用户名: 密码: 验证码:
锅炉“四管”泄漏监测系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电站锅炉的“四管”(省煤器、水冷壁、再热器、过热器)由于一直处于磨损、腐蚀、高压、高温的工作环境,泄漏爆破事故频繁发生,给电厂运行经济性和安全性带来极大影响,成为电厂增加经济效益和安全经济运行的最最关键的障碍。
     因此如何提高对锅炉承压受热面轻微泄漏早期发现,并妥善安排检修策略以缩短检修时间,降低临检率等具有相当重要意义。
     四管泄漏在线监测装置是监测电厂锅炉内管道泄漏的专业设备,该设备中声导管是该装置的最重要组成部分,直接影响声信号的采集。通过模拟实验或现场实验,获得谐振腔声导管对不同频率波形的采集分析能力。
     本文详细阐述了锅炉泄漏产生机理,并对此进行分析,从热力学和声学两个方面入手,对泄露喷流的特征进行分析,建立了相应的数学物理模型,并且创新的将物理学中的谐振腔加装在了声导管上,并对此进行实验和研究。
     通过MATLAB进行仿真模拟,确定了不同温度对声波传递的影响。
     通过实验,我们发现谐振腔可以使得声导管能够更有效采集泄漏信号,对固有频率的声波信号进行放大,同时,过滤背景噪声信号,使得背景噪声得到很好的衰减效果。再达到以上两点的同时,还能起到保护传感器的作用,能够有效延长传感器的使用寿命的功效。
The leakage of four tubes which are water wall tubes, superheater tubes, reheater tubes, economizer tube, has always been in wear, corrosion, high pressure, and high temperature, that makes them be the frequent leakage of power stations. And that gives a tremendous impact to the power plant's safety and economy. And that becomes the key part of the safety and economy to large thermal power plant.
     Therefore, if we could find the damenge of four tubes earlier, we can make proper arrangements for maintenance strategies to reduce maintenance time.
     Four-leakage power line monitoring device is the professional equipment to monitor the inside pipeline leaking, which account for the most important part of the equipment, directly affacts the acoustic signal acquisition. Through simulation or field experiment, obtained for different cavity frequency sound wave tube collection and analysis capabilities.
     Through simulated or live experiment, I acknowleged the knowledge of uiltilizing the equipment to collect and analyse sound wave with different frequency. The pape is to elaborate and anlyse the leaking principle of boiler from both thermodynamics and acoustics perspectives,analysising the characterises of leakage jet based on the theories of Thermodynamic and acoustic, estabilshing the modle of corresponding mathematical and physics, furthermore, i applied in/put into practice sound catheter creatively and i do the relative experients and research. This paper illustates and analysises the leaking theory of boiler from both thermodynamics and acoustics perspectives.
引文
[1]Cinar, A. and Undey, C. Statistical process and controller performance monitoring. Proceedings of the American Control Conference, pp.2625-2639, San Diego, CA(1999)
    [2]Frank, P. M. Fault diagnosis in dynamic systems using analytical and knowledge-based redundancy-a survey and some new results. Automatica 26, 459-474(1990)
    [3]Frank, P. M. and Ding, X. Survey of robust residual generation and evaluation methods in observer-based fault detection systems. J. Process Control 7~61, 403-424(1997)
    [4]Yoon, S. and MacGregor, J. F. Statistical and causal model-based approaches to fault detection and isolation. AIChE J.46(9),1813-1824 (2000)
    [5]Yoon, S. and Mac Gregor, J. F. Fault diagnosis with multivariable statistical model. Part I:Using steady fault signature. J. Process Control 11(4),387-400 (2001)
    [6]Gertler, J., Li, W., Huang, Y., and McAvoy, T. Isolation enhanced principal component analysis. AIChE J.45(2),323-334 (1999)
    [7]Ying, C. M. and Joseph, B. Sensor fault detection using noise analysis. Ind. Eng. Chem. Res.39(2),396-407 (2000)
    [8]Luo, R., Misra, M., and Himmelblau, D. Sensor fault detection via multiscale analysis and dynamic PCA. Ind. Eng. Chem. Res.38(4),1489-1495 (1999)
    [9]Huang, Y., Gertler, J., and McAvoy, T. J. Sensor and actuator fault isolation by structured partial PCA with nonlinear extentions. J. Process Control 10(5), 459-469 (2000)
    [10]Wachs, A. and Lewin, D. R. Improved PCA methods for process disturbance and failure identification. AIChE J.45(8),1688-1700 (1999)
    [11]Chen, J. C., Lao, M., Lin, F. R. J., and Lu, M. J. Principal component analysis based control charts with memory effect for process monitoring. Ind. Eng. Chem. Res.40(6),1516-1527 (2001)
    [12]M. Manickam, M.P. Schwarz, J. Perry. CFD modeling of waste heat recovery boiler, Applied Mathematical Modeling 22,823-840(1998)
    [13]P.J. Stopford. Recent application of CFD modeling in the power generation and combustion industries, Applied Mathematical Modeling 26,351-374(2002)
    [14]J. Pyykonen, J. Jokiniemi. Modeling alkali chloride super heater deposition and its implications, Fuel Processing Technology 80,225-262(2003)
    [15]K. Soren, S. Kaer. Numerical modeling of a straw-fired grate boiler, Fuel 83, 1183-1190(2004)
    [16]M. Xu, J.L.T. Azevedo, M.G. Carvalho. Modeling of the combustion process and NOx emission in a utility boiler, Fuel 79,1611-1619 (2000)
    [17]I.R. Gran, M.C. Melaaen, B.F. Magnussen. Numerical simulation of local extinction effects in turbulent combustor flow of methane and air, in: Proceedings of 25th Symposium on Combustion, The Combustion Institute, 1994,pp.1283-1291
    [18]D.B. Spalding. Mixing and chemical reaction in steady confined turbulent flame, in:Proceedings of 13th Symposium on Combustion, The Combustion Institute,1971, pp.649-657
    [19]R. Siegel, J.R. Howell. Thermal Radiation Heat Transfer, Hemisphere Publication, Washington DC, USA,1992
    [20]G. Eason, B. Noble, and I. N. Sneddon. "On certain integrals of Lipschitz-Hankel type involving products of Bessel functions," Phil. Trans. Roy. Soc. London, vol. A247, pp.529-551, April 1955
    [21]J. Clerk Maxwell. A Treatise on Electricity and Magnetism,3rd ed., vol.2. Oxford:Clarendon,1892, pp.68-73
    [22]I. S. Jacobs and C. P. Bean. "Fine particles, thin films and exchange anisotropy," in Magnetism, vol. Ⅲ, G. T. Rado and H. Suhl, Eds. New York: Academic,1963, pp.271-350
    [23]K. Elissa. "Title of paper if known," unpublished
    [24]R. Nicole. "Title of paper with only first word capitalized," J. Name Stand. Abbrev., in press
    [25]Y. Yorozu, M. Hirano, K. Oka, and Y. Tagawa. "Electron spectroscopy studies on magneto-optical media and plastic substrate interface," IEEE Transl. J. Magn. Japan, vol.2, pp.740-741, August 1987 [Digests 9th Annual Conf. Magnetics Japan, p.301,1982].
    [26]M. Young. The Technical Writer's Handbook. Mill Valley, CA:University Science,1989
    [27]张贤达.非平稳信号分析与处理[M].北京:国防工业出版社,1997
    [28]International Electro technical Commission.Steam turbines-Part 1: Specifications, IEC60045-1:1991
    [29]National Development and Reform Commission. Specification of steam turbine for power plant. DL/T892-2004.Beijing:China Electric Power Press,2005.1
    [30]Standardization Administration of the People's Republic of China. Fixed power plant turbine specifications. GB/T5578-2007. Beijing:China Electric Power Press,2008.5
    [31]PENG Ze-ying. Status on condition and capacity code for steam turbine in China market. Thermal Turbines,2008, Vol.37 (1)
    [32]HU Zun-li. Discussions on output conception of steam turbines. China Power, 1997, Vol.30 (2)
    [33]彭玉华.小波包与工程应用[M].北京:科学出版社,2002
    [34]秦前清,杨宗凯.实用小波分析[M].西安:西安电子科技大学出版社,1994
    [35]杨福生.小波变换的工程分析与应用[M].北京:清华大学出版社,1996
    [36]陈祖斌.电磁式可控震源相位自适应控制及可控震源系统研究[D].长春:吉林大学,2002
    [37]何樵登,熊维纲.应用地球物理教程——地震勘探[M].北京:地质出版社,1991,223-225
    [38]张贤达.时间序列分析——高阶统计量方法[M].北京:清华大学出版社,1999,407-410
    [39]张子三.可控震源地震勘探中基于高阶统计量的信号处理技术研究[D].长春:吉林大学,2001
    [40]Muzzi, A., Lovegrove, K., et al. Techno Economic Analysis of a 10 MW Solar Thermal Power Plant Using Ammonia-Basis Thermoche mical Energy Storage, 2005(4):178-194
    [41]Michel, H. and Hahne, E. Cascaded Latent Heat Storage Process Heat. Proc. of 8th Int Symp.German,2007

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700