用户名: 密码: 验证码:
煤山剖面P-T界线附近地层中的富勒烯和硫同位素研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要以煤山剖面二叠系-三叠系(P-T)界线附近地层为研究对象。一方面,通过二次抽提方法,系统研究了煤山剖面P-T界线附近地层中的富勒烯和高富勒烯的赋存规律。另外,对比研究了全球多个地质样品中的天然富勒烯。该工作为解决天然富勒烯在地质事件界线中是否存在的争议提供了重要的实验数据。同时,本文还对人工合成的石墨烟灰中高富勒烯进行了HPLC分离,并用HPLC和LDMS对分离的组分再次进行鉴定,证实了高富勒烯分子的存在,一定程度上排除了前人对地质高富勒烯存在的质疑。另一方面,本文对煤山剖面P-T界线地层中硫同位素进行了全面的研究,主要包括:煤山A剖面P-T界线上下地层高分辨的碳酸盐岩中硫酸盐(CAS)硫同位素变化曲线、界线粘土中的草莓状黄铁矿及其硫同位素。结合这两方面者研究,作者试图从硫同位素地球化学角度,解释二叠系-三叠系生物灾变事件的原因和过程。
In this study, the author carried out a series of investigation for the strata near the Permian-Triassic boundary in Meishan Section. Based on two-step extraction method, the author thoroughly examined natural fullerene and higher fullerenes in the strata near boundary event layer. In contrast to Meishan's sample, some other geologic samples were also studied for natural fullerenes. The result offer the important experimental date for the controversy if natural fullerenes exist in geologic event boundary. Moreover, higher fullerenes in synthetic "Graphitic Smkes" (GS) soot were isolated using Cosmosil Buckysep column (250 x 10mm). The fractions isolated were then determined by both HPLC and LDMS. The result proves the existence of higher fullerenes and excludes the previous suspicion to some extent. On the other hand, the authors investigated stratigraphic profile of sulfur isotope near the Permian-Triassic boundary in Meishan Section, including:a high resolution sulfur isotope curve of CAS across the Permian-Triassic boundary in Meishan Section A; characterization and sulfur isope of framboidal pyrite in the Permian-Triassic boundary clay. According to the result of sulfur isotope, the author tried to explain the cause and process of the catastrophic event during the Permian-Triassic transitional period.
引文
1. Raup D M. Size of the permo-triassic bottleneck and its evolutionary implications. Science,1979,206: 217-218
    2. Raup D M, Sepkoski J J. Mass extinction in the marine fossil record. Science,1982,215:1501-1503
    3. Erwin D H. The end-Permian mass extinction:What really happened and did it matter? Trends in Ecology and Evolution,1989,4:225-229
    4. Erwin D H. The Permo-Triassic Extinction. Nature,1994,367:231-236
    5. Retallack G J. Permian-triassic life crisis on land. Science,1995,267:77-80
    6. Isozaki Y. Permian-Triassic Boundary Superanoxia and Stratified Superocean:Record from Lost Deep Sea. Science,1997,276:235-238
    7. Retallack G J, Seyedolali A, Krull E S, et al. Search for evidence of impact at the Permian-Triassic boundary in Antarctica and Australia. Geology,1998,26:979-982
    8. Yin H F, Zhang K X, Tong J N, et al. The global stratotype section and point (GSSP) of the Permian-Triassic boundary. Episodes,2001,24:102-114
    9. 童金南.二叠系—三叠系界线层型及重大事件.地球科学——中国地质大学学报,2001,26:446-448
    10.殷鸿福,黄思骥,张克信,等.华南二叠—三叠纪之交的火山活动及其对生物灭绝的影响.地质学报,1989,62:169-181
    11. Yin H F, Huang S J, Zhang K X, et al. The effects of volcanism on the Permian-Triassic mass extinction in south China. In:Sweet W C. Yang Z Y, Dickins J M, et al. Permo-Triassic events in the eastern Tethys. Cambridge:Cambridge University Press,1992:146-157
    12. Claoue-Long J C, Zhang Z C, Ma G G, et al. The age of the Permian/Triassic boundary. Earth and Planetary Science Letters,1991,105:182-190
    13. Renne P R, Zhao Z C, Richards M A, et al. Synchrony and causal relations between Permian/Triassic boundry crises and Siberian flood volcanism. Science,1995,269:1413-1416
    14. Bowring S A, Erwin D H, Jin Y G, et al. U/Pb zincon geochronology and tempo of the end Permian mass extinction. Science,1998,280:1039-1045
    15. Mundil R, Ludwig K R, Metcalfe I, et al. Age and timing of the Permian mass extinctions:U/Pb dating of closed-system zincons. Science,2004,305:1760-1763
    16. Alvarez L W, Asaro F, Michel H V, et al. Extraterrestrial cause for the Cretaceous/Tertiary extinction. Science,1980,208:1095-1908
    17. Xu D Y, Yan Z. Carbon isotope and iridium event markers near the Permian/Triassic boundary in the Meishan section, Zhejiang Province, China. Palaeogeography, Palacoclimatology, Palaeoecology,1993, 104:171-176
    18. Xu D Y. Some Evience for a Possible Extraterrestrial Event at/near Permian-Triassic Boundary. Journal of China University of Geosciences,2002,13:151-156
    19. Jin Y G, Wang Y, Wang W, et al. Pattern of marine mass extinction near the Permian-Triassic boundary in south China. Science,2000,289:432-436
    20. Kaiho K, Kajiwara Y, Nakano T, et al. End-Permian catastrophe by a bolide impact:evidence of a gigantic release of sulfur from the mantle. Geology,2001,29:815-818
    21. Koeberl C, Gilmour I, Reimold W U, et al. End-Permian catastrophe by bolide impact:Evidence of a gigantic release of sulfur from the mantle:Comment and Reply. Geology,2002,30:855-856
    22. Becker L, Poreda R J, Hunt A Q et al. Impact event at the Permian-Triassic boundry:evidence from
    extraterrestrial noble gases in fullerene. Science,2001,291:1530-1533
    23. Farley K A, Mukhopadhyay S. An extraterrestrial impact at the Permian-Triassic boundary?. Science, 2001,293:2343a
    24. Isizako I. An extraterrestrial impact at the Permian-Triassic boundary? Science,2001,293:2343a
    25. Li Y F, Liang H D, Yin H F, et al. Determination of fullerences (C60/C70) from the Permian-Triassic boundary in the Meishan section of South China. Acta Geologica Sinica,2005,79:11-15
    26. Huey R B, Ward P D. Hypoxia, global warming, and terrestrial late Permian extinctions. Science,2005, 308:398-400
    27. Grice K, Cao Changqun, Love G D, et al. Zone euxinia during the Permian-Triassic Superanoxic event. Science,2005,307:706-709
    28. Shen W, Lin Y, Xu L, et al. Pyrite framboids in the Permian-Triassic boundary section at Meishan, China: Evidence for dysoxic deposition. Palaeogeography, Palacoclimatology, Palaeoecology,2007,253: 323-331
    29. Xie S C, Pancost R D, Yin H F, et al. Two episodes of microbial change coupled with Permo/Triassic faunal mass extinction. Nature,2005,434:494-497
    30. 曹长群,王伟,金玉开.浙江煤山二叠-三叠系界线附近碳同位素变化.科学通报,2002,47:302-306
    31. 梁汉东,丁悌平.中国煤山剖面二叠-三叠系事件界限地层中石膏的负硫同位素异常.地球学报,2004,25:33-37
    32. Riccardi A L, Arthur M A, Kump L R. Sulfur isotopic evidence for chemocline upward excursions during the end-Permian mass extinction. Geochimica et Cosmochimica Acta,2006,70:5740-5752
    33.姜尧发,唐跃刚,代世峰,等.浙江煤山二叠系-三叠系界线附近黄铁矿及其硫同位素组成研究.地质学报,2006,80:1202-1207
    34. Kaiho K, Kajiwara Y, Nakano T. End-Permian catastrophe by a bolide impact:evidence of a gigantic release of sulfur from the mantle. Geology,2001,29:815-818
    35. Kaiho K, Chen Z Q, Kawahata H, et al. Close-up of the end-Permian mass extinction horizon recorded in the Meishan section, South China:Sedimentary, elemental and biotic characterization and a negative shift of sulfate sulfur isotope ratio. Palaeogeography, Palacoclimatology, Palaeoecology,2006,239: 396-405
    36. Liang H D. End-permian catastrophic event of marine acidification by hydrated sulfuric:mineralogical evidence from Meishan section of South China [J]. Chinese Science Bulletin,2002,47:393-1397
    37.梁汉东.二叠纪末期海洋硫酸化环境灾变事件:煤山剖面岩石矿物证据.科学通报,2002,10:784-788
    38.梁汉东,梁言慈.中国煤山剖面事件界线层粘土中石膏化生物化石碎屑初探.科学技术与工程,2004,4:183-186
    39. 梁汉东,梁言慈.中国煤山剖面二叠系/三叠系界线附近白粘土中残余酸的发现与意义.科学技术与工程,2004,4:7-11
    40.于开平,韩广民,杨风丽,等.浙江长兴煤山剖面P/T界线附近粘土矿物研究.沉积学报,2005,23:108-112
    41. Kroto H W, Heath J R, O'Brien S C, et al. C60:BuckminsterFullerene. Nature,1985,318:162-163
    42. Kraetschmer W, Lamb L D, Fostiropoulos K, et al. Solid C60:a new form of carbon, Nature,1990,347: 354-358
    43. Buseck P R, Tsipursk S J, Hettich R. Fullerenes from the geological environment. Science,1992,257: 215-217
    44. Ebbesen T W, Hiura H, Hedenquist J W, et al. Origins of Fullerenes in Rocks. Science,1995,268: 1634-1635
    45. Heymann D. Search for ancient fullerenes in anthraxolite, shungite, and thucolite. Carbon,1995,33: 237-239
    46. Gu Y, Wilson M A, Fisher K J, et al. Fullerenes and shungite. Carbon,1995,33:862-863
    47. Buseck P R, Tsipursky SJ. Origins of fullerenes in rocks. Reply and comment. Science,1995,268: 1634-1635
    48. Hettich R L, Buseck P R. Concerning fullerenes in shughite. Carbon,1996,34:685-687
    49. Parthasarathy Q Srinivasan R, Vairamani M, et al. Occurrence of natural fullerenes in low grade metamorphosed Proterozoic shungite from Karelia, Russia. Geochimica et Cosmochimica Acta,1998,62: 3541-3544
    50. Zaidenberg A Z, Rozhkova N N, Kovalevski V V. Shungite carbon and fullerenes. Fullerene Science& Technology,1998,6:511-517
    51. Osipov E V, Reznikov V A. Synthesis of fullerene-like particles during fullerene extraction from shungite. Carbon,2002,40:961-965
    52. Mossman D, Eigendorf Q Tokaryk D, et al. Testing for fullerenes in geologic materials:Oklo carbonaceous substances, Karelian shungites, Sudbury Black Tuff. Geology,2003,31:255-258
    53. Daly K, Buseck P R, Williams P, et al. Fullerenes from a fulgurite. Science,1993,259:1599-1601
    54. Becker L, Bada J L, Winans R E, et al. Fullerenes in the 1.85-Billion-Year-Old Sudbury impact structure. Science,1994,265:642-645
    55. Becker L, Poreda R J, Bada J L. Extraterrestrial Helium Trapped in Fullerenes in the Sudbury Impact Structure. Science,1996,272:249-252
    56. Becker L, Bada J L, Poreda R J. Extraterrestrial Helium Trapped in Fullerenes in the Sudbury Impact Structure. Meteoritics & Planetary Science,1996,31:A12-A13
    57. Elsila J E, de Leon N P, Plows F L, et al. Extracts of impact breccia samples from Sudbury, Gardnos, and Ries impact craters and the effects of aggregation on C60 detection. Geochimica et Cosmochimica Acta, 2005,69:2891-2899
    58. Becker L, Bada J L, Winans R E, et al. Fullerenes in Allende Meteorite. Nature,1994,372:507
    59. Becker L, Bunch T E. Fullerenes, fulleranes and PAHs in the Allende meteorite. Meteoritics and Planetary Science,1997,32:479-487
    60. Becker L, Bunch T E, Allamandola L J. Higher fullerenes in the Allende meteorite. Nature,1999,400: 227-228
    61. Becker L, Poreda R J, Bunch T E. Fullerenes and Noble Gases in the Murchison and Allende Meteorites. Lunar and Planetary Institute Conference Abstracts,2000,31:1803
    62. Pizzarello S, Huang Y, Becker L, et al. The Organic Content of the Tagish Lake Meteorite. Science,2001, 293:2236-2239
    63. Heymann D, Chibante L P F, Brooks R R, et al. Fullerences in the Cretaceous-Tertiary Boundary Layer. Science,1994,265:645-647
    64. Heymann D, Korochantsev A, Nazarov M A, et al. Search for fullerenes C60 and C70 in Cretaceous-Tertiary boundary sediments from Turkmenistan, Kazakhstan, Georgia, Austria, and Denmark. Cretaceous Research,1996,17:367-380
    65. Becker L, Poreda R J, Bunch T E. Fullerenes:An extraterrestrial carbon carrier phase for noble gases. PNAS,2000,97:2979-2983
    66. Parthasarthy G, Bhandari N, Vairamani M, et al. Natural Fullerenes from the Cretaceous-Tertiary Boundary Layer at Anjar, Kutch, India. In Koeberl C, and MacLeod K G, eds. Catastrophic Events and Mass Extinctions:Impacts and Beyond:Boulder, Colorado, Geological Society of America Special Paper 356,2002:345-350
    67. Parthasarathy G, Bhandari N, Vairamani M, et al. High-pressure phase of natural fullerene C60 in iridium-rich Cretaceous-Tertiary boundary layer of Deccan intertrappean deposits, Anjar, Kutch, India. Geochimica et Cosmochimica Acta,2008,72:978-987
    68. Taylor R, Abdul-Sada A K. There are no fullerenes in the K-T boundary layer. Fullerene Science and Technology,2000,8:47-54
    69. Chijiwa T, Arai T, Sugai T, et al. Fullerenes found in the Permian-Triassic mass extinction period. Geophysical Research Letters,1999,26:767-770
    70. Becker L, Poreda R J. Fullerene and Mass Extinctions in the Geologic Record. Meteoritics & Planetary Science,2001.36, Supplement:17
    71. Poreda R J, Becker L. Fullerenes and interplanetary dust at the Permian-Triassic boundary. Astrobiology, 2003,3:120-136
    72. 沈文杰,林杨挺,王道德,等.天然富勒烯及其在P-T界线地层的研究进展.地球科学进展,2006,21:903-910
    73. Perry R S, Haggart J W, Ward P D. Preliminary identification of fullerenes in lower Jurassic Strata, Queen Charlotte islands, British Columbia. Proceedings of SPIE,2004,5163:62-71
    74. Firestone R B, West A, Kennett J P, et al. Evidence for an extraterrestrial impact 12,900 years ago that contributed to the magafaunal extinctions and the Younger Dryas cooling. PNAS,2007,104: 16016-16021
    75. Fang P H, Zhou X J, Tao R Z, et al. Fullereres Discovered in Coal Mines in Yunnan, China. Innovations in Materials Research,1996,1:129-134.
    76. Fang P H, Wong R. Evidence for Fullerene in a Coal of Yunan, Southwestern China. Materials Research Innovation,1997,2:130-132.
    77. Osawa E, Ozawa M, Chijiwa K, et al. Search for Natural Fullerenes in Coal. A Full Report of Survey Tour through Yunnan Province in November 1999.
    78. 梁汉东,李艳芳,刘敦一,陶如藻.中国云南禄丰煤中存在富勒烯的初步证据.中国科学技术文献(科技快报),2001,7:336-337
    79.梁汉东,李艳芳,刘敦一,陶如藻,林玉成.云南禄丰煤岩与围岩中富勒烯(C60)物质的初步探索.岩石学报,2002,18:419-423
    80. 秦勇,李壮福,林大扬等.煤中天然C60稳定碳同位素系列的发现与成因意义.中国学术期刊文摘(科技快报),2001,7:1572-1574
    81. Wang Z X, Li X P, Wang W M, et al. Fullerenes in the Fossil of Dinosaur Egg. Fullerene Science & Technology,1998,6 715-720
    82. 王震遐.化石富勒烯与考古学——关于恐龙蛋化石中的富勒烯研究.自然杂志,2005,27:135-139
    83. Osawa E, Hirose Y, Kimura A, et al. Fullerenes in Chinese ink. A Correction. Fullerene Science and Technology,1997,5:177-194
    84. Osawa E. Natural fullerenes-will they offer a hint to the selective synthesis of fullerenes? Fullerene Science and Technology,1999,7:637-652
    85. Jehlicka J, Osawa M, Slanina Z, et al. Fullerenes in the solid btuments from pillow lava of Precambrian age. Fullerene Science & Technology,2000,8:449-452
    86. Jehlicka J, Svatos A, Frank O, et al. Evidence for fullerenes in solid bitumen from pillow lavas of Proterozoic age from Mitov (Bohemian Massif, Czech Republic). Geochimica et Cosmochimica Acta, 2003,67:1495-1506
    87. Radicati di Brozolo F, Bunch T E, Fleming R H, et al. Fullerenes in an impact crater on the LDEF spacecraft. Nature,1994,.369:37-40
    88. Yamasaki A. Fullerenes in Chinese ink sticks. Fuel and Energy Abstracts,1995.36:423
    89. Osawa E, Hirose Y, Kimura A, et al. Fullerenes in Chinese ink. A Correction. Fullerene Science and Technology,1997,5:177-194
    90. Bottrell S H, Newton R J. Reconstruction of changes in global sulfur cycling from marine sulfate isotopes. Earth-Science Reviews,2006,75:59-83
    91.郑永飞,陈江峰.稳定同位素地球化学.北京:科学出版社,2000:218
    92. 张同钢.中-新元古代古海洋的硫和碳同位素演化.博士论文,2008:26
    93. Strauss H. The isotopic composition of sedimentary sulfur through time. Palaogeography, Palaeoclimatology,Palaeoecology,1997,132:97-118
    94. Newton R J, Pevitt E L, Wignall P B, et al. Large shifts in the isotopic composition of seawater sulphate across the Permo-Triassic boundary in northern Italy. Earth and Planetary Science Letters,2004,218: 331-345
    95. Krote C, Kozur H W, Joachimski M M, et al. Carbon, sulfur, oxygen and strontium isotope records, organic geochemistry and biostratigraphy across the Permian/Triassic boundary in Abadeh, Iran. Int J Earth Sci,2004,93:565-581
    96. Kearsey T, Twitchett R J, Price G D, et al. Isotope excursions and paleotemperature estimates from the Permian/Triassic boundary in the Sounthern Alps (Italy). Palaeogeography, Palaeoclimatology, Palaeoecology,2009,279:29-40
    97. Kajiwara Y, Yamakita S, Ishida K, et al. Development of a largely anoxic stratified ocean and its temporary massive mixing at the Permian/Triassic boundary supported by the sulfur isotopic record. Palaogeography, Palaeoclimatology, Palaeoecology,1994,111:367-379
    98. Nielsen J K, Shen Yanan. Evidence for sulfidic deep water during the late Permian in the east Greenland basin. Geology,2004,32:1037-1040
    99. Wu Y, Jiang H, Yang W, et al.2007. Microbialite of anoxic condition from Permian-Triassic transition in Guizhou, China. Science in China, Series D,50:1040-1051
    100. Zhang J, Liang H D, He X Q, et al. Sulfur Isotope of Framboidal Pyrite in the Permian-Triassic Boundary Clay in Meishan Section. Acta Geological Sinica,2009, accepted
    101. Jin Y, Wang Y, Henderson C, et al. The global boundary stratotype section and point (GSSP) for the base of Changsingian Stage (Upper Permian). Episodes,2006,29:175-182
    102.盛金章,金玉玕,芮林等.浙江长兴地区二叠系及三叠系界线层型研究.地层学杂志,1983,7:245-257
    103.殷鸿福,杨遵仪,吴顺宝等.全球二叠系-三叠系界线层型研究.国家自然科学基金项目研究报告,中国地质大学,2001:3-6
    104.邓宏文,钱凯.沉积地球化学与环境分析.兰州:甘肃科学技术出版社,1993:10-31
    105.吕志成,段国正,郝立波,等.佳疙瘩组变碎屑岩地球化学特征及古构造环境.吉林大学学报(自然科学版),2002,32:111-115
    106.王随继,黄杏珍,妥进才,等.泌阳凹陷核桃园组微量元素演化特征及其古气候意义.沉积学报,1997,15:65-70
    107.杨遵仪,吴顺宝,殷鸿福,等.华南二叠-三叠纪过渡期地质事件.北京:地质出版社,1991
    108.南君亚,周德全,叶健骝,等.贵州二叠纪-三叠纪古气候和古海洋环境的地球化学研究.矿物学报,1998,18:243-248
    109. Veizer J, Demovicc R. Stronitium as a tool in facies analysis. Sedi.Ped,1974,44:93-115
    110.杨守业,李从先.元素地球化学特征的多元统计方法研究.矿物岩石,1999,19:63-67
    111. Richard M P. Consideration and applications of the illite/smectite geo-thermometer inMississippian age. Clay and ClayMinerals,1993,41:119-133
    112. Essene E J, Peacor D R. Claymineral thermometry-a criticalperspec-tive. Clay and ClayMinerals,1995, 40:540-553
    113.蓝先洪.海洋沉积物中粘土矿物组合特征的古环境意义.海洋地质动态.2001,17:5-7
    114.陈忠,颜文.海洋沉积粘土矿物与古气候、古环境演化响应的研究进展.海洋科学,2000,24:25-27
    115. Valter B, Alessandra P, Pietro M, et al. Influence of climate on the iron oxide mineralogy of Terra Rossa. Clay and Clay Minerals,1992,40:8-13
    116.汤艳杰,贾建页,谢先德.粘土矿物的环境意义.地学前缘,2002,9:337-344
    117.孙静.华南海相P-T界线粘土地球化学研究.硕士论文,2005:37-42
    118.赵其渊.海洋地球化学.北京:地质出版社,1989:11-156
    119. Rohlfing E A, Cox D M, Kalder A. Production and characterization of supersonic carbon cluster beams. Journal of Chemical Physics.1984,81:3322-3330
    120. Buseck P R. Geological fullerenes:review and analysis. Earth and Planetary Science Letters,2002,203: 781-792
    121. Heymann D, Jenneskens L W, Jehlika J, et al. Terrestrial and Extraterrestrial Fullerenes. Fullerenes, Nanotubes, and Carbon Nanostructures,2003,11:333-370
    122.吴国强,李壮福,林大扬,等.天然富勒烯及煤中的富勒烯.中国煤田地质,2003,15:6-8,11
    123.李壮福,秦勇.天然富勒烯的地质产状与成因.地球科学进展,2004,19:682-686
    124. Curl R F, Smalley R F. Fullerenes. Scientific America,1991,9:32-41
    125. Fowler P W, Manolopoulos D E. Magic numbers and stable structures for fullerenes, fullerides and fullerenium ions. Nature,1992,355:428-430
    126. Yeretzian C, Hansen k, Diederich F. Coalescenece reactions of fullerenes. Nature,1992,359:44-47
    127. Taylor R, Parsons J P, Avent A G, et al. Degradation of C60 by Light. Nature,1991,355:277-280
    128. Chibante L P F, Thess A, Alford J M, et al. Solar Generation of the Fullerenes. Journal of Physical Chemistry,1993,97:8696
    129. Taylor R. On the formation and stability of fullerenes. Fullerenes Science and Technology,1999,7: 305-309
    130. Hare J P, Kroto H W, Taylor R. Preparation and UV/Visible Spectra of Fullerenes C60 and C70. Chemical Physics Letters,1991,177:394-398
    131. Bethune D S, Meijer G, Tang W C, et al. The Vibrational Raman Spectra of Purified Solid Films of C60 and C70. Chemical Physical Letters,1990,174:219
    132. Arbogast J W, Darmanyan A P, Foote C S, et al. Photophysical Properties of C60. Journal of Physics and Chemistry,1991,95,11-12
    133. Taylor R, Hare J P, Abdul-Sada, et al. Isolation, Separation and Characterization of the Fullerenes C60 and C70:the Third Form of Carbon. Journal of Chemical Society, Chemical Communication,1990, 1423-1426
    134. Chang T M, Naim A, Ahmed S N, et al. On the mechanism of fullerene formation:trapping of some possible intermediates. Journal of American Chemistry Society,1992,114:7603-7604
    135. Howard J B, Mckinnon J T, Makarovsky Y, et al. Fullerenes C60 and C70 in Flames. Nature,1991,352: 139-141
    136. Howard J B, Lafleur A L, Makarovsky Y, et al. Fullerenes synthesis in combustion. Carbon,1992,30: 1183-1201
    137.朱珍平,张红霞,顾永达,魏兴海,崔洪.富勒烯碳原子簇的石墨层间闭合形成机理.化学研究与应用,1994,6:37-42
    138.唐光诗.关于富勒烯形成机理的一种推测.北京化工大学学报,1999,26:80-82
    139. Haufler R E, Conceicao J, Chibante L P F, et al. Efficient Production of C60 (Buchminsterfullerene), C60H36 and the Solvated Buckide Ion. Journal of Physics Chemistry,1990,94:8634-8636
    140.李艳芳.煤山剖面P-T界线地球化学研究特征.博士论文,2006:27
    141. Becker L, Poreda R J, Nuth J A, et al. Future procedures for isolation of higher fullerenes in natural and synthetic soot. Netherlands:Natural Fullerenes and Related Structures of Elemental Carbon,2006: 279-295
    142. Robl T, Davis B H. Comparison of the HF-HC1 and HF-BF3 maceration techniques and the chemistry of resultant organic concentrates. Organic Geochemistry,1993,20:249-255
    143. Jehlicka J, Frank 0, Hamplova V, et al. Low extraction recovery of fullerene from carbonaceous geological materials spiked with C60. Carbon,2005,43:1909-1917
    144. Erwin D H. Impact at the Permo-Triassic boundary:A critical evaluation. Astrobiology,2003,3:67-74
    145. Hammond M R, Zare R N. Identifying the source of a strong fullerene envelop arising from laser desorption mass spectrometric analysis of meteoritic insoluble organic matter. Geochimica et Cosmochimica Acta,2008,72:5521-5529
    146. Heymann D, Chibante L P F, Smalley R E. Determination of C60 and C70 fullerenes in geologic materials by high-performance liquid-chromatography. J. Chromatogr. A,1995:157-163
    147. Kasuya D, Kokai K, Takahashi M, et al. Formation of C60 laser vaporization of graphite at room temperature. Chem. Phys. Lett,2001,337:25-30
    148.黎彤.化学元素的地球丰度.地球化学,1976,5:167-174
    149. Hoefs J. Stable isotope geochemistry. Berlin:Springer,1997:57
    150. Macnamara J, Thode H G. Comparision of the isotopic constitution of terrestrial and meteroritic sulphur. The Physical Review,1950,78:307-308
    151. Hoefs J. Stable isotope geochemistry. Berlin:Springer,2009:83-84
    152. Farquhar J, Bao H, Thiemens M H. Atmospheric influence of earth's earliest sulfur cycle. Science,2000, 289:756-758
    153. Mojzsis S J, Coath C D, Greenwood K D, et al. Mass-independent isotope effects in Archen (2.5 to 3.8 Ga) sedimentary sulfides determined by ion microprobe analysis. Geochimica et Cosmochimica Acta, 2003,67:1635-1658
    154. Ono S, Eigenbrode J L, Pavlov A A, et al. New insights into Archean sulfur cycle from mass-independent sulfur isotope records from the Hamersley basin, Australia. Earth and Planetary Science Letters,2003, 213:15-30
    155. Baroni M, Thiemens M H, Delmas R J, et al. Mass-independent sulfur isotopic compositions in stratospheric volcanic eruptions. Science,2007,315:84-87
    156. Paytan A, Kastner M, Campbell D, et al. M.H. Sulfur Isotopic Composition of Cenozoic Seawater Sulfate. Science,1998,282:1459-1462
    157. Paytan A., Kastner M, Campbell D, et al. Seawater sulfur isotope fluctuations in the Cretaceous. Science, 2004,304:1663-1665
    158. Strauss H. Geological evolution from isotope proxy signals-Sulfur. Chemical Geology,1999,161: 89-10
    159.赵瑞,沈延安,储雪蕾,等.碳酸盐岩中微量硫酸盐的氧、硫同位素分析.地质科学,1996,31:308-312
    160. Hardie L. Evaporites:marine or non-marine? America Journal of Science,1984,284:193-240
    161.张同钢,储雪蕾,张启锐,等.陡山沱期古海水的硫和碳同位素变化.科学通报,2003,48:850-855
    162. Burdett J W, Arthur M A, Richardson M. A Neogene seawater sulfur isotopic age curve from calcareous pelagic microfossils. Earth and Planetary Science Letters,1989,94:189-198
    163. Hurtgen M T, Arthur M A, Suit N S, et al. The surfur isotopic composition of Neoproterozoic seawater sulfate:implications for a snowball earth? Earth and Planetary Science Letters,2002,203:413-429
    164. Kampschulte A, Strauss H. The sulfur isotopic evolution of Phanerozoic seawater based on the analysis of structurally substituted sulfate in carbonates. Chemical Geology,2004,204:255-286
    165. Marenco P J, Corsetti F A, Hammond D E, et al. Oxidation of pyrite during extraction of carbonate associated sulfate. Chemical Geology,2008,247:124-132
    166. Gill B C, Lyons T W, Frank. Bahavior of carbonate-associated sulfate during meteoric diagenesis and implications for the sulfur isotope paleproxy.Geochimica et Cosmochimica Acta,2008,72:4699-4711
    167. Turchyn A V, Schrag D P, Coccioni R, et al. Stable isotope analysis of the Cretaceous sulfur cycle.Earth and Planetary Science Letters,2009,285:115-133
    168. Berelson W, Corsetti F, Johnson B, et al. Carbonate-associated sulfate as a proxy for lake level fluctuations:a proof of concept for Walker Lake, Nevada. Journal of Paleolimnol,2009,42:25-36
    169.张同钢,储雪蕾,张启锐,等.扬子地台灯影组碳酸盐岩中的硫和碳同位素记录.岩石学报,2004,20:717-724
    170.张同钢,储雪蕾,冯连君,等.新元古代“雪球”事件对海水碳、硫同位素组成的影响.地球学报,2003,24:487-493
    171. Li P, Huang J, Chen M, et al. Coincident negative shifts in sulfur and carbon isotope compositions prior to the end-Permian mass extinction at Shangsi Section of Guangyuan, south China. Front. Earth Sci. China,2009,3:51-56
    172.丁悌平,黎红,张国柄等.六氟化硫法测量33S/32S、34S/32S和36S/32S的方法研究.矿床地质,1987:81-93
    173.丁锑平,Valkiers S,万德芳.IAEA和中国的硫同位素参考物质的δ33S、δ34S值与325/33S、32S/34S绝对比值.矿物岩石地球化学通报,2001,20:425-427.
    174.丁锑平,白瑞梅,李延河.IAEA-S-1参考物质及V-CDT硫同位素标准的325/34S绝对比值.中国科学D辑,1998,28:546-551.
    175. Ding T, Valkiers S, Kipphardt H, et al. Calibrated sulfur isotope abundance ratios of three IAEA sulfur isotope reference materials and V-CDT with a reassessment of the atomic weight of sulfur. Geochimica et Cosmochimica Act,2001,65:2433-2437.
    176. Valkiers S, Kipphardt H, Ding T, et al. A primary isotopic gas standard for sulfur in the form of SF6 with Systeme International d'Unites traceable values for isotopic composition and molar mass. International Journal of Mass Spectrometry,1999,193:1-8.
    177.何小青.煤山剖面二叠-三叠系界线附近硫酸盐硫同位素变化特征.硕士论文,2009:33-34
    178. Canfield D E, Thamdrup B. The production of S-depleted sulfide during bacterial disproportion of elemental sulfur. Science,1994,266:1973-1975
    179. Canfield D E, Raisell R. The evolution of the sulfur cycle. America Journal of Science,1999,299: 697-723
    180. Canfield D E, Isotope fractionation by natural populations of sulfate-reducing bacteria. Geochimica et Cosmochimica Acta,2001,65:1117-1124
    181. Logan G A, Hayes J M, Hleshima G B, et al. Terminal Proterozoic reorganization of biogeochemical cycles. Nature,1995,376:53-56
    182. Wilkin R T, Barnes H L, Brantley S L. The size distribution of framboidal pyrite in modern sediments: An indicator of redox conditions. Geochimica et Cosmochimica Acta,1996,60:3897-3912
    183. Wilkin R T, Barnes H L. Formation processes of framboidal pyrite. Geochimica et Cosmochimica Acta, 1997,61:323-339
    184. Wignall P B, Newton R, Brookfield M E, Pyrite framboid evidence for oxygen-poor deposition during the Permian-Triassic crisis in Kashmir. Palaeogeography, Palacoclimatology, Palaeoecology,2005,216: 183-188
    185. Canfield D E, Raiswell R, Westrich J, et al. The use of chromium reduction in the analysis of reduced inorganic sulfur in sediments and shales. Chemical geology,1986,54:149-155
    186. Tuttle M L, Goldhaber M B, Williamson D L. An analytical scheme for determining forms of sulphur in oil shales and associated rocks. Talanta,1986,33:953-961
    187. Holser W T, Kaplan I R. Isotope geochemistry of sedimentary sulfates. Chemical Geology,1966,1: 93-135
    188. Claypool G E, Holser W T, Kaplan I R, et al. The age curves of sulfur and oxygen isotopes in marine sulfate and their mutual interpretation. Chemical Geology,1980,28:199-260
    189. Liang H D, Yang Y, Liu M. Determination of elemental sulfur from the P/T event boundary clay at the Meishan Section. Journal of China University of Geosciences,2007,18:412-414

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700