用户名: 密码: 验证码:
基于相控震源的地震波定向方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文分析了现有单个可控震源及组合震源地震方法存在的问题——信噪比差、分辨率低,通过研究组合震源产生的地震波的方向性,说明了观测系统接收到的地震波信号并不是地震波最强的方向,为此提出采用相控震源形成方向可控的定向地震波思想。根据对国内外研究现状的分析,可以看出研究基于相控震源的定向地震波方法具有一定的理论和实践意义。本文主要做了以下几方面的工作:
    首先研究了相控震源激发定向地震波的理论基础,在此基础上提出了适于相控震源定向地震波信号的相关检测技术,然后针对不同地层模型完成了相控地震信号的正演仿真计算,并对定向地震波信号的信噪比和分辨率进行了定量分析,最后利用自主研发的电磁驱动式相控震源,进行了野外实验,对比了单个、组合、相控震源地震结果,证明了基于相控震源的定向地震波方法在理论和实践上的可行性和优越性。
Phased-array vibrator system (PAVS) is able to generate directional seismicwave, which is helpful to improve reflected wave signal-to-noise ratio (SNR)and resolution. It is possible to increase exploration depth using PAVS. Sincethe direction of seismic wave can be controlled, PAVS will be efficient fordipping reflectors' seismic exploration. Based on the project ‘Seismic imagingtechnique of PAVS for underground survey', which is a project of ChineseHi-tech Research and Development Program ? project 863 (serial number:2002AA135240), the technique of directional seismic wave is studied in thispaper. It will be beneficial to popularize PAVS seismic method.To be brief, it illustrates why PAVS can form directional seismic wave intheory, and how to detect directional seismic wave signal in PAVS seism. Inthese conditions, seismic records in geophone groups for PAVS weresynthesized, and quantitative analysis shows the influence on SNR andresolution. Except for numeric simulation, it also showed seismic field testresults for single, combination array and PAVS. According to comparisons oftime profiles, the directional seismic wave exploration method is feasible andbest among three different sources.
    Main contents are following:
    It analyzes disadvantages of routine controllable vibrator seismicexploration: low SNR and resolution. By analyzing its beam direction,combination array source can form fixed-direction seismic wave, which isvertical to the earth's surface. According to the layout of observation system,geophone group receives seismic wave in non-main-beam exactly. Therefore, itmakes us to think whether source array can concentrate seismic wave on anydirection. This idea is called “phased array technique” in RADAR system. Inreview of the evolution of controllable vibrator and application of phased-arraymethod in seismic exploration and active monitoring for earth's lithosphere
    recently, it is reasonable and important to study phased-array method andinstruments.In general, this paper studied seismic beam-forming based on PAVS intheory, simulation, and field test.The first part is why and how PAVS can form directional wave. Amathematic model of PAVS is set at first. By model analysis, it is proved thatPAVS can generate directional wave when it uses monofrequency sweep-signal.Furthermore, we conclude that main-beam direction is not related to seismicwave's frequency;however, main-beam width is relevant to instantaneousfrequency. At last, it shows that PAVS can form directional wave when adjacentvibrators work one by one with equal time interval. This part is a theory basis ofPAVS seismic method.The second part is how PAVS improves reflected wave signal SNR andresolution by numerical simulation.Owing to directional seismic wave signal based on PAVS is different fromthat in single and combination sources, detection method for PAVS seismicsignal is studied specially in the paper. There are many methods such ascross-correlation, high-order spectrum and wavelet transform arithmetic, whichwere used in detecting seismic signal. Because of high efficiency in time andspace domain, cross-correlation is applied widely in seismic signal process. It isvery important to select reference signal for PAVS in cross-correlation detectiontechnique. That is not only relates to whether reflected signal can be detectedrightly, but also seismic signal's SNR. Reference signal expression incross-correlation detection is introduced by concept of equivalent source.Including some strong noises, synthetic seismograms for single, combinationarray and PAVS are compared by numerical simulation. According to thedetection results for three sources, it concludes that the technique ofcross-correlation for PAVS is feasible.By numerical simulation, synthesized seismogram of PAVS for one layerand multi-layer horizontal media model is shown. Based on PAVS' directioncoefficient, this simulation method studies how PAVS influenced reflectedwaves, which come from different seismometers or different reflectors. Toexplain the effect of PAVS seismic exploration, we synthesized seismograms insame media model and noise condition for single source, n -source arraycombination and n -unit PAVS. It shows that SNR of reflected waves in PAVS'profiles is the best one. Moreover, we studied how some factors includingtime-delay, distance between adjacent vibrators and number of vibratorsinfluenced PAVS seismic synthetic records and introduced some rules and
    methods of determine PAVS' parameters.According to profiles, SNR of reflected waves in PAVS' syntheticseismograms is the best one among three sources in figures. But this qualitativeanalysis is not enough, quantitative results will be necessary. The purpose ofusing PAVS is to improve the quality of seismic wave signal, including SNRand resolution. Therefore, it analyzed how much PAVS can improve signal'sSNR, and then explained the relation between SNR and resolution. Accordingto the definition of resolution, there are two main factors including seismicsignal bandwidth and SNR, which restrict seismic wave signal resolution. Whennoise in tested field is so strong, SNR is far less than 1 in single source model,SNR is more important for resolution. That is why PAVS can increaseresolution in strong noise condition. At last, we computed how much resolutionof PAVS increases than combination array sources model. According to boththeory and simulated results, PAVS plays an important role in high SNR andhigh resolution seismic signal acquisition.The last part is to prove that directional seismic wave based on PAVS ispossible by field test. We know, only simulated results is not enough, it isnecessary to do some field experiments with PAVS. Using hammer, singlesource, combination source array and PAVS, we got seismic records andprofiles in same tested field. Comparing these results, directional seismic waveexploration method is the best one in given tested conditions.In short, there are some achievements in this paper.1. To prove that PAVS with multi-frequency sweep signal can formdirectional seismic wave in theory, and two methods are proposed toform directional seismic wave, including real time phase control anddelay time interval control.2. To bring forward detecting directional seismic wave signal bycross-correlation technique.3. Having simulated directional seismic signal for PAVS and explainedhow PAVS improved SNR and resolution quantificationally in givenhorizontal multi-layer model.4. To prove feasibility and superiority by some field experiment for thedirectional seismic wave exploration method based on PAVS.
引文
1 杨勤勇.四维地震勘探技术新进展.勘探地球物理进展,2003,26(5-6):339-342.
    2 王庆海,徐明才.抗干扰高分辨率浅层地震勘探. 北京:地质出版社,1990, 27-40.
    3 俞寿朋.高分辨率地震勘探.北京:石油工业出版社,1994,1-34.
    4 陈祖斌.电磁式可控震源相位自适应控制及可控震源系统研究,吉林大学博士论文,2002.5,21-22.
    5 张子山.可控震源地震勘探中基于高阶统计量的信号处理技术研究,吉林大学博士论文,2001.5, 44-46.
    6 M. B. Widess. Quantifying resolving power of seismic systems. Geophysics, 1982,47(8 ):1161-1173.
    7 Kallweit R. S. and Wood L. C. The limits of resolution of zero-phase wavelets. GEOPHYSICS, 1982, 47 (7):1035-1046.
    8 任俞.地震勘探的高分辨率技术.北京:石油工业部石油科学技术情报研究所,1986,1-10.
    9 Nigel A. Anstey. vibroseis. New Jersey, USA: Prentice Hall PTR,1991.95-103.
    10 ARNOLD M. E. Beam forming with vibrator arrays. Geophisics, 1977, 42(07): 1321-1338.
    11 姜弢,林君,陈祖斌等.相控震源地震波定向技术.吉林大学学报(信息科学版),2004,22(3):181-184.
    12 Shiann-Jeng Yu, Ju-Hong Lee. The statistical performance of eigenspace-based adaptive array beamformers , Antennas and Propagation, IEEE Transactions on , 1996 ,44(5): 665-671.
    13 Shiann-Jeng Yu. and Ju-Hong Lee. Adaptive array beamforming based on an efficient technique ,Antennas and Propagation, IEEE Transactions on , 1996 ,44(8): 1094 –1101.
    14 Mosca S., Bilotti F., Toscano, A., and Vegni, L. A novel design method for Blass matrix beam-forming networks ,Antennas and Propagation, IEEE Transactions on , 2002,50(2): 225 ~232.
    15 Hatfield, J.V. and Chai, K.S. A beam-forming transmit ASIC for driving ultrasonic arrays, Sensors and Actuators, A: Physical, 2001, 92(1-3):273-279.
    16 Jain. A., Greve, D.W., and Oppenheim I.J. A MEMS Phased Array Transducer for Ultrasonic Flaw: Proceedings of IEEE Sensors, 2002, 1(1): 515-520.
    17 Morgan, S.P. Detection performance of a diffusive wave phased array: Applied Optics, 2004, 43(10): 2071-2078.
    18 Denno, S. and Ohira, T. Modified constant modulus algorithm for digital signal processing adaptive antennas with microwave analog beamforming ,Antennas and Propagation, IEEE Transactions on , 2002,50(6): 850 –857.
    19 Howell, J.M., Advanced phased array design for microwave landing systems: IEEE International Symposium on Phased Array Systems and Technology, 1996, 365-367.
    20 John M.Crawford, William E.N.Doty, and Milford R.Lee. Continuous Signal Seisgraphy. Geophysics, 1960, 25: 95-105.
    21 R.Ghose, Vincent Nijhof, Jan Brouwer, Yoshikazu Matsubara, Yasuhiro Kaida, and Toru Takahashi. Shallow to Very Shallow, High-Resolution Reflection Seismic Using a Portable Vibrator System. Geophysics, 1998, 63(4):1295-1309.
    22 陶知非.可控震源的现状与问题.石油物探装备,1995,5(1):11-26.
    23 陈祖斌,林君等,轻便浅层地震可控震源的研制,仪器仪表学报,2003,24(3):311-314.
    24 Chen Zubin, Wang Fufang, Lin Jun and Jiang Zhongjin. Time delay estimation of vibroseis chirp signal in urban noise using higher order statistics. International Conference on Signal Processing Proceeding (ICSP'04, Beijing, China) 2004,
    280-283.25 Chen Zubin, Lin Jun, Design for Vibrator Field Experiment Based on Vibrator-Earth System , Journal of Geoscientific Research in Northeast Asia, 2000,3(1): 107-113.
    26 施京,陈淑珍,邹炼等.时频方法在分析相控阵探地雷达正演数据中的应用.武汉大学学报(理学版).2003, 49 (5):645-648.
    27 赵云峰, 陈淑珍,肖伯勋.相控阵探地雷达数据的叠加速度分析.武汉大学学报(理学版).2004, 50(1): 123-126.
    28 Yoko Hasada ,Hiroyuki Kumagai and Mineo Kumazawa. “Autoregressive modeling of transfer functions in frequency domain to determine complex travel times ”Earth Planets Space , 2001 ,53 (1) : 3-11.
    29 廖成旺,庄灿涛,梁鸿森.精密可控常时震源系统(ACROSS)的初步实验.中国地震,2003,19(1):89-95.
    30 Kraus J D and Marhefka R J, Antennas.[M] New York: McGraw-Hill Companies, Inc., 2002, 3nd edn, 1-198.
    31 林昌禄,陈海,吴为公.近代天线设计.北京,人民邮电出版社,1990,646-715.
    32 林君.电磁驱动可控震源地震勘探原理及应用.北京,科学出版社.2004, 1-196.
    33 姜弢,林君, 陈祖斌等.可控震源相控系统的信号检测与时延估计.仪器仪表学报,2005,26(4): 336~339.
    34 姜弢,林君.相控震源与组合震源信号检测结果对比.控制与决策,2004,19(12): 1345-1348.
    35 姜弢,林君,陈祖斌,张林行. 相控震源对地震勘探分辨率的影响.第 21 届中国地球物理综合学术年会会议论文集《中国地球物理 2005》,2005.7,467.
    36 Adrian Garrod. Digital Modules for Phase Array Radar ,IEEE International Radar Conference,1995, 726-731.
    37 Agrawal, M.;Prasad, S.;Robust adaptive beamforming for wide-band, moving, and coherent jammers via uniform linear arrays ,Antennas and Propagation, IEEE Transactions on , 1999, 47(8): 1267 –1275.
    38 Albin K. Kerekes. Seismic array design by spatial convolution. Geophysics, 2001,66(4): 1195-1207.
    39 A.E.Carr, L.G.Cuthbert, and A.D.Olver. Digital Signal Processing for Target Detection in FMCW Radar, IEE Proc. 1981,128(5) :331-336.
    40 Aleksandar Dogandzic and Arye Nehorai, Estimating Evoked Dipole Response in Unknown Spatially Correlated Noise With EEG/MEG Arrays, IEEE Trans. on Signal Processing, 2000,48(1):13-22.
    41 A.S.Kayhan. “Difference equation representation of chirp signals and instantaneous frequency/ amplitude estimation”, IEEE Trans. Signal Processing, 1996,44(12): 2948-2958.
    42 B. M. Gurbuz. Signal Enhancement Of Vibratory Source Data In The Presence Of Attenuation, Geophysical Prospecting, 1972, 20(3):421-438.
    43 B. M. Gurbuz. Upsweep Signals with High Frequency Attenuation and Their Use in the Construction of Vibroseis Synthetic Seismograms. Geophysical Prospecting, 1982, 30(1): 865-869.
    44 Brillinger D B. Time Series: Data Analysis and Theory. 1980,31(3): 233-234.
    45 C.Herley and M. Vetterli. Wavelets and Recursive Filter Banks, IEEE Trans. On SP. 1993. 41(8): 77-78.
    46 David Hertz. Time Delay Estimation by Combining Efficient Algorithms and Generalized Cross-Correlation Methods, IEEE Trans. on ASSP, 1986, ASSP-34(1):1-7.
    47 David I and Havelock. Sensor array beamforming using random channel sampling: The aggregate beamformer. Journal of the Acoustical Society of America.2003,114(41): 1997-2006.
    48 David Middleton,Threshold Detection in Correlated Non-Gaussian Noise Fields, IEEE Trans on Information Theory, 1995,41(4): 976-1000.
    49 Davis, R.M.;Fante, R.L.;A maximum-likelihood beamspace processor for improved search and track ,Antennas and Propagation, IEEE Transactions on , 2001, 49(7): 1043 –1053.
    50 Denno, S.;Ohira, T.;Modified constant modulus algorithm for digital signal processing adaptive antennas with microwave analog beamforming ,Antennas and Propagation, IEEE Transactions on , 2002 , 50 (6): 850 –857.
    51 Doron Kletter and Hagit Messer, Suboptimal Detection of Non-Gaussian Signals by Third-Order Spectral Analysis, IEEE Trans.on A.S.S.P, 1990, 38(6): 901-909.
    52 Feldman and D.D. An analysis of the projection method for robust adaptive beamforming ,Antennas and Propagation, IEEE Transactions on , 1996,44 (7): 1023 –1030.
    53 G. A. Fabrizio, D. A. Gray.Experimental Evaluation of Adaptive Beamforming Methods and Interference Models for High Frequency Over-the-Horizon Radar Systems. Multidimensional Systems and Signal Processing. 2003, 14(1-3):241-263.
    54 Gadzow J A, Spectral Estimation: An Overdetermined Retional Model Equation Approach. Proc. IEEE, 1982, 70(9): 707-739.
    55 G.B.Giannakis, and M.K.Tsatsanis, “Signal detection and classification using matched filtering and higher order statistics”, IEEE Trans. Acoust., Speech, Signal Processing, 1990, ASSP-38(7):1284-1296.
    56 George V. Moustakides and John B.Thomas,Optimal Detection of a Weak Signal With Minimal Knowledge of Dependency, 1986, 32(1):97-879.
    57 Ghose, R., Nijhof, V., Brouwer, J., Matsubara, Y., Kaida, Y., and Takahashi,T. Shallow to Very Shallow, High-Resolution Reflection Seismic Using a Portable Vibrator System, Geophysics, 1998, 63(4):1295-1309.
    58 Goupillaud, P.L. Signal design in the Vibroseis technique. Geophysics. 1976, 41: 1291-1304.
    59 H. A. K. Edelmann and H. Werner, Combined Sweep Signals for Correlation Noise Suppression, Geophysical Prospecting, 1982, 30(6): 786-812.
    60 H. J. Chaloupka, X. Wang. A superdirective 3-element array for adaptive beamforming. Microwave and Optical Technology Letters. 2003, 36(6): 425-430.
    61 Ho, K. C, Ching, P . C, Chan, Y . C. Adaptive time delay estimation in noisy environments. Acoustics, Speech, and Signal Processing, 1991, 33(1):224-225.
    62 I. Daubechies, The Wavelet Transform: Time-Frequency Localization and Signal Analysis, IEEE Trans. On Information Theory, 1990. 5, 36(5): 442 -444.
    63 Jianliang Yang, Yunqi Liu.Tunable Chirped Fiber Grating Based Variable Time-Delay Network for Phased-Array Antenna Beamforming. 2003, 24(4):593-601.
    64 Jianliang Yang, Jianping Yao, Yunqi Liu, and Swee Chuan Tjin. Continuous true-time-delay beamforming employing a tunable multiwavelength fiber ring laser source with equally increased or decreased wavelength spacing. Optical Engineering.2003,
    42(1):239-244.
    65 Jinwei Feng, and Woon-Seng Gan, Active Noise Compression System, Circuit, System and Signal Processing, 1997, 17(6): 667-682.
    66 Joseph C. Hassab and Ronald E. Boucher, Optimum Estimation of Time Delay by a Generalized Correlator, IEEE Trans. on ASSP, 1979, ASSP-27(4): 373-380.
    67 Joseph. K. Schrodt. Techniques For Improving Vibroseis Data. Geophysics, 1987, 52(4): 469-482
    68 Ju-Hong Lee;Yung-Ting Lee;Robust adaptive array beamforming for cyclostationary signals under cycle frequency error ,Antennas and Propagation, IEEE Transactions on , 1999, 47(2): 233 –241.
    69 Karmakar, N.C.;Bialkowski, M.E.;Padhi, S.K.;Microstrip circular phased array design and development using microwave antenna CAD tools ,Antennas and Propagation, IEEE Transactions on , 2002 , 50 (7) : 944 –953.
    70 Katkovnik, V.;Gershman, A.B.;Performance study of the local polynomial approximation based beamforming in the presence of moving sources ,Antennas and Propagation, IEEE Transactions on , 2002, 50 (8): 1151 –1157.
    71 Kautz, G.M.;Phase-only shaped beam synthesis via technique of approximated beam addition ,Antennas and Propagation, IEEE Transactions on , 1999, 47(5) : 887 –894.
    72 Kessinger W. Illumination angel Compensation in Kirchhoff depth migration. Expanded Abstract of 74th Annual International SEG Meeting, 2004, 1071~1020
    73 Klauder,J.R.Prince, A. C. Darlington, W. J. Albersheim. The Theory And Design Of Chirp Radar. The Bell System Technical Journal, 1960, 39(4): 745-808
    74 Kohei Mori, Hiroyuki Arai. Study of active antenna receivers and calibration method for digital beamforming. Electronics & Communications in Japan, Part I: Communications (English translation of Denshi Tsushin Gakkai Ronbunshi). 2003, 86(11): 20-29.
    75 Kraft, U.R.;Gain and G/T of multielement receive antennas with active beamforming networks ,Antennas and Propagation, IEEE Transactions on , 2000, 48(12): 1818 –1829.
    76 Kurup, D.G.;Himdi, M.;Rydberg, A;Synthesis of uniform amplitude unequally spaced antenna arrays using the differential evolution algorithm. 2003, 51(9): 2210-2217.
    77 Lasse Amundsen;Estimation of source array signatures. Geophysics, 1993, 58(12): 1865-1869.
    78 Luo Mingqiu, Cao Jun, Xie Xiaobi, et al. Comparison of illumination analyses using one-way and full-way propagators. Expanded Abstract of 74th Annual International SEG Meeting, 2004, 67-70.
    79 Mao, Weijian, Gubbins, David. Simultaneous determination of time delays and stacking weights in seismic array beamforming [J]. Geophysics. 1995, 60(2):491-502.
    80 Mendel J M. Tutorial on higher-order statistics(spectra) in signal processing and system theory, theoretical results and some applications Proc IEEE, 1991,79(3):278-305.
    81 M.Frisch and H.Messer, The Use of Wavelet Transform in the Detection of Unknown Transient Signal, IEEE Trans. On Information Theory, 1992. 38(2): 32-34.
    82 Miura, R.;Tanaka, T.;Chiba, I.;Horie, A.;Karasawa, Y.;Beamforming experiment with a DBF multibeam antenna in a mobile satellite environment ,Antennas and Propagation, IEEE Transactions on , 1997 , 45(4): 707 –714.
    83 Mordechai Azaria and David Hertz, Time Delay Estimation by Generalized Cross Correlation Methods, IEEE Trans. on ASSP, 1984, ASSP-32(2): 280-285.
    84 Mosca, S.;Bilotti, F.;Toscano, A.;Vegni, L.;A novel design method for Blass matrix beam-forming networks IEEE Transactions on , 2002, 50(2 ): 225 –232.
    85 M.Sampietro, L.Fasoli and G.Ferrari, Spectrum Analyzer With Noise Reduction by Cross-Correlation Technique on Two Channels, Review of Scientific Instruments, 1999, 70, (5): 2520-2526.
    86 M.Z.Ikram, K.Abed-Meraim, and Y.Hua, “Estimation the parameters of chirp signals: an iterative approach”, IEEE Trans. Signal Processing, 1998, 46(12): 3436-3440.
    87 Nordholm, S.E. Claesson, I. Grbic, N. Performance limits in subband beamforming. IEEE Transactions on Speech and Audio Processing, 2003, 11(3): 193-203.
    88 N.Levanon and B.Getz, Comparison Between Linear FM and Phase-coded CW Radars, IEE Proc, -Radar, Sonar Navig., 1994, 141(4): 230-240.
    89 Petre Stoica and Mats Cedervall, Detection Tests for Array Processing in Unknown Correlated Noise Fields, IEEE Trans. on Signal Processing, 1997, 45(9): 2351-2362.
    90 Pierrel. Goupillaud, Signal Design In The“Vibroseis” System, Geophysics, 1976,41(6) : 1291-1304.
    91 P.M.Djuric and S.M.Kay, “Parameter estimation of chirp signal”, IEEE Trans. On Acoust., Speech, Signal Processing, 1990, ASSP-38(12):2118-2126.
    92 Randall K.Bahr, and James A.Bucklew, Minimax Estimation of Unknown Deterministic Signals in Colored Noise, IEEE Trans. on Information Theory, 1988,34(4): 632-641.
    93 Reust, K.D. Vibrator force control: how simple can it get? The Leading Edge, 1995,14(11):1129-1133.
    94 Richard J.Barton, and H.Vincent Poor,Signal Detection in Fractional Gaussian Noise, IEEE Trans. on Information Theory, 1988, 34(5): 45-46.
    95 Roiul, A Discrete – Time Multiresolution Theory, IEEE Trans. On SP. 1993, 41(12) :224-225.
    96 R.Ghose, Vincent Nijhof, Jan Brouwer, Yoshikazu Matsubara, Yasuhiro Kaida, and Toru Takahashi, Shallow to Very Shallow, High-Resolution Reflection Seismic Using a Portable Vibrator System, Geophysics, 1998, 63(4): 1295-1309.
    97 Ruvin A E,Weinberg L., Digital Multiple Beamforming Techniques for Radar. Electronics and Aerospace Systems Convention, Arlington (EASCON ) New York, Institute of Electrical and Electronics Engineers, Inc., 1978, 152-163.
    98 Schrodt, J.K. Techniques for improving vibroseis data. Geophysics. 1987, 52:469-482.
    99 Seong-Sik Jeon;Yuanxun Wang;Yongxi Qian;Tatsuo Itoh;A novel smart antenna system implementation for broad-band wireless communications ,Antennas and Propagation, IEEE Transactions on , 2002, 50(5) : 600 –606.
    100 Shiunn-Jang Chern;Chung-Yao Chang;Adaptive linearly constrained inverse QRD-RLS beamforming algorithm for moving jammers suppression ,Antennas and Propagation, IEEE Transactions on , 2002, 50(8): 1138 –1150.
    101 Shiann-Jeng Yu;Ju-Hong Lee;Adaptive array beamforming for cyclostationary signals ,Antennas and Propagation, IEEE Transactions on , 1996, 44(7): 943 –953.
    102 S. Kadambe et al, Applications of the Wavelet Transform in Pitch Detection of Speech Signals. IEEE Trans. On Information Theory. 1992. 38(2): 77-79.
    103 S. Kadambe et al, Applications of the Wavelet Transform in Pitch Detection of Speech Signals. IEEE Trans. On Information Theory. 1992. 38(2): 331-332.
    104 Smith,M.K., Noise Analysis and multiple seismometer theory:Geophysics, 1956,21:357
    105 Spencer, T. W.;Edwards, C. M. seismic wave attenuation in nonresolvable cyclic stratification [J]. Geophysics,1977,42(5):939-949.
    106 Steeple, D.W. Engineering and environmental geophysics at the millennium. Geophysics, 2001, 66(1): 31-35.
    107 Steer, D.N., Brown, L.D., Knapp, J.H., Barid, D.J. Comparison of explosive and vibroseis source energy penetration during COCORP deep seismic reflection profiling in Williston Basin. Geophysics. 1996, 61(1): 211-221.
    108 Stephen Hughes;Penny J. Barton;David Harrison;Exploration in the Shetland-Faeroe Basin using densely spaced arrays of ocean-bottom seismometers. Geophysics, 1998 63(2): 490-501.
    109 Steven Finette and Roger Oba. Horizontal array beamforming in an azimuthally anisotropic internal wave field. The Journal of the Acoustical Society of America.2003, 114(1): 131-144.
    110 Takanobu Nishiura, Ryousuke Nishioka. Multiple beamforming with source localization based on CSP analysis. Systems and Computers in Japan.2003, 34(5): 69-80.
    111 T.Collins and P.Atkins, Nonlinear Frequency Modulated Chirps For Active Sonar, IEE Proc, -Radar, Sonar Navig. 1999, 146(6): 312-316.
    112 Tencate James A. Beamforming on seismic interface waves with an array of geophones on the shallow sea floor. IEEE Journal of Oceanic Engineering.1995, 20(4): 300-310.
    113 Xie Xiao-Bi, Jin Shengwen, Wu Rushan. Wave Equation based illumination analysis. Expanded Abstract of 74th Annual International SEG Meeting, 2004, 933~936
    114 Venkatesh S.R., Polak D.R. Beamforming algorithm for distributed source localization and its application to jet noise [J]. AIAA Journal.2003, 41(7):1238-1246.
    115 V.C. Chen, Signal Detection and Estimation by Wavelet Transform, Beijing: Proc. of CIE on radar. 1991, 369 -373.
    116 Weijian Mao;David Gubbins;Simultaneous determination of time delays and stacking weights in seismic array beamforming. Geophysics, 1995, 60( 2): 491-502.
    117 Wu Ru-Shan, Luo mingqiu, Chen Shengchang, et al. Acquisition aperture correction in angel domain and true-amplitude imaging for wave equation migration. Expanded Abstract of 74th Annual International SEG Meeting, 2004, 937-940.
    118 Yao K. Beamforming performance of a randomly distributed sensor array system. IEEE Workshop on Signal Processing Systems, SiPS: Design and Implementation, Leicester, UK, 1997, 438-447.
    119 Yu Shengbao, Lin Jun, Zhang Zisan, The Study on the Frequency Characteristic of Portable High-Frequency Vibrator, The Fourth International Conference on Electronic Measurement & Instruments (Harbin, 1999) Conference Proceedings,1999,191-195 .
    120 Yuan-Hwang Chen;Ching-Tai Chiang;Adaptive beamforming using the constrained Kalman filter ,Antennas and Propagation, IEEE Transactions on , 1993, 41(11) : 1576 –1580.
    121 何樵登,熊维纲,应用地球物理教程--地震勘探,地质出版社,1991,1-100.
    122 李庆忠.走向精确的勘探道路-高分辨率地震勘探系统工程剖析.北京:石油工业出版社,1994,1-56.
    123 林君, 陈鹏程, 姜弢等.浅层地震探测的可控震源信号设计.地球物理学进展,2004,19(4):807~811.
    124 林君,陈祖斌,可控震源-大地耦合模型研究,中国学术期刊文摘,1999,5(6):811-812.
    125 林君,陈祖斌,电磁式大功率浅层地震可控震源系统,中国发明专利(申请号:01128147.2),2001.
    126 凌云.大地吸收衰减分析.2001,36(1):1-8.
    127 高军, 凌云,周兴元,牟永光. 时频域球面发散和吸收补偿.石油地球物理勘探.1996, 31(6): 856-866,905.
    128 辛可峰,李振春等.地层等效吸收系数反演. 石油物探. 2001, 40(4):14-20.
    129 陈祖斌,林君,可控震源扫描控制技术研究,计算机工程与应用,2002,38(7):241-243.
    130 陈祖斌、林君,浅层地震可控震源系统的设计,电子测量与仪器学报,2002,16(1):43-48.
    131 蒋忠进,林君,三阶累计量在可控震源地震勘探信号处理中的应用,系统工程与电子技术,2003,25(11):1431-1434.
    132 陈鹏程,林君,姜弢等. 相控可控震源系统扫描模块设计. 仪器仪表学报,2004,25(4):230-233.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700