用户名: 密码: 验证码:
中国西北地区三个古代人群的线粒体DNA研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国的西北地区是一个种族与文化多样性十分明显的地区,它是连接东亚文明与中亚、南亚、北亚乃至欧洲文明的重要纽带。自古以来这里就是多民族聚居的地方,对这一地区人群起源、混合及迁徙历史的研究一直是学术界十分关注的问题。本论文以我国西北地区三个古代人群的线粒体DNA为研究对象,来探讨早期西北地区人群的母系遗传结构及人群历史。
     喇家遗址位于青海省民和县,是一处新石器时代的史前遗存,其考古学文化为齐家文化。对喇家古人群的研究表明部分个体间存在一定的母系亲缘关系。单倍型类群的分析显示喇家古代居民的母系遗传谱系均为东亚特异性谱系,并且与现代汉族人群及藏缅语系人群均有较近的亲缘关系。
     另两个人群为新疆的圆沙古城古代人群和哈密天山北路人群,他们分别位于塔里木盆地和天山盆地。圆沙古城地处古丝绸之路的南线。其年代为西汉时期。圆沙古人群与现代中亚南部人群的遗传关系最近,并与印度河流域人群有较近的遗传关系。这与体质人类学的研究结果该人群属于印度-阿富汗类型相吻合。在与古代人群的比较中,圆沙古人群与察吾呼古人群的亲缘关系最近。系统发育及多维度分析表明圆沙古人群主要体现了早期欧亚大陆人群由西向东的迁徙事件。哈密天山北路墓地是青铜到铁器时代新疆东部的一处重要遗存,它连接着甘青地区与欧亚草原。通过对哈密古代人群与现代及古代相关人群的主成分及多维度分析显示哈密人群在遗传结构上受到北亚、东亚人群的影响,并与新疆古代的扎滚鲁克人群有最近的遗传距离。
     对于西北地区三个古代人群的线粒体DNA研究为揭示我国西北地区复杂的人群起源和融合过程提供了有价值的母系遗传信息。
Northwest region of China is a vast geographic area connecting East and West, an area extending from Shanxi, Ningxia, Qinghai and Gansu, far into the region of Xinjiang. Population migrations took place continually in this region throughout its history, and the inhabitants of this region were composed of admixed populations of various physical types, cultures, and languages.
     The Lajia site is located in the Guanting basin of the upper Yellow River, in Minhe county, Qinghai province, northwestern China. According to radiocarbon dating, the Lajia site is 3800-4000 years old. Archaeological studies have associated the Lajia site with the late period of the Qijia culture, a major culture that flourished during the late Neolithic Age to early Bronze Age in the Hexi Corridor, a major route leading to the central regions of the Yellow River. The Qijia culture belonged to the cultures of the Di-Qiang, an ancient tribe confederation in northwestern China. According to ethnological studies, the Di-Qiang population contributed to the development of the current Han and Tibeto-Burman (TB) speaking populations. In 2000, archaeologists working in the northeast part of the Lajia site discovered 16 human remains in two ruined houses, designated F3 and F4. Excavations at the site revealed that the cause of the death of the inhabitants was a sudden earthquake followed by a flood. The Lajia civilization ceased to exist after this natural disaster, so that the Lajia site is sometimes termed“the eastern Pompeii”by archaeologists. In the present study, we used mtDNA analysis to investigate the maternal relationships of the ancient inhabitants and their relationship to modern populations. The results provide valuable new insights into the familial relationships of the Lajia specimens as well as their relationship to modern Han and TB populations. MtDNA analysis reveals that the 14 subjects found in the Lajia site shared some close maternal kinships. However, the detection of different haplotypes in individuals within the same house excludes the possibility of a matrilineal social structure. All of the ancient sequences were identified as Asian haplogroups based on the sequence of the mtDNA HVI region and corresponding RFLP sites within mtDNA coding region. The mtDNA haplogroups B, C, D, M* and M10, that were detected in the ancient individuals demonstrate the specificity and continuity of part of the mitochondrial gene pool over several millennia in this location. The geographic distributions of these detected haplogroups in the modern Han and TB populations indicate that the ancient people that lived in Northwest China may contribute to the maternal gene pool of these modern populations, which is consistent with their ethnic history.
     The Yuansha site is located in the center of the Taklimakan Desert, in the downstream of the Keriyan River, Xinjiang Province, northwestern China. Archaeological studies show that the period of the Yuansha site is not later than the Western Han Dynasty. The Yuansha site is the oldest that has been discovered in the Taklimakan Desert to the present. Recently, the origin of the Tarim Basin population has come to be of great interest. At present, the archaeological evidence that supports the indigenous origin hypothesis is insufficient. It is widely acknowledged that three cultures from different regions contributed to the origin and development of the Tarim Basin civilization. One is nomadic culture from the Russo-Kazakh steppe, north of the Tarim Basin. The second influence is Eastern culture. The third influence oases culture is from west of the Tarim Basin and north Central Asia in the Bronze Age. The aim of this study is to investigate the genetic relationships between the Yuansha population and the present and ancient Eurasian populations, and to explore the origin and migration history of populations in the Tarim Basin as well as Central Asia. phylogenetic analysis reveals the branch of the Yuansha population is closest to the branch of the ancient Chawuhu population, and has a relatively short distance from the Tajikistan population (SHU) branch. Moreover, these three branches cluster with the branch of the Indus Valley populations. The Yuansha population branch, located between the branches of Europe and India, is closer to the latter. Compared with the North and East Asian branches, the Yuansha branch appears more closely aligned to the South Asian branch, occupying the position between the branches of South Asia and Europe. This indicates that the genetic contributions from Southwestern Asia to the ancient Yuansha population are relatively significant, as compared to East or North Asia. The MDS analysis shows how the populations can be grouped together according to their geographic distributions. Among ancient populations, the Yuansha has a closer affinity with the Chawuhu and Turfan popul- ations, while the genetic distance between the Yuansha and Yanghai is relatively grear. Compared with these modern populations, the Yuansha has a closer relationship with Tajikistan (SHU) and Uzbekistan (UZB), as well as with the populations in the Indus Valley, including the Baluchistan (BAL) and Karachi (PAT) populations. The ancient Yuansha population mainly reflects an early eastward population migration in Eurasia.
     Hami site is located in the east of Xinjiang, dationg back to Bronze and Iron age. Archaeological studies show that the archaeological culture of Hami site possessing both the east and the west components. The mtDNA lineage of Hami population is composed of Western and Eastern matrilines. Tajimas’D test and mismatch distribution analysis show that Hami population has experienced population expasion in recent time. The demographic analysis of haplogroups suggest that the populations of Northwest China, Sebiria and Central Asia have contributed to the mtDNA gene pool of Hami population. Principal component analysis show that compared to the other Central Asian popultions, Hami population was affected by the East Asian and North Asian populations distinctively. The genetic distance between Hami and Teleut populations was reletively close. Multiscall analysis reveals reletive close relationship of Hami and Zhagunluke populations. Of East Asian popultions, Lajia population had close affinity with Hami population, which provides the molecular data for their cultures affiliation.
     Above all, this study reveals the genetic structure of early popultions in Northwest China, and their relationships with other Eurasian populations. MtDNA study of the three Northwest populations of China provides valuble informatrion of the early population migration and admixture of this region.
引文
[1] Anderson S, Bankier A T, Barrell B G, et al. Sequence and organization of the human mitochondrial genome [J].Nature, 1981, 290: 457-465.
    [2] Andrews RM, Kubacka I, Chinnery PF, et al. Reanalysis and revision of the Cambridge reference sequence for human mitochondrial DNA [J].Nat Genet, 1999, 23:147.
    [3] Brown, W.M. Polymorphism in mitochondrial DNA of humans as revealed by restriction endonuclease analysis [J].Proc Natl Acad Sci USA, 1980, 77:3605–3609.
    [4] Cann RL, Stoneking M, Wilson AC. Mitochondrial DNA and human evolution [J].Nature, 1987, 325:31–36.
    [5] Templeton AR, Sing CF. A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping. IV. Nested analyses with cladogram uncertainty and recombination [J].Genetics,1993, 134:659-69.
    [6] Templeton AR. Haplotype trees and modern human origins [J].Year book Phys Anthropol, 2005, 48:33–59.
    [7] Vigilant L, Stoneking M, Harpending H, et al. African populations and the evolution of human mitochondrial DNA [J].Science, 1991, 253:1503-1507.
    [8] Finnila S, Lehtonen MS, Majamaa K. Phylogenetic network for European mtDNA [J].Am J Hum Genet, 2001, 68:1475–1484.
    [9] Herrnstadt C, Elson JL, Fahy E, et al. Reduced-median-network analysis of complete mitochondrial DNA coding-region sequences for the major African, Asian, and European haplogroups [J].Am J Hum Genet, 2002, 70:1152–1171.
    [10] Achilli A, Rengo C, Magri C et al. The molecular dissection of mtDNA haplogroup H confirms that the Franco-Cantabrian glacial refuge was a major source for the European gene pool [J].Am J Hum Genet, 2004, 75:910–918.
    [11] Coble MD, Just RS, O’Callaghan JE, et al. Single nucleotide polymorphisms over the entire mtDNA genome that increase the power of forensic testing in Caucasians [J].Int J Legal, 2004, 118:137–146.
    [12] Loogvali EL, Roostalu U, Malyarchuk BA, et al. Disunitinguniformity: a piedcladisticcanvasof mtDNA haplogroup H in Eurasia [J].Mol Biol Evol, 2004, 21:2012–2021.
    [13] Palanichamy Mg, Sun C, Agrawal S et al. Phylogeny of mtDNA macrohaplogroup N in India based on complete sequencing: implicationsfor the peopling of South Asia [J].Am J Hum Genet, 2004, 75:966–978.
    [14] Quintana-Murci L, Chaix R, Wells S, et al. Where West meets East: the complex mtDNA landscape of the Southwest and Central Asian corridor [J].Am J Hum Genet, 2004, 74:827–845.
    [15] Quintáns B, Alvarez-Iglesias V, Salas A, et al. Typingof mitochondrial DNA coding region SNPs of forensic and anthropological interest using SNaPshot minisequencing [J].Forensic Sci Int, 2004, 140:251–257.
    [16] Tambets K, Rootsi S, Kivisild T, et al. The western and eastern roots of the Saami—the story of genetic outliers told by mitochondrial DNA and Y chromosomes [J].Am J Hum Genet, 2004, 74:661–682.
    [17] Friedlaender J, Schurr T, Gentz F, et al. Expanding southwest Pacific mitochondrial haplogroups P and Q [J].Mol Biol Evol, 2005, 22:1506–1517.
    [18] Merriwether DA, Hodgson JA, Friedlaender FR, et al. Ancient mitochondrial M haplogroups identified in the Southwest Pacific [J].Proc Natl Acad Sci USA, 2005, 102:13034–13039.
    [19] Trejaut JA, KivisildT, Loo JH, et al. Traces of archaic mitochondrial lineages persist in Austronesian-speaking Formosan populations [J].PloS Biol, 2005, 3:247.
    [20] Kivisild T, Shen P, Wall DP, et al. The role of selection in the evolution of human mitochondrial genomes [J].Genetics, 2006, 172:373–387.
    [21] Just RS, Diegoli TM, Saunier JL, et al. Complete mitochondrial genome sequences for 265 African American and U.S. "Hispanic" individuals [J].Forensic Sci Int Genet, 2008, 2:45-48.
    [22] Nohira C, Maruyama S, Minaguchi K. Phylogenetic classification of Japanese mtDNA assisted by complete mitochondrial DNA sequences [J].Int J Legal Med, 2008, [Epub ahead of print].
    [23] Brisighelli F, Capelli C, Alvarez-Iglesias V, et al. The Etruscan timeline: a recentAnatolian connection [J].Eur J Hum Genet, 2008, [Epub ahead of print].
    [24] Ermini L, Olivieri C, Rizzi E, et al. Complete mitochondrial genome sequence of the Tyrolean Iceman [J].Curr Biol, 2008, 18:1687-1693.
    [25] van Oven M, Kayser M. comprehensive phylogenetic tree of global human mitochondrial DNA variation [J].Hum Mutat, 2009, 30:386-394.
    [26] Bandelt HJ, Forster P, Sykes BC, et al. Mitochondrial portraits of human populations using median networks [J].Genetics, 1995, 141:743–753.
    [27] Bandelt HJ, Forster P, R?hl A. Median-joining networks for inferring intraspecific phylogenies [J].Mol Biol Evol, 1999, 16:37-48.
    [28] Bandelt HJ, Macaulay V, Richards M. Human Mitochondrial DNA and the Evolution of Homosapiens. Springer-Verlag, Berlin Heidelberg, 2006.
    [29] Avise JC. Phylogeography: The history and formation of species. Cambridge: Harvard University Press, 2000:1-37.
    [30] Torroni A, Schurr TG, Cabell MF, et al. Asian affinities and continental radiation of the four founding Native American mtDNAs [J].Am J Hum Genet, 1993, 53:563–590.
    [31] Torroni A, Miller JA, Moore LG, et al. Mitochondrial DNA analysis in Tibet: implicationsfor the origin of the Tibetan population and its adaptation to high altitude [J].Am J Phys Anthropol, 1994, 93:189–199.
    [32] Richards MB, Macaulay VA, Bandelt HJ, et al. Phylogeography of mitochondrial DNA in western Europe [J].Ann Hum Genet, 1998, 62:241–260.
    [33] van Oven M, Kayser M. Updated Comprehensive Phylogenetic Tree of Global Human Mitochondrial DNA Variation [J]. Hum Mutat, 2009, 30(2):E386-94.
    [34] SoodyallH, Jenkins T. Mitochondrial DNA polymorphisms in Khoisan populations from southern Africa [J].Ann Hum Genet, 1992, 56:315–324.
    [35] Bandelt HJ, Forster P. The myth of bumpy hunter-gatherer mismatch distributions [J].Am J Hum Genet, 1997, 61:980–983.
    [36] Watson E, Forster P, Richards M, et al. Mitochondrial footprints of human expansions in Africa [J].Am J Hum Genet, 1997, 61:691–704.
    [37] Chen YS, Olckers A, Schurr TG, et al. mtDNA variation in the South African Kung and Khwe—and their genetic relationships to other African populations[J].Am J Hum Genet 2000, 66:1362–1383.
    [38] Pereira L, Macaulay V, Torroni A, et al. Prehistoricand historic traces in the mtDNA of Mozambique: insights into the Bantu expansions and the slave trade [J].Ann Hum Genet, 2001, 65:439–458.
    [39] Salas A, Richards M, DelaFe T, et al. The making of the African mtDNA landscape [J].Am J Hum Genet, 2002, 71:1082–1111.
    [40] Kivisild T, Reidla M, Metspalu E, et al. Ethiopian mitochondrial DNA heritage: tracking gene flows across and around the Strait of Tears [J].Am J Hum Genet, 2004, 75:752–770.
    [41] Graven L, Passarino G, Semino O, et al. Evolutionary correlation between control region sequence and restriction polymorphisms in the mitochondrial genome of a large Senegalese Mandenka sample [J].Mol Biol Evol, 1995, 12:334–345.
    [42] Rando JC, Pinto F, González AM, et al. Mitochondrial DNA analysis of northwest African populations reveals genetic exchanges with European, near-eastern, and sub-Saharan populations [J].Ann Hum Genet, 1998, 62:531–550.
    [43] Rosa A, Brehm A, Kivisild T, et al. MtDNA profile of West Africa Guineans: towards a better understanding of the Senegambia region [J].Ann Hum Genet, 2004, 68:340–352.
    [44] Stevanovitch A, Gilles A, Bouzaid E, et al. Mitochondrial DNA sequence diversity in a sedentary population from Egypt [J].Ann Hum Genet, 2004, 68:23–39.
    [45] Alves-Silva J, da Silva Santos M, Guimaraes PE, et al. The ancestry of BrazilianmtDNA lineages [J].Am J Hum Genet, 2000, 67:444–461.
    [46] Bandelt H-J, Alves-Silva J, Guimaraes PE, et al. Phylogeography of the human mitochondrial haplogroup L3e: a snapshot of African prehistory and Atlantic slave trade [J].Ann Hum Genet, 2001, 65:549–563.
    [47] Chen YS, Torroni A, Excoffier L, et al. Analysis of mtDNA variation in African populations reveals the most ancient of all human continent-specific haplogroups [J].Am J Hum Genet, 1995, 57:133–149.
    [48] Pereira L, Dupanloup I, Rosser ZH, et al. Y-chromosome mismatch distributionsin Europe [J].Mol Biol Evol, 2001, 18:1259–1271.
    [49] Soodyall H, Vigilant L, Hill AV, et al. mtDNA control-region sequence variation suggests multiple independent origins of an Asian-specific 9-bp deletion in sub-Saharan Africans [J].Am J Hum Genet, 1996, 58:595–608.
    [50] Mishmar D, Ruiz-Pesini E, Golik P, et al. Natural selection shaped regional mtDNA variation in humans [J].Proc Natl Acad Sci USA, 2003, 100:171–176.
    [51] Maca-Meyer N, González AM, Larruga JM, et al. Major genomic mitochondrial lineages delineate early human expansions [J].BMC Genet, 2001, 2:13.
    [52] Tanaka M, Cabrera VM, González AM, et al. Mitochondrial Genome Variation in Eastern Asia and the Peopling of Japan [J].Genome Res, 2004, 14(10A):1832-1850.
    [53] Kivisild T, Bamshad MJ, Kaldma K, et al. Deep common ancestry of Indian and western-Eurasian mitochondrial DNA lineages [J].Curr Biol, 1999, 9:1331–1334.
    [54] Kivisild T, Rootsi S, Metspalu M, et al. The genetic heritage of the earliest settlers persists both in Indian tribal and caste populations [J].Am J Hum Genet, 2003, 72:313–332.
    [55] Metspalu M, Kivisild T, Metspalu E, et al. Most of the extant mtDNA boundaries in South and Southwest Asia were likely shaped during the initial settlement of Eurasia by anatomically modern humans [J].BMC Genet, 2004, 5:26.
    [56] Kivisild T, Kaldma K, Metspalu M, et al. The place of the Indian mitochondrial DNA variants in the global network of maternal lineages and the peopling of the Old World. In: Papiha SS, Deka R, Chakraborty R (eds) Genomic diversity. Kluwer/Plenum, Dordrecht, 1999:135–152.
    [57] Comas D, Plaza S, Wells RS, et al. Admixture, migrations, and dispersals in Central Asia: evidence from maternal DNA lineages [J].Eur J Hum Genet, 2004, 12:495–504.
    [58] Derenko MV, Grzybowski T, Malyarchuk BA, et al. Diversity of mitochondrial DNA lineages in south Siberia [J].Ann Hum Genet, 2003, 67:391–411.
    [59] Forster P, Torroni A, Renfrew C, et al. Phylogenetic star contraction applied to Asian and Papuan mtDNA evolution [J].Mol Biol Evol, 2001, 18:1864–1881.
    [60] Ingman M, Gyllensten U. Mitochondrial genome variation and evolutionaryhistory of Australian and New Guinean aborigines [J].Genome Res, 2003, 13:1600–1606.
    [61] Donoghue HD, Marcsik A, Matheson C, et al. Co-infection of Mycobacterium tuberculosis and Mycobacterium leprae in human archaeological samples:a possible explanation for the historical decline of leprosy [J].Proc Biol Sci, 2005, 272:389–394.
    [62] Hofreiter M, Serre D, Poinar HN, et al. Ancient DNA [J].Nat Rev Genet, 2001, 2: 353–359.
    [63] Willerslev E, Cooper A. Ancient DNA [J].Proc Biol Sci, 2005, 272:3–16.
    [64] Lambert DM, Ritchie PA, Millar CD, et al. Rates of evolution in ancient DNA from Adélie penguins [J].Science, 2002, 295:2270–2273.
    [65] Willerslev E, Cappellini E, Boomsma W, et al. Ancient biomolecules from deep ice cores reveal a forested southern Greenland [J].Science, 2007, 317:111–114.
    [66] Higuchi R, Bowman B, Freiberger M, et al. DNA sequences from the quagga, an extinct member of the horse family [J].Nature, 1984, 312:282–284.
    [67] Mullis KB, Faloona FA. Specific synthesis of DNA invitro via a polymerase-catalyzed chain reaction [J].Methods Enzymol, 1987, 155:335–350.
    [68] P??bo S, Poinar H, Serre D, et al. Genetic analyses from ancient DNA [J].Annu Rev Genet, 2004, 38:645–679.
    [69] Cano RJ, Poinar HN, Pieniazek NJ, et al. Amplification and sequencing of DNA from a 120–135-million-year-old weevil [J].Nature, 1993, 363:536–538.
    [70] DeSalle R, Gatesy J, Wheeler W, et al. DNA sequences from a fossil termite in Oligomiocene amber and their phylogenetic implications [J].Science, 1992, 257:1933–1936.
    [71] Sidow A, Wilson AC, P??bo S. Bacterial DNA in Clarkia fossils. Philos [J].Trans R Soc Lond B Biol Sci, 1991, 333:429–432.
    [72] Woodward SR, Weyand NJ, Bunnell M. DNA sequence from Cretaceous period bone fragments [J].Science, 1994, 266:1229–1232.
    [73] Shapiro B, Drummond AJ, Rambaut A, et al. Rise and fall of the Beringian steppe bison [J].Science, 2004, 306:1561–1565.
    [74] Jaenicke-Després V, Buckler ES, Smith BD, et al. Early allelic selection in maizeas revealed by ancient DNA [J].Science, 2003, 302:1206–1208.
    [75] Poinar H, Kuch M, McDonald G, et al. Nuclear gene sequences from a late pleistocene sloth coprolite [J].Curr Biol, 2003, 13:1150–1152.
    [76] Bunce M, Worthy TH, Ford T, et al., Extreme reversed sexual size dimorphism in the extinct New Zealand moa Dinornis [J].Nature, 2003, 425:172–175.
    [77] Greenwood A, Capelli C, Possnert G, et al. Nuclear DNA Sequences from Late Pleistocene Megafauna [J].Mol Biol Evol, 1999, 16:1466–1473.
    [78] Huynen L, Millar CD, Scofield RP, et al. Nuclear DNA sequences detect species limits in ancient moa [J].Nature, 2003, 425:175–178.
    [79] Cooper A, Lalueza-Fox C, Anderson S, et al. Complete mitochondrial genome sequences of two extinct moas clarify ratite evolution [J].Nature, 2001, 409:704–707.
    [80] Haddrath O, Baker AJ. Complete mitochondrial DNA genome sequences of extinct birds:ratite phylogenetics and the vicariance biogeography hypothesis [J].Proc R Soc Lond B: Biol Sci, 2001, 268:939–945.
    [81] Krause J, Dear PH, Pollack JL, et al. Multiplex amplification of the mammoth mitochondrial genome and the evolution of Elephantidae [J].Nature, 2006, 439:724–727.
    [82] Poinar HN, Schwarz C, Qi J, et al. Metagenomics to paleogenomics: Large-scale sequencing of mammoth DNA [J].Science, 2006, 311:392–394.
    [83] Rogaev EI, Moliaka YK, Malyarchuk BA, et al. Complete mitochondrial genome and phylogeny of Pleistocene Mammoth Mammuthus primigenius [J].PloS Biol, 2006, 4:73.
    [84] Margulies M, Egholm M, Altman WE, et al. Genome sequencing in microfabricated high-density picolitre reactors [J].Nature, 2005, 437:376–380.
    [85] Noonan JP, Hofreiter M, Smith D, et al. Genomic sequencing of Pleistocene cave bears [J].Science, 2005, 309:597–599.
    [86] Green RE, Krause J, Ptak SE, et al. Analysis of one million base pairs of Neanderthal DNA [J].Nature, 2006, 444:330–336.
    [87] Noonan JP, Coop G, Kudaravalli S et al. Sequencing and analysis of Neanderthal genomic DNA [J].Science, 2006, 314:1113–1118.
    [88] Roempler H, Rohland N, Lalueza-Fox C, et al. Nuclear gene indicates coat-color polymorphismin mammoths [J].Science, 2006, 313:62.
    [89] Geigl, EM. On the circumstance surrounding the preservation and analysis of very old DNA [J].Archaeometry, 2002, 44:337–342.
    [90] Hay JM, Subramanian S, Millar CD, et al. Rapid molecular evolution in a living fossil [J].Trends Genet, 2008, 24:106–109.
    [91] P??bo S. Ancient DNA: extraction, characterization, molecular cloning, and enzymatic amplification [J].Proc Natl Acad Sci USA, 1989, 86:1939–1943.
    [92] Wandeler P, Smith S, Morin PA, et al. Patterns of nuclear DNA degeneration over time–a case study in historic teeth samples [J].Mol Ecol, 2003, 12:1087–1093.
    [93] Lindahl, T. Instability and decay of the primary structure of DNA [J].Nature, 1993, 362:709–715.
    [94] Ritchie PA, Millar CD, Gibb GC, et al. Ancient DNA enables timing of the Pleistocene origin and Holocene expansion of two adélie penguin lineages in Antarctica [J].Mol Biol Evol, 2004, 21:240–248.
    [95] H?ss M, Jaruga P, Zastawny TH, et al. DNA damage and DNA sequence retrieval from ancient tissues [J].Nucleic Acids Res, 1996, 24:1304–1307.
    [96] Binladen J, Wiuf C, Gilbert MT, et al. Assessing the fidelity of ancient DNA sequences amplified from nuclear genes [J].Genetics, 2006, 172:733–741.
    [97] Gilbert MT, Hansen AJ, Willerslev E, et al. Characterization of genetic miscoding lesions caused by postmortem damage [J].Am J Hum Genet, 2003, 72:48–61.
    [98] Briggs AW, Stenzel U, Johnson PL, et al. Patterns of damage in genomic DNA sequences from a Neandertal. Proc Natl Acad Sci USA, 2007, 104:14616–14621.
    [99] Brotherton P, Endicott P, Sanchez JJ, et al. Novel high-resolution characterization of ancient DNA reveals C > U-type base modification events as the sole cause of post mortem miscoding lesions [J].Nucleic Acids Res, 2007, 35:5717–5728.
    [100] Gilbert MT, Tomsho LP, Rendulic S, et al. Whole-genome shotgun sequencing ofmitochondria from ancient hair shafts [J].Science, 2007, 317:1927–1930.
    [101] Hansen A, Willerslev E, Wiuf C, et al. Statistical evidence for miscoding lesions in ancient DNA templates [J].Mol Biol Evol, 2001, 18:262–265.
    [102] Stiller M, Green RE, Ronan M, et al. Patterns of nucleotide misincorporationsduring enzymatic amplification and direct large-scale sequencing of ancient DNA [J]. Proc Natl Acad Sci USA, 2006, 103:13578–13584.
    [103] Shinoda K, Adachi N, Guillen S, et al. Mitochondrial DNA analysis of ancient Peruvian highlanders [J]. Am J Phys Anthropol, 2006, 131(1):98-107.
    [104] Keyser-Tracqui C, Crubézy E, Ludes B. Nuclear and Mitochondrial DNA Analysis of a 2,000-Year-Old Necropolis in the Egyin Gol Valley of Mongolia [J]. Am J Hum Genet, 2003, 73(2): 247–260.
    [105] Keyser-Tracqui C, Crubézy E, Pamzsav H, et al. Population origins in Mongolia: genetic structure analysis of ancient and modern DNA [J]. Am J Phys Anthropol, 2006, 131(2):272-81.
    [106] Beja-Pereira A, Caramelli D, Lalueza-Fox C, et al. The origin of European cattle: evidence from modern and ancient DNA [J]. Proc Natl Acad Sci USA, 2006, 103(21):8113-8118.
    [107] Calvignac S, Hughes S, Tougard C, et al. Ancient DNA evidence for the loss of a highly divergent brown bear clade during historical times [J]. Mol Ecol, 2008, 17(8):1962-1970.
    [108] Shapiro B, Drummond AJ, Rambaut A, et al. Rise and fall of the Beringian steppe bison [J]. Science, 2004, 306(5701):1561-1565.
    [109] Lydolph MC, Jacobsen J, Arctander P, et al. Beringian paleoecology inferred from permafrost-preserved fungal DNA [J]. Appl Environ Microbiol, 2005, 71(2):1012-1017.
    [110] Thomas RH, Schaffner W, Wilson AC, et al. DNA phylogeny of the extinct marsupial wolf [J]. Nature, 1989 , 340(6233):465-467.
    [111] Paxinos EE, James HF, Olson SL, et al. mtDNA from fossils reveals a radiation of Hawaiian geese recently derived from the Canada goose [J]. Proc Natl Acad Sci USA, 2002, 99(3):1399-1404.
    [112] Nakano M, Komatsu J, Matsuura S, et al. Single-molecule PCR using water-in-oil emulsion [J]. J Biotechnol, 2003, 102:117–124.
    [113] Dressman D, Yan H, Traverso G, et al. Transforming single DNA molecules into fluorescent magnetic particles for detection and enumeration of genetic variations [J]. Proc Natl Acad Sci USA, 2003, 100:8817–8822.
    [114] Ronaghi M, Uhlén M, Nyrén P. A sequencing method based on real-time pyrophosphate [J]. Science, 1998, 281:363–365.
    [115] Ju J, Kim DH, Bi L, et al. Four-color DNA sequencing by synthesis using cleavable fluorescent nucleotide reversible terminators [J]. Proc Natl Acad Sci USA, 2006, 103: 19635–19640.
    [116] Mitchelson KR. New High Throughput Technologies for DNA Sequencing and Genomics. Capitalbio Corporation, Beijing, China, 2007:1-20.
    [117] Johnson SS, Hebsgaard MB, Christensen TR, et al. Ancient bacteria show evidence of DNA repair [J]. Proc. Natl Acad Sci USA, 2007, 104:14401–14405.
    [118] Venter JC, Remington K, Heidelberg JF, et al. Environmental genome shotgun sequencing of the Sargasso Sea [J]. Science, 2004, 304:66–74.
    [119] Turnbaugh PJ, Ley RE, Mahowald MA, et al. An obesity-associated gut microbiome with increased capacity for energy harvest [J]. Nature, 2006, 444:1027–1031.
    [120] Gill SR, Pop M, Deboy RT, et al. Metagenomic analysis of the human distal gut microbiome [J]. Science, 2006, 312:1355–1359.
    [121] d'Abbadie M, Hofreiter M, Vaisman A, et al. Molecular breeding of polymerases for amplification of ancient DNA [J]. Nat Biotechnol, 2007, 25:939–943.
    [122] Gloeckner C, Sauter KB, Marx A. Evolving a thermostable DNA polymerase that amplifies from highly damaged templates [J]. Angew Chem Int Ed Engl, 2007, 46:3115–3117.
    [123] Loreille OM, Diegoli TM, Irwin JA, et al. High efficiency DNA extraction from bone by total demineralization [J]. Forensic Sci Int Genet, 2007, 1(2):191-5.
    [124] Kiesslich J, Radacher M, Neuhuber F, et al. On the use of nitrocellulose membranes for dialysis-mediated purification of ancient DNA fromhuman bone and teeth extracts [J]. Ancient Biomolecules, 2002, 4:79–87.
    [125] Haak W, Forster P, Bramanti B, et al. Ancient DNA from the first European farmers in 7500-year-old Neolithic sites [J]. Science, 2005, 310:1016-1018.
    [126] Sampietro ML, Lao O, Caramelli D, et al. Palaeogenetic evidence supports a dual model of Neolithic spreading into Europe [J]. Proc Biol Sci, 2007, 274(1622):2161-2167.
    [127] Ermini L, Olivieri C, Rizzi E, et al. Complete mitochondrial genome sequence of the Tyrolean Iceman [J]. Curr Biol, 2008, 18(21):1687-1693.
    [128] Caramelli D, Milani L, Vai S, et al. A 28,000 Years Old Cro-Magnon mtDNA Sequence Differs from All Potentially Contaminating Modern Sequences [J]. PLoS ONE, 2008, 3(7):e2700.
    [129] T?m?ry G, Csányi B, Bogácsi-SzabóE, et al. Comparison of Maternal Lineage and Biogeographic Analyses of Ancient and Modern Hungarian Populations [J]. Am J Phys Anthropol, 2007, 134(3):354-368.
    [130] Melchior L, Kivisild T, Lynnerup N, et al. Evidence of Authentic DNA from Danish Viking Age Skeletons Untouched by Humans for 1,000 Years [J]. PLoS ONE, 2008, 3(5):e2214.
    [131] Gamba C, Fernandez E, Oliver A, et al. Population genetics and DNA preservation in ancient human remains from Eastern Spain [J]. Forensic Science International, 2008, Genetics Supplement Series:1462–464.
    [132] Kemp BM, Malhi RS, McDonough J, et al. Genetic Analysis of Early Holocene Skeletal Remains From Alaska and its Implications for the Settlement of the Americas [J]. Am J Phys Anthropol, 2007, 132(4):605-621.
    [133] Malhi RS, Kemp BM, Eshleman JA, et al. Mitochondrial haplogroup M discovered in prehistoric North Americans [J]. Journal of Archaeological Science, 2007, 34:642-648.
    [134] Shook BA, Smith DG. Using Ancient mtDNA to Reconstruct the Population History of Northeastern North America [J]. Am J Phys Anthropol, 2008, 137(1):14-29.
    [135] Fedorova SA, Stepanov AD, Adoian M, et al. Phylogenetic analysis of ancient mitochondrial DNA lineages of human remains found in Yakutia. Mol Biol, 2008, 42(3):445-453.
    [136] Keyser C, Romac M, Bouakaze C. Tracing back ancient south Siberian population history using mitochondrial and Y-chromosome SNPs [J]. Forensic Science International, 2008, Genetics Supplement Series 1:343–345.
    [137] Ricaut FX, Bellatti M, Lahr MM. Ancient Mitochondrial DNA From Malaysian Hair Samples:Some Indications of Southeast Asian Population Movements [J].Am J Hum Biol, 2006, 18(5):654-667.
    [138] Lertrit P, Poolsuwan S, Thosarat R, et al. Genetic history of Southeast Asian populations as revealed by ancient and modern human mitochondrial DNA analysis [J]. Am J Phys Anthropol, 2008, 137(4):425-440.
    [139] Adachi N, Shinoda K, Umetsu K, et al. Mitochondrial DNA Analysis of Jomon Skeletons From the Funadomari Site, Hokkaido, and Its Implication for the Origins of Native American [J]. Am J Phys Anthropol, 2009, 138(3):255-265.
    [140] Lee HY, Yoo JE, Park MJ, et al. Genetic characterization and assessment of authenticity of ancient Korean skeletal remains [J]. Hum Biol, 2008, 80(3):239-250.
    [141] Xu Z, Zhang F, Xu B, et al. Mitochondrial DNA Evidence for a Diversified Origin of Workers Building Mausoleum for First Emperor of China [J]. PLoS ONE, 2008, 3(10):e3275.
    [142] Wang H, Ge B, Mair VH, et al. Molecular Genetic Analysis of Remains From Lamadong Cemetery, Liaoning, China [J]. Am J Phys Anthropol, 2007, 134(3):404-411.
    [143] Fu Y, Xie C, Xu X, et al. Ancient DNA Analysis of Human Remains From the Upper Capital City of Kublai Khan [J]. Am J Phys Anthropol, 2009, 138(1):23-29.
    [144] Xie Chengzhi, Li Chunxiang, Cui Yinqiu, et al. The easternmost region in which the oldest European specific lineage had arrived in Iron Age China [J]. Proc Biol Sci, 2007, 274(1618):1597-1601.
    [145] Xie Chengzhi, Li Chunxiang, Cui Yinqiu, et al. Mitochondrial DNA analysis of ancient Sampula population in Xinjiang [J]. Progress in Natural Science, 2007, 17(8): 56-62.
    [146]朱泓.中国西北地区的古代种族[J].考古与文物,2006,5:60-65.
    [147] Comas D, Calafell F, Mateu E, et al. Trading genes along the Silk Road:mtDNA sequences and the origin of Central Asian populations [J]. Am J Hum Genet, 1998, 63:1824-38.
    [148] Calafell F, Comas D, Pe′rez-Lezaun, et al. Genetics and population history of Central Asia. In Archaeogenetics: DNA and the population prehistory of Europe.Cambridge: McDonald Institute for Archaeological Research., 2000:259–266.
    [149] Yao YG, LüXM, Luo HR, et al. Gene admixture in the Silk Road region of China: Evidence from mtDNA and melanocortin 1 receptor polymorphism [J]. Genes Genet Syst, 2000, 75:173-17.
    [150] Yang L, Tan S, Yu H, et al. Gene admixture in ethnic populations in upper part of Silk Road revealed by mtDNA polymorphism [J]. Sci China C Life Sci, 2008, 51(5):435-444.
    [151]崔银秋,周慧.从MtDNA研究角度看新疆地区古代居民遗传结构的变化[J].中央民族大学学报, 2004,31(5): 34-36.
    [152]谢承志,刘树柏,崔银秋等.新疆吾呼沟古代居民线粒体DNA序列多态性分析.吉林大学学报(理学版), 2005,43(4): 538-540.
    [153]任晓燕,王国道,蔡林海等.青海民和县喇家遗址2000年发掘简报[J].考古,2002,12:12-25.
    [154] Xia ZK, Yang XY, Ye ML. The prehistoric disaster of the Lajia site [J]. Chinese Science Bulletin, 2003, 48:1200–1204.
    [155]刘杏改.浅谈青海地区的青铜文化[J].文物春秋,2003,6:29-32.
    [156]杨东晨.甘肃地区古氏族部落和文化考述[J].天水师范学院学报,2000,20(4):44-49.
    [157] Kivisild T, Tolk HV, Parik J, Wang Y, Papiha SS, Bandelt HJ, Villems R. 2002. The emerging limbs and twigs of the East Asian mtDNA tree [J]. Mol Biol Evol 19:1737–1751
    [158] Kong QP, Yao YG, Sun C, et al. Phylogeny of East Asian mitochondrial DNA lineages inferred from complete sequences [J]. Am J Hum Genet, 2003, 73:671–676.
    [159] Yao YG, Kong QP, Bandelt HJ, et al. Phylogeographic differentiation of mitochondrial DNA in Han Chinese [J]. Am J Hum Genet, 2002, 70:635–651.
    [160] Yao YG, Kong QP, Man XY, et al. Reconstructing the evolutionary history of China: a caveat about inferences drawn from ancient DNA [J]. Mol Biol Evol, 2003, 20:214–219.
    [161] Wen B, Li H, Gao S, et al. Genetic structure of Hmong-Mien speaking populations in East Asia as revealed by mtDNA lineages [J]. Mol Biol Evol, 2005,22:725–734.
    [162] Sun C, Kong QP, Palanichamy MG, et al. The Dazzling Array of Basal Branches in the mtDNA Macrohaplogroup M from India as Inferred from Complete Genomes [J]. Mol Biol Evol, 2006, 23:683–690.
    [163] Thangaraj K, Chaubey G, Kivisild T, et al. Reconstructing the origin of Andaman Islanders [J]. Science, 2005, 308:965-996.
    [164] Wen B, Li H, Lu D, et al. Genetic evidence supports demic diffusion of Han culture [J]. Nature, 2004, 431:302-305.
    [165] Wen B, Xie XH, Gao S, et al. Analyses of genetic structure of Tibeto-Burman populations Reveals Sex-Biased Admixture in Southern Tibeto-Burmans [J]. Am J Hum Genet, 2004, 74:856-865.
    [166] Kolman CJ, Sambuughin N, Bermingham E. Mitochondrial DNA Analysis of Mongolian Populations and Implications for the Origin of New World Founders [J]. Genetics, 1996, 142:1321-1334.
    [167] Pakendorf B, Wiebe V, Tarskaia LA, et al. Mitochondrial DNA evidence for admixed origins of central Siberian populations [J]. Am J Phys Anthropol, 2003, 120:211?224.
    [168] Richards M, Corte-Real H, Forster P, et al. Paleolithic and Neolithic lineages in the European mitochondrial gene pool [J]. Am J Hum Genet, 1996, 59:185–203.
    [169] Yao YG, Nie L, Harpending H, et al. Genetic relationship of Chinese ethnic populations revealed by mtDNA sequence diversity [J]. Am J Phys Anthropol, 2002, 118:63-76.
    [170] Qian YP,Chu ZT, Dai Q, et al. Mitochondrial DNA polymorphisms in Yunnan nationalities in China [J]. J Hum Genet, 2001, 46:211-220.
    [171] Starikovskaya EB, Sukernik RI, Derbeneva OA, et al. Mitochondrial DNA diversity in indigenous populations of the southern extent of Siberia, and the origins of Native American haplogroups [J]. Ann Hum Genet, 2005, 69:67-89.
    [172] Derbeneva OA, Starikovskaya EB, Wallace DC, et al. Traces of early Eurasians in the Mansi of northwest Siberia revealed by mitochondrial DNA analysis [J]. Am J Hum Genet, 2002, 70: 1009-1014.
    [173] Derbeneva OA, Starikovskaya EB, Volodko NV, et al. Mitochondrial DNAvariation in Kets and Nganasans and the early peopling of Northern Eurasia [J]. Russian J Genet, 2002, 38:1316–1321.
    [174] Mallory J P, Mair V H. The Tarim mummies. London:Thames and Hudson, 2000
    [175] Li S. The interaction between Northwest China and Central Asia during the second millennium B.C: an archaeological perspective. Boyle K, Renfrew C, Levine M. ed. Ancient Interactions: East and West in Eurasia. Cambridge, McDonald Institute for Archaeological Research, 2002:171—182.
    [176] Barber E W. The mummies ofürümchi. New York: Norton, 1999
    [177]林梅村.吐火罗人的起源与迁徙[J].西域研究, 2003, 3: 9—23.
    [178] Han KX. The physical anthropology of the ancient populations of the Tarim Basin and surrounding areas. Mair V H. eds. The Bronze Age and early Iron Age peoples of eastern Central Asia. Philadelphia, University of Pennsylvania Museum Publications, 1998:558—570.
    [179] Finnil? S, Lehtonen M S, Majamaa K. Phylogenetic network for European mtDNA [J]. Am J Hum Genet, 2001, 68: 1475—1484.
    [180] Horai S, Murayama K, Hayasaka K, et al. MtDNA polymorphism in East Asian populations, with special reference to the peopling of Japan [J]. Am J Hum Genet, 1996, 59: 579—590.
    [181] Tajima A, Hayami M, Tokunaga K, et al. Genetic origins of the Ainu inferred from combined DNA analyses of maternal and paternal lineages [J]. J Hum Genet, 2004, 49: 187—193.
    [182] Comas D, Calafell F, Mateu E, et al. Geographic variation in human mitochondrial DNA control region sequence: the population history of Turkey and its relationship to the European populations [J]. Mol Biol Evol, 1996, 13: 1067—1077.
    [183] Pult I, Sajantila A, Simanainen J, et al. Mitochondrial DNA sequences from Switzerland reveal striking homogeneity of European populations [J]. Biol Chem Hoppe Sayler, 1994, 375: 837—840.
    [184] Di Rienzo A, Wilson A C. Branching pattern in the evolutionary tree for human mitochondrial DNA [J]. Proc Natl Acad Sci, 1991, 88: 1597—1601.
    [185] Piercy R, Sullivan K M, Benson N, et al. The application of mitochondrial DNAtyping to the study of white Caucasian genetic identification [J]. Int J Legal Med, 1993, 106: 85—90.
    [186]万诚,崔银秋,段然慧等.河北阳原姜家梁新石器时代人骨DNA的研究[J].考古, 2001, 654: 74—81.
    [187]崔银秋,段然慧,周慧等.新疆古代居民的遗传结构分析[J].高等化学学报, 2002, 23: 2270—2280.
    [188] Cui Y Q, Duan R H, Zhou H, et al. Analysis of Mitochondrial DNA from the Ancient Tombs of Turfan [J]. Chem Res Chinese U, 2002, 18: 419—423.
    [189] Hemphill B E, Mallory J P. Horse-Mounted Invaders From the Russo-Kazakh Steppe or Agricultural Colonists From Western Central Asia? A Craniometric Investigation of the Bronze Age Settlement of Xinjiang [J]. Am J Phys Anthropol, 2004, 124: 199—222.
    [190]李水城.西北与中原早期冶铜业的区域特征及交互作用[J].考古学报,2005, 3:239-278.
    [191]刘学堂、李文瑛.中国早期青铜文化的起源及其相关问题新探,中国边疆考古学术讨论会,[C]2005,成都:2005.
    [192] Jin HJ, Tyler-Smith C, Kim W. The Peopling of Korea Revealed by Analyses of Mitochondrial DNA and Y-Chromosomal Markers [J]. PLoS ONE, 2009, 4(1):e4210.
    [193] Derenko M, Malyarchuk B, Grzybowski T, et al. Phylogeographic Analysis of Mitochondrial DNA in Northern Asian Populations. Am J Hum Genet, 2007, 81(5):1025-1041.
    [194] Yao YG, Kong QP, Wang CY, et al. Different Matrilineal Contributions to Genetic Structure of Ethnic Groups in the Silk Road Region in China [J]. Mol Biol Evol, 2004, 21(12):2265-2280.
    [195] Thanseem I, Thangaraj K, Chaubey G, et al. Genetic affinities among the lower castes and tribal groups of India: inference from Y chromosome and mitochondrial DNA [J]. BMC Genet, 2006, 7:42.
    [196] Marchani EE, Watkins WS, Bulayeva K, et al. Culture creates genetic structure in the Caucasus: Autosomal, mitochondrial, and Y-chromosomal variation in Daghestan [J]. BMC Genet, 2008, 9:47.
    [197] Yu CC, Xie L, Zhang XL, et al. Genetic analysis on Tuoba Xianbei remains excavated from Qilang Mountain Cemetery in Qahar Right Wing Middle Banner of Inner Mongolia [J]. FEBS Lett, 2006, 580(26):6242-6246.
    [198] Lalueza-Fox C, Sampietro ML, Gilbert MT, et al. Unravelling migrations in the steppe: mitochondrial DNA sequences from ancient Central Asians [J]. Proc Biol Sci, 2004, 271(1542):941-947.
    [199]葛斌文;王海晶;谢承志等.新疆扎滚鲁克古代人群的线粒体DNA分析[J].吉林大学学报(理学版),2008,46:1206-1210.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700