用户名: 密码: 验证码:
单个油气包裹体检测技术及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文综述了近些年来单个包裹体探测的各种技术,包括显微荧光、显微拉曼、显微傅立叶变换红外光谱、同步辐射x射线荧光、质子诱导x射线荧光(Particle Induced X-ray Emissions)、激光剥蚀(消融)电感耦合等离子质谱(LA-ICP-MS)。在此基础上,提出一种基于普通倒置荧光显微镜的单个油气包裹体的紫外-可见显微荧光光谱测量装置,该装置包括倒置荧光显微镜、反射式显微物镜、微透镜、光纤、紫外-可见荧光分光光度计和计算机,通过光纤基座和反射式显微物镜-微透镜-光纤适配器将所有器件结合为一个整体。通过反射式显微物镜-微透镜-光纤适配器上的三维位移台(空间分辨率2μm),反射式显微物镜与倒置荧光显微经的显微物镜很容易共焦,最小光斑12μm。利用本装置可对单个包裹体进行显微定位、显微照相、外光源激发或显微镜内置汞灯激发、紫外-可见显微荧光光谱测量、光谱分析、包裹体色度分析等。
     在成功建立实验系统的基础上,本文以吉林油田南部和西部斜坡区中浅层5口油井钻井取心砂岩为研究对象,通过对砂岩薄片进行偏光/荧光显微镜镜下鉴定、包裹体丰度、包裹体均一温度、盐度测量,发现5口井(白95,花5,检22,农29和伏4)均发育两期包裹体。在此基础上,实测了5口井38个典型第2期次油气包裹体在外光源及显微镜内置汞灯激发下的紫外-可见荧光光谱。测量结果表明汞灯激发下的荧光光谱明显受到包裹体周围颗粒和胶结物荧光的影响,因而该光谱不能真实地反映包裹体所含古油的信息。石英颗粒本身也会发出“背景”荧光,因而当聚焦光斑比包裹体大时,必须考滤“背景”荧光的影响。在250nm激发下,通过与标准芳烃荧光光谱的比较,可定性确定包裹体中古油芳烃主成分,油气包裹体中古油主要以中质油为主,含二环、三环、四环或二环、三环、四环、五环芳烃,并且普遍含有五环以上重质芳烃和非烃,依据古油主成分进而推测古油的成熟度和母源的性质。对365nm激发下的单个油气包裹体的荧光光谱,我们定义了一个反映油成熟度的参数—S390-455/S455-680,并建立了S390-455/S455-680与色谱-质谱分析计算的成熟度参数Rc之间的关系。
     除此外,我们还测量了5口井29个原油的荧光光谱,对于250nm激发下的荧光光谱,通过与标准芳烃荧光光谱比较,可知原油普遍以二环、三环芳烃为主,另有一定量的四环芳烃,五环以上重质芳烃和非烃远少于油气包裹体中的古油。但农29井泉四段列外,该层砂岩原油含一定的重质芳烃。通过荧光峰位和半高宽定性地确定原油的成熟度,通过Qi参数确定油水界面,结果表明Qi参数对于重质油含量较多或单环芳烃含量较多的原油并非是一个很好的评价参数。对365nm激发下的原油的荧光光谱,我们也建立了S390-455/S455-680与色谱-质谱分析计算的成熟度参数Rc之间的关系。
     依据色度学原理,对于单个油气包裹体和原油在365nm激发及包裹体在自身汞灯紫光激发下的荧光光谱进行了色坐标计算。结果表明,原油的色坐标均小于相应层位的包裹体的色坐标,这表明原油的成熟度大于包裹体中古油的成熟度;外光源365nm激发下的色坐标小于显微镜自身汞灯紫光激发下的油气包裹体的色坐标,原因是后者的荧光光谱不受胶结物和石英颗粒自身荧光的影响,其色坐标更真实地反应了油气包裹体本身的颜色;固液包裹体或液态包裹体所含烃比气液包裹体重;外光源激发下同一层位中不同油气包裹体的色坐标覆盖的较宽范围反应了第2期次充注的油气可能来自两个成熟度不同的烃源岩。
     本装置的最大特点是无需对显微镜做任何改造,通过普通倒置荧光显微镜和反射式显微物镜相结合,实现了昂贵的紫外显微镜在测量单个油气包裹体紫外-可见显微荧光光谱方面的功能,总体造价大大降低。该装置在透明材料微区显微荧光光谱测量方面具有潜在的应用价值,由于采用了倒置荧光显微镜,该装置还可以用于生物切片微区(细胞、生物包裹体等)紫外-可见显微荧光光谱的测量。
A review, including in micro-fluorescence, micro-Raman spectroscopy, micro-Fourier transformation infrared spectroscopy, synchrotron radiation X-ray fluorescence microprobe, particle induced X-ray emissions and laser ablation inductively coupled plasma mass spectrometry, was presented about the testing techniques for single inclusions in recent years. Based on above techniques, an experimental setup lied on common inverted fluorescence microscope for measuring UV-VIS spectra of single hydrocarbon inclusions was brought up. This setup includes in an inverted fluorescence microscope(IFM), a reflective objective(RO), a micro-lens(ML), a fiber cable, a UV-VIS spectrometer and a computer. All the elements were integrated into a whole system by a fiber base plate and a RO-ML-fiber adaptor. It is easily to make the RO and the objective of the IFM con-focus by a 3D displacement stage with a 2μm space resolution. The minimum diameter of the focal point is 12um. By using this setup one can localize a single hydrocarbon inclusion in the middle of the vision field of the IFM and take photo for it, excite it using external light source or internal mercury lamp of the IFM, measure and analyze the UV-VIS spectrum or calculate the chromaticity coordinates.
     After the setup was successfully established, the sandstones from 5 oil wells localized middle-shallow layers in the south and west of Songliao Basin were under studied. The sandstone thin sections were observed under polarized light/fluorescence microscope. The GOI(grains containing oil inclusions), homogeneous temperature and salinity of the inclusions were measured. The above experiment results show that there were two times hydrocarbon accumulation for the strata of the 5 oil wells (Bai 95, Hua 5, Jian 22, Nong 29 and Fu 4). After above experiments, the UV-VIS spectra of 38 typical hydrocarbon inclusions of secondary charge(excited by the external light source or internal mercury lamp of the IFM) from 5 oil wells were measured. The results showed that the spectra excited by the internal mercury lamp were influenced by the fluorescence of the cement and the silicon grains. So the spectra cann't reflect the real information of the palio-oils in the inclusions. When the size of the focal point of the external light source is larger than that of the inclusion, one has to take into account the "background" fluorescence coming from the silicon grain. For the spectra excited by 250nm external light source, by comparison the spectra of the hydrocarbon inclusions with the standard aromatic hydrocarbons, one can quantitative determine the main aromatic hydrocarbons in the inclusions. The palio-oils in the inclusions are mainly middle weight aromatic hydrocarbon, for example, dicyclic, tricyclic, tetracyclic or dicyclic, tricyclic, tetracyclic and petracyclic aromatic hydrocarbons. They all contained some weight aromatic hydrocarbons and nonhydrocarbons. Further more, the maturities of the palio-oils and the source rocks can be quantitative obtained. And for the spectra excited by 365nm external light source, we defined an index S390-455/S455-680, which reflects the maturity of the oil. A relationship between S390-455/S455-680 and Rc calculated by GC-MS experiment was established.
     Except for the spectra of single hydrocarbon inclusions, we also measured the UV-VIS spectra of 29 crude oils from these 5 oil wells. For the spectra excited by 250nm light, by comparison the spectra of the crude oils with the standard aromatic hydrocarbons, one can quantitative determine the main aromatic hydrocarbons in the crude oils. The aromatic hydrocarbons in the crude oils are mainly dicyclic and tricyclic aromatics. There are some tetracyclic aromatics in the crude oils. The crude oils of the Nong 29 well are special. There are some weight aromatic hydrocarbons. The weight aromatics and nonhydrocarbons in the crude oils are far less than that in the palio-oils of the hydrocarbon inclusions. And by the peak positions and the HWFHs (half width of full height) of the spectra, one can quantitative determine the maturities of the crude oils. And by Qi index, the oil-water interface was obtained. But the Qi index was limited. For the samples contained more weight hydrocarbons or more single circle aromatic hydrocarbon, it will lose effect. And for the spectra excited by 365nm light, a relationship between S390-455/S455-680 and Rc calculated by GC-MS experiment was also established.
     By Colourometry principle, the chromaticity coordinates of the hydrocarbon inclusions, excited by 365nm of the external light source and the violet light of the internal mercury lamp of the IFM, and the crudes oils were calculated. The results showed that:(1) All the chromaticity coordinates of the crude oil are less than the ones of the single inclusions, this indicates that the maturities of the crude oils are higher than the palio-oils in the inclusions; (2) All the chromaticity coordinates of the single hydrocarbon inclusions excited by the external light source are less than that of the ones by internal mercury lamp, which shows the former wasn't influenced by the fluorescence from the cement and the silicon grains. The chromaticity coordinates of the single hydrocarbon inclusions excited by the external light source reflect the real colors of the inclusions; (3) The UV-VIS spectra show that the hydrocarbons contained in the solid-liquid or pure liquid inclusions are more weight than that in the gas-liquid inclusions; (4) The wider chromaticity coordinates ranges of the single hydrocarbon inclusions from same strata reflect the secondary oil charge may come from two maternal sources with different maturities.
     The prominent feature of this setup is not necessary make any rebuilt to the microscope. By combining the microscope and the RO, the setup can be used as an expensive UV microscope in measuring the UV-VIS spectra of single hydrocarbon inclusions. The total cost was greatly lowered. It is promising to measure the UV-VIS spectra of micro-size samples. Because the inverted microscope was assumed, it can also be used to measure UV-VIS spectra of bio-samples, such as cells or bio-inclusions.
引文
[1]何知礼.包裹体矿物学.1982,地质出版社
    [2]陆安福,卢焕章,余铁阶等编译.矿物中的包裹体.北京:科学出版社,1989.
    [3]卢焕章,范宏瑞,倪培,欧光习,沈昆,张文淮.流体包裹体.北京:科学出版社,2004.
    [4]刘德汉,卢焕章,肖贤明.油气包裹体及其在石油勘探和开发中的应用.广州:广东科技出版社2007.
    [5]Eadington, P. J. Fluid history analysis-A new concept for prospect evaluation. The APEA Journal,1991, 31:202-294.
    [6]Haseldine R. S, Samson I. M., Confort C. Dating diagenesis in a petroleum basin:a new fluid inclusion method. Nature,1984,307:354-357.
    [7]施继锡,李本超,傅家谟等.有机包裹体及其与油气的关系.中国科学(B辑),1987(3):318—325.
    [8]陈容林.沉积岩矿物包裹体测试方法及其在石油地质的应用.石油地质实验测试技术新发展.北京:地质出版社,1997,132—145.
    [9]麦碧娴,汪本善.泌阳凹陷下第三系流体包裹体特征及其应用—流体包裹体研究.地球化学,1991,4:331—341.
    [10]张有瑜.塔里木盆地典型砂岩油气储层自生伊利石K-Ar同位素测年研究与成藏年代探讨.2004,11(4):636-647.
    [11]Burruss.R, Cerone K. R, Harris P. M. Timing of hydrocarbon migration:evidenced from fluid inclusions in calcite cements, tectoncis and burial history. In:Schneidemann N, Harris P M, eds. Carbonate cements. Yulsa:Soc Econ Paleontol Mineral,1985,277-289.
    [12]Pagel M, Walgenwitz F, Dubessy J. Fluid inclusions in oil and gas-bearing sedimentary formations. Burrus J. Thermal modeling in sedimentary basins. Houston, Texas:Gulf Publishing Com.1985,565-583.
    [13]Nedkvitne T, Karlsen D A, Bjorlykke K, et al.. Relaionship between reservoir diagenetic evolution and petroleum emplacement in the Ula field, North Sea. Marine and Petroleum Geology,1993,10: 255-270.
    [14]张金亮等.利用流体包裹体研究注入史.西安石油学院学报,1998,13(4):1-4.
    [15]Keyu Liu, Peter Eadington, David Coghlan. Fluorescence evidence of polar hydrocarbon interaction on mineral surfaces and implications to alteration of reservoir wettability. Journal of Petroleum Sciences and Engineering,2003,39:275-285.
    [16]Keyu Liu, Peter Eadington, heather middleton, et al.. Applying quantitative fluorescence techniques to investigate petroleum charge history of sedimentary basins in Australia and Papuan New Guinea. Journal of Petroleum Science and Engineering.2006,1-13
    [17]Keyu Liu, Peter Eadinton. Quantitative fluorescence techniques for detecting residual oils and reconstructing hydrocarbon charge history. Organic Geochemistry,2005,36:1023-1036.
    [18]李素梅,庞雄奇,刘可禹等.东营凹陷原油、储层吸附烃全扫描荧光特征与应用.地质学报,2006,80(3):439-445.
    [19]王飞宇,师玉雷,曾花森,刘可禹.利用油包裹体丰度识别古油藏和限定成藏方式.矿物岩石地球化学通报,2005,25(1):12-18.
    [20]BUrruss R. C. Practical aspects of fluorescence microscopy of petroleum fluid inclusions. [A]. Barke, C F, Kopp O, eds. Luminescence microscopy:qualitative and quantitative applications[R]. Society for Sedimentary Geology (SEPM) ShortCourse,1991 (25) 1-7.
    [21]刘艳荣,吕新彪,何谋春.FI技术在油气地质研究中的应用.矿物岩石与地球化学,2003:22(3)245-250。
    [22]Jan Kihle. Adaptation of fluorescence excitation-emission micro-spectroscopy for characterization of single hydrocarbon fluid inclusions, Org. Geochem.1995,23(11/12):1029-1042.
    [23]叶松,张文淮,张志坚.有机包裹体荧光显微分析技术简介.地质科技情报,1998,17(2):76-80.
    [24]Xianming Xiao, R. W. T. Wilkins, Liu Zufa, et al.. A preliminary investigation of the optical properties of asphaltene and their application to source rock evaluation. Organic Geochemistry,1998, 28(11):669-676.
    [25]Xiao Xianming, R. W. T. Wilkins, Liu Dehan, et al. Investigation of thermal maturity of lower Palaeozoic hydrocarbon source rocks by means of vitrinite-like maceral reflectance - a Tarim Basin case study. Organic Geochemistry,2000,31(10):1041-1052.
    [26]L. D. Stasiuk, L. R. Snowdon. Fluorescence micro-spectrometry of synthetic and natural bydrocarbon fluid inclusions:crude oil chemistry, density and application to petroleum migration. Applied Geochemistry.1997,12:229-241.
    [27]M. A. Caja, A. Permanyer, J. Kihle, I. A. Munz, H. Johansen. Fluorescence significance of oil fluid inclusions and its relationships with oil migration. XI CONGRESO LATINOAMERICANO DE GEOQUIMICA ORGANICA 2-6 de Noviember de 2008, Isla de Margarita, Venezuela.1988-200820 ANOS DE ALAGO.
    [28]M. A. Caja, A. Permanyer, I. A. Munz, et al. Preliminary data on oil and aqueous fluid inclusions of the fracture-fill in the Corones and Armancies Fms, Eocene, SEPyrenees. GEOGACETA, 42,2007127-130.
    [29]Ronald W. T. Wilkins John R. Wilmshurst, Nigel J. Russell, et al. Fluorescence alteration and the suppression of vitrinite reflectance. Organic Geochemistry,1992,18(5):629-640.
    [30]Ronald W. T. Wilkins, John R. Wilmshurst, George Hladky, et al.. Should fluorescence alteration replace vitrinite reflectance as a major tool for thermal maturity determination in oil exploration? Organic Geochemistry,1995,22(1):191-209.
    [31]H. B. Lo, R. W. T. Wilkins, M. V. Ellacott, et al.. Assessing the maturity of coals and other rocks from North America using the fluorescence alteration of multiple macerals (FAMM) technique. International Journal of Coal Geology,1997,33(1):61-71.
    [32]H. Veld, R. W. T. Wilkins, Xiao Xianming, et al.. A fluorescence alteration of multiple macerals (FAMM) study of Netherlands coals with "normal" and "deviating" vitrinite reflectance. Organic Geochemistry,1997,26(3-4):247-255.
    [33]刘德汉,肖贤明,贾蓉芬等.碳酸盐岩生烃运移的激光-荧光和有机包裹体研究.海相油气地质.2000,5(1-2):62-68.
    [34]Xiao Xianming, R. W. T. Wilkins, Dehan Liu etal. Laser-induced fluorescence microscopy—application to possible high rank and carbonate source rocks. International Journal of Coal Geology,2002,5(2):129-141.
    [35]刘祖发, 肖贤明,刘德汉等.中国煤和烃源岩镜质组的激光诱导荧光显微特征及其应用.地球化学,2003,324:382-386.
    [35]S. Damaskinos, A. E. Dixon, K. A. Ellis, et al. Imaging biological specimens with the confocal scanning laser microscope/macroscope. Micron,1995,26(6):493-502.
    [36]Kevin Braeckmans, Liesbeth Peeters, Niek N. Sanders, et al.. Demeester Three-Dimensional Fluorescence Recovery after Photobleaching with the Confocal Scanning Laser Microscope. Biophysical Journal,2003,85(4):2240-2252.
    [37]J. Pironon, M. Canals, J. Dubessy. Columetric reconstruction of individual oil inclusions by confocal scanning laser microscopy. Eur. J. mineral,1998,10:1143-1150.
    [38]A.C. Aplin, G. Macleod, S. R. Larter, K.S. Pedersen, et al.. Combined use of confocal laser scanning micoscopyand PVT simulation for estimating the composition and physical propertises of petroleum in fluid inclusions. Marine and petroleum geology,1999,16(2):97-110.
    [39]D. H. Liu, X. M. Xiao, J. K. Mi, et al. Determination of trapping pressure and temperature of petroleum inclusions using PVT simulation software—a case study of Lower Ordovician carbonates from the Lunnan Low Uplift, Tarim Basin. Marine and Petroleum Geology,2003,20(1):Pages 29-43.
    [40]L.D. Stasiuk. Confocal laser scanning fluorescence microscopy of Botryococcus alginate from boghead oil shale, Boltysk, Ukraine:selective preservation of various micro-algal components. Organic Geochemistry,1999,30:1021-1026.
    [41]L.D. Stasiuk, h. Sanei. Characterization of iatom-derived lipids and chlorophyll within Holocene laminites, Saanich Inlet, British Columbia, using conventional and laser scanning fluorescence microscopy. Organic Geochemistry,2001,32:1417-1428.
    [42]B. G. Chae, Y. Ichikawa, G. C. Jeong. et al. Roughness measurement of rock discontinuities using a confocal laser scanning microscope and the Fourier spectral analysis. Engineering Geology,2004, 72(3-4):181-199.
    [43]Shixin Liu, A.H.M. Faisal Anwar, Byung Cheol Kim. et a.l. Observation of microcracks in granite using a confocal laser scanning microscope. International Journal of Rock Mechanics and Mining Sciences,2006,43(8):1293-1305.
    [44]Jung Hae Choi, A.H.M. Faisal Anwar, Yasuaki Ichikawa. Observation of time-dependent local deformation of crystalline rocks using a confocal laser scanning microscope. International Journal of Rock Mechanics and Mining Sciences,2008,459(3):431-441.
    [45]Patrick Stoller, Yves Kruger, Jaro Ricka, et al.. Femtosecond lasers in fluid inclusion analysis: Three-dimensional imaging and determination of incl Earth and Planetary Science Letters,2007, 253(3-4):359-368.usion volume in quartz using second harmonic generation microscopy.
    [46]Boyd. Nonlinear Optics. London:Academic Press,1992.
    [47]刘颂豪,赫光生.非线性光学.广州:广东科技出版社,1995.
    [48]Ernst A. J. Burke. Raman microspectrometry of fluid inclusions. Lithos,2002,5(1-4):139-158.
    [49]孙青,曾贻善.单个流体包裹体成分无损分析进展.地球科学进展,2000,15(6):673-677.
    [50]Pasteris J. D., Wopenka B and Seitz J Z. Paractical aspects of quantitative laser Raman microprobe spectroscopy for the study of fluid inclusions. Geochim Cosmochim Acta,1988,52:979-988.
    [51]P.J. Murphy, S. Roberts. Laser Raman spectroscopy of differential partitioning in mixed-gas clathrates in H2O---O2---N2---CH4 fluid inclusions:Implications for microthermometry. Geochimica et Cosmochimica Acta,1995,59(23):4809-4824.
    [52]Damien Guillaume, Stephane Teinturier, Jean Dubessy, et al. Calibration of methane analysis by Raman spectroscopy in H2O-NaCl-CH4 fluid inclusions. Chemical Geology,2003,194(1-3):41-49
    [53]Jean Dubessy, Stephane Buschaert, William Lamb, et al. Methane-bearing aqueous fluid inclusions: Raman analysis, thermodynamic modelling and pplication to petroleum basins. Chemical Geology, 2001,173(1-3):193-205.
    [54]M.J. Severs, T. Azbej, J.B. Thomas, et al.. Exp erimental determination of H2O loss from melt inclusions during laboratory heating:Evidence from Raman spectroscopy. Chemical Geology,2007, 237(3-4):358-371.
    [55]Y. Morizet, M. Paris, F. Gaillard, et al. Raman quantification factor calibration for CO-CO2 gas mixture in synthetic fluid inclusions:Application to oxygen fugacity calculation in magmatic systems. Chemical Geology, to be published in 2009.
    [56]K. M. Rosso, R. J. Bodnar. Microthermometric and Raman spectroscopic detection limits of CO2 in fluid inclusions and the Raman spectroscopic characterization of CO2. Geochimica et Cosmochimica Acta,1995,59(19):3961-3975.
    [57]Jinyang Chen, Haifei Zheng, Wansheng Xiao, et al.. Raman spectroscopic study of CO2-NaCl-H2O mixtures in synthetic fluid inclusions at high temperatures. Geochimica et Cosmochimica Acta,2004, 68(6):1355-1360.
    [58]Tristan Azbej, Matthew J. Severs, Brian G. Rusk, et al.. In situ quantitative analysis of individual H2O-CO2 fluid inclusions by laser Raman spectroscopy. Chemical Geology,2007,237(3-4):255-263.
    [59]F. Lin, R.J. Bodnar, S.P. Becker. Experimental determination of the Raman CH4 symmetric stretching (v1) band position from 1-650 bar and 0.3-22 ℃:Application to fluid inclusion studies. Geochimica et Cosmochimica Acta,2007,71(15):3746-3756.
    [60]Donatienne Derome, Michel Cathelineau, Cecile Fabre, et al.. Paleo-fluid composition determined from individual fluid inclusions by Raman and LIBS:Application to mid-proterozoic evaporitic Na-Ca brines (Alligator Rivers Uranium Field, northern territories Australia). Chemical Geology, 2007,237(3-4),240-254.
    [61]Aleksandra Weselucha-Birczynska, Tomasz Tobola, Lucyna Natkaniec-Nowak. Raman microscopy of inclusions in blue halites. Vibrational Spectroscopy,2008,48(2):302-307.
    [62]Martina Menneken, Thorsten Geisler. An evaluation of the potential of using Raman spectroscopy to determine the carbon isotope composition of CO2 inclusions. Journal of Geochemical Exploration, 2009,101(1):70.
    [63]R. P. Hapanowicz, R. A. Condrate Sr.. Raman Spectral Investigation of Sulfate Inclusions in Sodium Calcium Silicate Glasses. Journal of Solid State Chemistry,1996,123(1):183-185.
    [64]D. Bersani, E. Salvioli-Mariani, M. Mattioli, et al..Raman and micro-thermometric investigation of the fluid inclusions in quartz in a gold-rich formation from Lepaguare mining district (Honduras, Central America). Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, In Press, Corrected Proof, Available online 7 November 2008.
    [65]L.M. Barron, B.J. Barron, T.P. Mernagh, et al.. Ultrahigh pressure macro diamonds from Copeton (New South Wales, Australia), based on Raman spectroscopy of inclusions. Ore Geology Reviews, 2008,34(1-2):76-86.
    [66]Junji Yamamoto, Hiroyuki Kagi, Ichiro Kaneoka, et al..Fossil pressures of fluid inclusions in mantle xenoliths exhibiting rheology f mantle minerals:implications for the geobarometry of mantle minerals using micro-Raman spectroscopy. Earth and Planetary Science Letters,2002,198(3-4):511-519.
    [67]Junji Yamamoto, Hiroyuki Kagi, Yoko Kawakami, et al.. Paleo-Moho depth determined from the pressure of CO2 fluid inclusions:Raman spectroscopic barometry of mantle-and crust-derived rocks. Earth and Planetary Science Letters,2007,253(3-4):369-377.
    [68]何谋春,吕新彪,王群英,有机包裹体的拉曼光谱测定,石油实验地质,2002,24(2):280-281,381.
    [69]张鼐,宋孚庆,王汇彤,石油中饱合烃类的喇曼特征,矿物岩石地球化学通报,2006,25(1):33-36.
    [70]张鼐,田作基,冷莹莹等,烃和烃类包裹体的拉曼特征,中国科学D辑:地球科学,2007,37(7):900-907.
    [71]赵瑶兴,孙祥玉.有机分子结构光谱鉴定.北京:科学出版社,2003年.
    [72]翁诗甫.付里叶变换红外光谱原理及应用.北京:科学出版社,2005.
    [73]Calas G, Huc A Y, Pajot B. Utilisation de la spectrometrie infraouge pour l'etude des inclusions fluids des minera intrests et limites. Bull Soc Gr Mineral Cristallogr,1976,99:153-160.
    [74]Bfigitte Wopenka, Jill Dill Pasteris, John J. Freenam. Analysis of individual fluid inclusions by Fouriertramsform infrared and Raman microspectroscopspectroscop. Geochimica et Cosmochimica Acta,1990,54:519-533。
    [75]孙青,翁诗甫张煦.付里叶变换红外光谱分析矿物有机包裹体的限制——基体吸收问初探.地球科学-中国地质大学学报,1998,23(3):248-252。
    [76]Jacques Pironon, Odile Barres. Influence of brine-hydrocarbon interaction on FT-IR microspectroscopic analysis if intracrystalline liquid inclusions. Geochimica et Cosmochimica Acta,1992,56:169-174。Geochimica et Cosmochimica Acta,1990,54:509-518.
    [77]Jacques Pironon, R. Thiery, S. Teinturier, et al.. Water on petroleum inclusions:evidence from Raman and FT-IR measurements, PVT consequences, Journal of Geochemical Exploration,2000, 69-70:663-668.
    [78]曹剑,姚素平,胡文瑄等.油气包裹体中水的检出及其意义,科学通报,2006,51(13):1583-1588.
    [79]Dawei Meng, Xiuling Wu, Xiaoyu Fan, et al.. Submicron-sized fluid inclusions and distribution of hydrous components in jadeite, quartz and symplectite-forming minerals from UHP jadeite-quartzite in the Dabie Mountains, China:TEM and FTIR investigation. Applied Geochemistry,2009,24(4): 517-526.
    [80]Volker Liiders, Martin Ziemann. Possibilities and limits of infrared light microthermometry applied to studies of pyrite-hosted fluid inclusions. Chemical Geology,1999,154(1-4):169-178.
    [81]Robert Moritz. Fluid salinities obtained by infrared microthermometry of opaque minerals: Implications for ore deposit modeling - A note of caution, Journal of Geochemical Exploration,2006, 89(1-3):284-287.
    [82]Pei Ni, Jianbao Huang, Xudong Wang, et al.. Infrared fluid inclusion microthermometry on coexisting wolframite and quartz from Dajishan tungsten deposit, Jiangxi province, China. Geochimica et Cosmochimica Acta,2006,70(18):A444.
    [83]Henryk Kucha, Johann G Raith. Gold-oxysulphides in copper deposits of the Greywacke Zone, Austria:A mineral chemical and infrared fluid inclusion study. Ore Geology Reviews,2009,35(1): 87-100. [84]Richard Wysoczanski, Kenichiro Tani. Spectroscopic FTIR imaging of water species in silicic volcanic glasses and melt inclusions:An example from the Izu-Bonin arc. Journal of Volcanology and Geothermal Research,2006,156(3-4):302-314.
    [85]A.R.L. Nichols, R.J. Wysoczanski. Using micro-FTIR spectroscopy to measure volatile contents in small and unexposed inclusions hosted in olivine crystals. Chemical Geology,2007,2429 (3-4): 371-384.
    [86]杨福家,原子物理学,2000,7,北京:高等教育出版社(第三版)。
    [87]徐叙瑢,苏勉曾.发光学与发光材料.北京:化学工业出版社,2004,10,第一版.
    [88]Frantz J D, Mao H K, Zhang Y G, et al.. Analysis of fluid inclusions by X-ray fluorescence using synchrotron radiation. Chem. Geol.1988,69:235-244.
    [89]Rankin A H, Ramsey M H, Coles B, et al.. The composition of hypersaline, iron-rich granitic fluids based on laser-ICPnand synchrontron-XRF microscope analysis of individual fluid inclusions in topaz, Mole granite, eastern Australia. Geochim Cosmochim Acta,1992,56:67-79.
    [90]Vanko D A, Bonnin-M M, PhilippotP, et al.. Fluid inclusions in quartz from oceanic hydrothermal specimens and the Bingham, Utah porphyryCu deposit:a study with PIXE and SXRF. Chem. Geol.,2001,173:227-238.
    [91]Menez B, Philippot P, Mosbah M B, et al.. Analysis of individual fluid inclusions using synchrotron X-ray fluorescence microscope:progress toward calibration for trace elements. Geochim Cosmochim Acta,2001,66:561-576.
    [92]J. A. mavrogenes, R. J. Bodnar, A. J. Anderson, et al.. Assement of the uncertainties and limitations of quantitative elemental analysis of individual fluid inclusions using synchrotron X-ray fluorescence(SXRF). Geochimica et Cosmochimica Acta,1995,59(19):3987-3995.
    [93]P. Philippot, B. Menez, P. Chevallier, et al.. Absorption correction procedure for quantitative analysis of fluid inclusions using synchrotron radiation X-ray fluorescence. Chemical Geolegy,1998,144: 121-136.
    [94]J. Cauzid, P. Philippot, A. Somogyi, et al. Standardless quantification of single fluid inclusions using synchrotron radiation inducednX-ray fluorescence, Chemical Geology,2006,227:165-183.
    [95]Francisco Javier Rios, James V. Alves, Carlos A. Perez, et al.. Combined investigations of fluid inclusions in opaque ore minerals by NIR/SWIR microscopy and microthermometry and synchrotron radiation X-ray fluorescence. Applied Geochemistry,2006,21(5):813-819.
    [96]Y.Y. Huang, K. F. Li, W. he, et al.. Single fluid inclusion study by SRXRF microscope. Nuclear instruments and methods in physics research A.2001,467-468:1315-1317.
    [97]Y. H. Tang, C.M. Han, Z. K. Bao, et al.. Analysis of apatite crystals and their fluid inclusions by synchrotron radiation X-ray fluorescence microprobe. Spectrochemica Acta part B,2005,60:439-446.
    [98]P.I. Raynal, E. Quirico, J. Borg, et al.. Synchrotron infrared microscopy of micro-sized extraterrestrial grains. Planetary and space science.2000,48:1329-1339.
    [99]Nicole Guilhaumou, Violaine Sautter, Paul Dumas. Synchrotron FTIR microanalysis of volatiles in melt inclusions and exsolved particles in ultramafic deep-seated garnets. Chemical Geology,2005, 223(1-3):Pages 82-92.
    [100]Andersen T, Clark A H, Ma X P, et al.. Proton-induced X-ray and Gamma-ray emission analysis of unopeded fluid inclusions. Econ Geol,1989,84:924-939.
    [101]Ryan C. G., Cousens D. R., Heinrich C. A., et al.. Quantitantive PIXE microanalysis of fluid inclusion based on a layered yield model. Nucl. Instrum. Methods Phys. Res.1991, B54,292-297.
    [102]Ryan C. G., Heinrich C. A., and Mernagh T.P. PIXE microanalysis of fluid inclusion and its application to study ore metal segregation between magmatc brine and vapor. Nucl. Instrum. Meth. Phys. Res.1993, B77,463-471.
    [103]Ryan C. G., Heinrich C. A., van Achterbergh E., et al.. Microanalysis of ore-forming fluids using the scanning proton microscope. Nucl. Instrum. Methods Phys. Res.1995, B104,182-190.
    [104]M. Kurosawa, S.Shimano, S. Ishii, et al.. Quantitative PIXE analysis of single fluid inclusions in quartz vein:Chemical composition of hydrothermal fluids related to granite. Nucl. Instrum. Methods Phys. Res.2003,B210,464-467.
    [105]Masanori Kurosawa, Sadayoshi Shimano, Satoshi Ishii, et al. Quantitative trace element analysis of single fluid inclusions by proton-inmochimica Acta,2003,67(22):4337-4352.
    [106]Masanori Kurosawa, Satoshi Ishii, Kimikazu Sasa. Quantitative PIXEe analysis of single fluid inclusions in quartz crystals with a 1.92MeV tandetron. Nucl. Instrum. Methods Phys. Res.2008,B266, 3633-3642.
    [107]魏元柏,周世俊,陈武等.核微探针在包裹体成分分析中的应用.自然科学进展,1998,8(2):220-223。
    [108]王丽娟,石山大三,左藤比柰子等,满洲里-新巴尔虎右旗斑岩系列矿床石英流体包裹体液相组分的PIXE分析和地质应用,地球化学,1999,28(2)145-153。
    [109]C. A. Heinrich, T. Pettke, W. E. Halter, et al. Quantitative multi-element analysis of minerals, fluid and melt inclusions by laser-ablation inductively-coupled-plasma mass-spectrometry. Geochimica et Cosmochimica Acta,2003,67(18):3473-3497.
    [110]Gunther D, Audetat A, Frischknecht R, et al.. Quantitative analysis of major, minor and trace elemens in fluid inclusions using lasernablation inductively coupled plasma mass spectrometry. Journal of Analytical atomatic spectrometry,1988,13:263-270.
    [111]Werner E. Halter, Thomas Pettke, Christoph A. Heinrich, et al.. Major to trace element analysis of melt inclusions by laser-ablation ICP-MS:methods of quantification. Chemical Geology,2002, 183(1-4):63-86.
    [112]Audetat A, Guthner D, Heinrich C A. Formation of a magmatic-hydrothermal ore deposit:insights with LA_ICP-MS analysis if fluid inclusions. Science,1998,279:2091-2094.
    [113]J. C. M. de Hoog, P. R. D. Mason, M. J. van Bergen. Sulfur and chalcophile elements in subduction zones:constraints from a laser ablation ICP-MS study of melt inclusions from Galunggung Volcano, Indonesia. Geochimica et Cosmochimica Acta,2001,65(18):3147-3164. Chemical Geology, Volume 124, Issues 1-2,25 July 1995, Pages 55-65.
    [114]Simon Chenery, Jennifer M. Cook, Michael Styles, et al. A. Heinrich Compositions of magmatic hydrothermal fluids determined by LA-ICP-MS of fluid inclusions from the porphyry copper-molybdenum deposit at Butte, MT. Chemical Geology,2004,1-4 (27):173-199.
    [115]Zoltan Zajacz, Jacob J. Hanley, Christoph A. Heinrich, et al.. Diffusive reequilibration of quartz-hosted silicate melt and fluid inclusions:Are all metal concentrations unmodified? Geochimica et Cosmochimica Acta,2009,73(10):3013-3027.
    [116]李国玉,吕鸣岗,等.中国含油气盆地图集.北京:石油工业出版社,2002.25-27.
    [117]刘鸿友,苗洪波,陈文龙,等.松辽盆地南部中浅层资源潜力.中国石油勘探,2003,8(3):13-17,49.
    [118]王永春.松辽盆地南部岩性油气藏的形成和分布.北京;石油工业出版社,2001,2-80.
    [119]王永春,康伟力,毛超林.吉林探区油气勘探理论与实践.北京;石油工业出版社,2007,3-89.
    [120]沈安江,康伟力.松辽盆地南部白垩纪层序地层与岩性地层油气藏勘探.北京;石油工业出版社,2006,4-131.
    [121]张鑫.松辽盆地南部中浅层沉积演化与油气分布:[研究生学位论文].山东:中国海洋大学海洋地球科学学院,2008.
    [122]张金亮,张鑫等.松辽盆地南部中浅层沉积相与沉积演化.内部报告.
    [123]许金钩,王尊本.荧光分析法,北京:科学出版社,2006.
    [124]方惠群,于俊生,史坚.仪器分析,北京:科学出版社,2006,2.
    [125]朱若华,晋卫军.室温磷光分析法原理与应用,北京:科学出版社,2006.
    [126]EadingtonPJ, etal. Identifying oil well sites. United States Patent Application,1996,5:543-616.
    [127]Lisk M, O'Brien G W,Eadington P J. Quantiative evaluation of the oil-leg potential in the Oliver gas field, Timor Sea, Austria. AAPG Bulletin,2002,86:1531-1542.
    [128]江福杰,姜振学,庞雄奇等.含油气包裹体丰度指数确定油气运聚范围及应用.西南石油学院学报,2006,28(5):15-18。
    [129]Keyu Liu, Peter Eadington. Quantiative fluorescence techniques for detecting residual oils and resconstructing hydrocarbon charge history. Organic Geochemistry,2005,36:1023-1036.
    [130]王显东,姜振学,庞雄奇.古油水界面恢复方法综述.地球科学进展,2003,18(3):412-419。
    [131]Cecilia Viti, Maria-Luce Frezzotti. Transmission electron microscopy applied to fluid inclusion investigations. Lithos,2001,55(1-4):125-138.
    [132]Falko Langenhorst, Jean-Paul Poirier. Transmission electron microscopy of coesite inclusions in the Dora Maira high-pressure metamorphic pyrope-quartzite. Earth and Planetary Science Letters,2002, 203(3-4):793-803.
    [133]L.A. Heimbrook, K.W. Moyers, S. Nakahara. New technique for analyzing small inclusions using transmission electron microscopy and laser ablation microprobe mass spectrometry. Materials Letters, 1990,9(10):384-388.
    [134]Keyu Liu, Peter Eadington, Heather Middleton, et al. Applying quantitative fluorescence techniques to investigate petroleum charge history of sedimentary basins in Australia and Papuan New Guinea. Journal of Petroleum Science and Engineering,2007,57:139-151.
    [136]李素梅,庞雄奇,刘可禹等.东营凹陷原油、储层吸附烃全扫描荧光特征与应用.地质学报,2006,80(3):439-445.
    [137]Simon C. George, Frank W. Krieger, Peter J. Eadington, et al.. Geochemical comparison of oil-bearing fluid inclusions and produced oil from the Toro sandstone, Papua New Guinea. Organic Geochemistry,1997,26(3-4):155-173.
    [138]Herbert Volk, Simon C. George, Heather Middleton, et al. Geochemical comparison of fluid inclusion and present-day oil accumulations in the Papuan Foreland-evidence for previously unrecognised petroleum source rocks.Organic Geochemistry,2005,36(1):29-51.
    [139]Se Gong, Simon C. George, Herbert Volk, et al. Petroleum charge history in the Lunnan Low Uplift, Tarim Basin, China-Evidence from oil-bearing fluid inclusions. Organic Geochemistry,2007,38(8): 1341-1355.
    [140]Simon C. George, Herbert Volk, Manzur Ahmed. Geochemical analysis techniques and geological applications of oil-bearing fluid inclusions, with some Australian case studies. Journal of Petroleum Science and Engineering,2007,57(1-2):119-138.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700