Boggio R, Passafaro A, Chiocca S. Targeting SUMO E1 to ubiquitin ligases: a viral strategy to counteract sumoylation[J]. JBiol Chem, 2007, 282(21): 15376~15382
    [127] Harder Z, Zunino R, Mcbride H. Sumo1 conjugatesmitochondrial substrates and participates in mitochondrial fission [ J ].Curr Biol, 2004, 14 (4) : 340-345.
    [128] Lee J S, Thorgeirsson S S. Genome-scale p rofiling of gene expression in hepatocellular carcinoma: classification, survival prediction, and identification of therapeutic targets[J]. Gastroenterology, 2004, 127: S51~S55
    [129] Mo Y Y, Yu Y, Theodosiou E, et al. A role for Ubc9 in tumorigenesis[J].Oncogene, 2005, 24(16): 2677~2683
    [130] Wang L, Banerjee S. Differential PIAS3 exp ression in human malignancy[J]. Oncol Rep, 2004, 11(6): 1319~1324
    [131] Cheng J, Bawa T, Lee P, et al. Role of desumoylation in the development of p rostate cancer[J]. Neop lasia, 2006, 8(8): 667~676
    [132] Bohren KM, Nadkarni V , Song J H, et al1 A M55V polymorphism in a novel SUMO gene ( SUMO-4 ) differentially activates heat shock transcrip tion factors and is associated with suscep-tibility to type I diabetes mellitus [ J ] .J Biol Chem, 2004, 279(26) : 27233-272381.
    [133] Panavas T, Sanders C, Butt TR.SUMO fusion technology for enhanced protein production in prokaryotic and eukaryotic expression systems[J].Methods Mol Biol. 2009;497:303-317.
    [134] Liul, Spurrier J, Butt TR, et al.Enhanced protein expression in the baculovirus/insect cell system using engineered SUMO fusions[J].Protein Expr Purif. 2008 ;62(1):21-28.
    [135] Lee CD, Sun HC, Hu SM, et al. An improved SUMO fusion protein system for effective production of native proteins[J].Protein Sci. 2008 ;17(7):1241-1248.
    [136] Makrides SC. Strategies for achieving high-level expression of genes in Escherichia coli[J]. Microbiol Rev 1996; 60:512-38.
    [137] Butt TR, Edavettal SC, Hall JP, Mattern MR. SUMO fusion technology for difficult-to-express proteins[J]. Protein Expression and Purification,2005; 43:1-9.
    [138] Michael P M, Michael R M, Oxana A M, Drinker M. SUMO fusions and SUMO-specific protease for efficient expression and purification of proteins[J]. Journal of Structural and Functional Genomics 2004; 5:75-86.
    [139] Baneyx F. Recombinant protein expression in Escherichia coli[J]. Curr Opin Biotechnol 1999; 10:411-21.
    [140] Muller S, Hoege C, Pyrowolakis G, Jentsch S. Sumo, ubiquitin's mysterious cousin. Nature Reviews Molecular Cell Biology 2001; 2:202-210.
    [141] Dohmen RJ. SUMO protein modification. Biochimica Et Biophysica Acta-Molecular Cell Research 2004; 1695:113-131.
    [142] Mossessova E, Lima CD. Ulp1-SUMO crystal structure and genetic analysis reveal conserved interactions and a regulatory element essential for cell growth in yeast.Molecular Cell 2000; 5:865-876.
    [143] Li SJ, Hochstrasser M. The Ulp1 SUMO isopeptidase: distinct domains required for viability, nuclear envelope localization, and substrate specificity. Journal of Cell Biology 2003; 160:1069-1081.
    [144] Panse VG, Kuster B, Gerstberger T, Hurt E. Unconventional tethering of Ulp1 to the transport channel of the nuclear pore complex by karyopherins. Nature Cell Biology 2003; 5:21-27.
    [145] Hang J, Dasso M. Association of the human SUMO-1 protease SENP2 with the nuclear pore. Journal of Biological Chemistry 2002; 277:19961-19966.
    [146] Melchior F, Schergaut M, Pichler A. SUMO: ligases, isopeptidases and nuclear pores. Trends in Biochemical Sciences 2003; 28:612-618.
    [147] Li S-J, Hochstrasser M. A new protease required for cell-cycle progression in yeast. Nature 1999; 398:246-251.
    [148] Schwienhorst I, Johnson ES, Dohmen RJ. SUMO conjugation and deconjugation. Molecular and General Genetics 2000; 263:771-786.
    [149] Li SJ, Hochstrasser M. The yeast ULP2 (SMT4) gene encodes a novel protease specific for the ubiquitin-like Smt3 protein. Molecular and Cellular Biology 2000; 20:2367-2377.
    [150]陈兴华.SUMO蛋白酶Ulp1活性片段的表达、纯化及活性测定.暨南大学硕士学位论文,2007年.Chen X H. Expression, Purification and Activity Determination of SUMO protease’s Active Fragment.Jinan University master thesis,2007
    [151]Drenth J, Jansonius JN, Koekoek R, Wolthers BG. The structure of papain. Adv. Protein Chem 1971; 25:79–115.
    [152] Reverter D, Lima CD. A basis for SUMO protease specificity provided by analysis of human Senp2 and a Senp2-SUMO complex. Structure 2004; 12:1519-1531.
    [153] Steven C J, Steven MR, Robert EC, PH C. Structural basis for the specificity of ubiquitin C-terminal hydrolases. The EMBO Journal 1999; 18:3877-3887.
    [154] Marblestone JG, Edavettal SC, Lim Y, Lim P, Zuo X, Butt TR. Comparison of SUMO fusion technology with traditional gene fusion systems: Enhancedexpression and solubility with SUMO. Protein Science 2006; 15:182-189.
    [155]吴园园,刘树深,吴培诚.重组人表皮生长因子复方抗菌凝胶的研制.广东药学院学报,2005,21(6):669-671.
    [156]王慧杰,黄巨恩.酸性成纤维细胞生长因子的基础与应用研究[J].解剖学研究,2005,27(4):308-311.
    [157] Matecki J, Wesche J. Translocation of FGF-1 and FGF-2 across vesicular membranes occurs during G1-phase by a common mechanism[J].Molecular Biology of the Cell, 2004,15:801-814.
    [158]陈琦,马瑞.新型抗溃疡及促进伤口愈合药-重组人角质细胞生长因子-2[J].中国新药杂志,2003,12(6):419-422.
    [159]傅小兵,孙同柱,王亚平等.表皮细胞生长因子与碱性成纤维细胞生长因子促进创面修复效应的比较性研究[J].中国修复重建外科杂志,1999,13(5):278-282.
    [160] KerscherO. SUMO junctionOwhat’s your function? new insights through SUMO-interactingmotifs[J]. EMBO Rep, 2007, 8 ( 6) : 550~555
    [161] Su Z J, Huang Y D, Zhou Q N, et al. HighO level exp ression and purification of human ep idermal growth factorwith SUMO fusion in Escherichia coli[J]. Protein and Pep tide Letters, 2006, 13 ( 8 ) :785~792
    [162] Donovan R S, Robinson C W, Glick B R. Review: Optimizing Inducer and Culture Conditions for Expression of Foreign Proteinunder the Control of the Lac Promoter [J]. J. Ind. Microbiol., 1996,16: 145?154.
    [163] Schein C H, Noteborn M H M. Formation of Soluble Recombinant Proteins in Escherichia coli Is Favored by Lower Growth Temperatures [J]. Bio-technology, 1988, 6: 291–294.
    [164] Horn U, Strittmayer W, Krebber A, et al. High Volumetric Yields of Functional Dimeric Miniantibodies in Escherichia coli, Using an Optimized Expression Vector and High-cell-density Fermentation under Non-limited Growth Conditions [J]. Appl. Microb. Miotechnol.,1996, 46: 524?532 .
    [165] Schein C H, Boix E, Haugg M, et al. Secretion of Mammalian Ribonucleases from Escherichia-coli Using the Signal Sequence of Murine Spleen Ribonuclease [J].Biochem. J., 1992, 283: 137?144.
    [166] Carter P, Kelley R F, Rodrigues M L, et al. High-level Escherichia-coli Expression and Production of a Bivalent Humanized Antibody Fragment [J].Bio-technology, 1992, 10: 163?167.
    [167] Lee S Y. High Cell-density Culture of Escherichia coli [J]. Trends Biotechnol., 1996, 14(3): 98?105.
    [168] Donovan R S, Robinson C W, Glick B R. Optimizing the Expression of a Monoclonal Antibody Fragment under the Transcriptional Control of the Escherichia coli Lac Promoter [J]. Can. J. Microbiol.,2000, 46(6): 532?541.
    [169] Lee H W, Yoon S J, Kim H K, et al. Overexpression of an Alkaline Lipase Gene from Proteus vulgaris K80 in Escherichia coli BL21/pKLE [J]. Biotechnol. Lett., 2000, 22: 1543?1547.
    [170] Hoffmann F, van den Heuvel J, Zidek N, et al. Minimizing Inclusion Body Formation during Recombinant Protein Production in Escherichia coli at Bench and Pilot Plant Scale [J]. Enzyme Microb.Technol., 2004, 34: 235?241.
    [171] Schein C H, Kashiwagi K, Fujisawa A, et al. Secretion of Mature IFN-alpha-2 and Accumulation of Uncleaved Precursor by Bacillus-subtilis Transformed with a Hybrid Alpha-amylase SignalSequence-IFN-alpha-2 Gene [J].Bio-technology, 1986, 14:719?725.
    [172] McDonald J R, Org M, Shen C, et al. Large-scale Purification and Characterization of Recombinant Fibroblast Growth Factor-Saporin Mitotoxin [J].Protein Express. Purific., 1996, 8: 97?108.
    [173]韦利军,朊期平,郭海,等.重组水蛭素Ⅲ工程菌菌种稳定性考察[J].药物生物技术,2004,11(2):86-90.
    [174] Imanaka T, Tsunekawa H, Aiba S. Phenotypic stability of trp operon recombinant plasmids in Escherichia coli.[J ].Gen Microbiol,1980,118:253-261.
    [175]施源,袁渭康,陈敏恒.不稳定的基因工程菌酵母生长动力学研究[J].生物工程学报,1990,6(1):44-49.
    [176]邱晓颖,朱红惠,卢秋雁,等.质粒pMC73A在宿主细菌中的稳定性研究[J].高技术通讯,1998,8(6):52-55.
    [177]钱垂文,黄立,王一飞,等.表达NM23-H1/NDPK-A工程菌的遗传稳定性研究[J].中国生物工程杂志,2005,25(2):35-38.
    [178]葛保胜,任育红,唐志红,等.表达重组别藻蓝蛋白质粒在工程菌株中的遗传稳定性研究[J].微生物学通报,2005,32(4):37-41.
    [179]金元昌,磨美兰,苏晓艳,等.基因工程菌株BLG8900的遗传稳定性[J].中国生物制品学杂志,2007,20(2):98-99.
    [180]汪川,张朝武,杜江,等.表达型质粒载体pMG36e在宿主菌中的遗传稳定性研究[J].卫生研究,2005,34(2):214-216.
    [181]张惠展.基因工程[M].上海:华东理工大学出版社,2005:159-160.
    [182]高德民,刘金峰,王凤山.多肽类药物结构稳定性的研究进展[J].中国医药生物技术,2007,2(5):380-381.
    [183]王荣梅,苏荣胜,曹华斌,等.多肽药物的研究开发及前景展望[J].兽药与饲料添加剂,2008,13(2):12-14.
    [184]Sun Xinghua, Yang Zhijian, Li Shukuan, et al. In vivo efficacy of recombinant methioninase is enhanced by the combination of polyethylene glycol conjugation and pyridoxal 5-phosphate supple-mentation[J]. Cancer Res, 2003,1(63):8377-8383.
    [185] Roberls MJ, Bentley MD, Harris JM. Chemistry for peptide and protein PEGylation[J]. Adv Drug Deliv Rev,2002,54(4):459-476.
    [186] Zalipsky S. Functionalized polyethylene glycols for preparation of biologically relevant conjugates[J]. Bioconjugate Chem,1995,6(2):150.-165.
    [187] Inada Y, Furukawa M, Sasaki H, et al. Biomedical and biotechnological applications of PEG-and PM-modified proteins[J]. Trends Biotechnol,1995,13(3):86-91.
    [188] Chien-Der Lee, Hui-Chien Sun, Su-Ming Hu,et al. An improved SUMO fusion protein system for effective production of native proteins. Protein Sci. 2008 ,17(7): 1241–1248.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700