用户名: 密码: 验证码:
宜巴高速公路巴东组软岩碎屑土夹层的非饱和特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
巴东组红层在我国鄂西、湘西北、川东和黔北分布很广,其中三叠系中统巴东组紫红色软岩在巴东县辖区内分布广泛,该软岩属于人们俗称的“巴二”地层,是典型的“易滑地层”。巴东组软岩含有一定量的伊利石和蒙脱石或伊利石与蒙脱石互层结构,导致其易发生水-岩相互作用,使其具有一定的膨胀和崩解特性,加速其物理化学风化进程。巴东组软岩中软弱夹层十分发育,而控制岩体变形破坏特性的往往是这些软弱夹层,许多岩体变形失稳都是沿软弱夹层面产生。随着西部大开发战略的推进,公路、铁路建设事业蓬勃发展,而高速铁路、公路在上述地区的修建不可避免的会穿越上述地层,软弱夹层对边坡工程产生的病害不断发生。特别是对于修建于巴东组软岩地区内的高速公路,开挖形成的路堑边坡失稳事故时有发生。宜昌-巴东高速公路有30公里穿越“巴东组”地层,开挖形成的部分路堑边坡发育碎屑土夹层,一定条件下边坡有沿碎屑土夹层产生失稳破坏的风险。
     研究区部分路堑边坡发育碎屑土夹层,降雨之后,此类边坡的稳定性会随碎屑土夹层含水状态的增大而变差,有失稳破坏的风险。目前针对研究区此类边坡的病害,可借鉴的成熟理论和经验并不丰富。为此,本文结合宜巴高速路某典型含碎屑土夹层的巴东组软岩路堑边坡,以碎屑土夹层作为研究对象,从非饱和土角度研究其工程特性,以全面了解水对该类软弱夹层工程特性的影响,进而分析其对软岩路堑边坡稳定性的影响。研究成果对指导当地工程实践活动,具有重要的工程意义。
     本文在收集研究区巴东组软岩及碎屑土夹层的地层沉积资料、路堑边坡病害特征等工作基础上,通过X射线衍射矿物鉴定试验、化学成分分析试验、基本物理力学性质试验、土水特性试验、非饱和土强度试验、非饱和土蠕变试验、数值模拟试验等手段,详细研究了碎屑土夹层的矿物组成、化学成分、物性指标、土水特性、非饱和强度特性、非饱和蠕变特性、不同含水状态对路堑边坡稳定性影响,定性分析了巴东组软岩碎屑土夹层的工程特性,定量研究了基质吸力对碎屑土夹层强度与变形特性的影响,并总结其不同基质吸力状态对软岩路堑边坡稳定性的影响。取得的研究成果如下:
     (1)巴东组软岩碎屑土夹层的工程地质性质与物理力学性质研究。通过对宜昌-巴东高速公路软岩路堑边坡发育的软弱夹层的工程地质性质研究,并结合现场地质调查,初步掌握了研究区软弱夹层的赋存环境,掌握了其成因及形成过程,并对其进行了分类。针对研究区路堑边坡的主要工程问题,重点调查了巴东组软岩碎屑土夹层的分布特征,介绍了其对路堑边坡存在的潜在危害,工程中应对此类软岩路堑边坡加以重视。利用X-矿物衍射试验、化学全分析试验,并结合碎屑土夹层的基本物理力学性质试验,得到了碎屑土夹层的矿物及化学成分、基本物性指标,初步掌握了水对其强度特性的影响,进而为后期定量开展水对其强度与变形性质影响提供参考依据。研究表明巴东组软岩碎屑土夹层的粘土矿物含量较高,水敏感性强,水对其工程特性影响较大,碎屑土夹层的粘聚力、内摩擦角随含水率的增大而减小,强度性质变差。密实状态对碎屑土夹层的强度也具有一定的影响,夹层土越密实,其粘聚力越大,整体强度也越大。
     (2)巴东组软岩碎屑土夹层的土水特性。利用压力板仪测试了不同干密度、不同初始含水率、不同颗粒级配碎屑土夹层的土水特征曲线,采用VG模型对土水曲线进行拟合,求取各拟合参数,绘制延伸的土水特曲线。研究表明碎屑土夹层的基质吸力随含水率的增大而减小。干密度相同,大初始含水率土样的土-水特征曲线落在小初始含水率土样的曲线上方,初始含水率越高,基质吸力随含水率变化越敏感。随着初始含水率的增大,土样的进气值、残余含水率都随之增大。进气值随着初始含水率增大而增大的幅度,又随着土样干密度的增大而降低;对于初始含水率相同的土样,干密度越大,土样的进气值也越大,这种变化的增幅又随土样初始含水率的增大而降低。相同初始含水率、不同干密度土样的土水特征曲线的位置和形状各不相同,在低基质吸力范围内,小干密度土样的土水特征曲线落在大干密度土样的曲线上方,这主要是因为小干密度土样的饱和含水率更高。在高基质吸力范围内,小干密度土样的土水特征曲线落在大干密度土样的曲线下方,表明小干密度土样的基质吸力随含水率变化更敏感。干密度变大,土样的基质吸力随含水率变化的敏感性降低,残余含水率确有所增高,持水能力增强。对比不同颗粒级配土样的土水特征曲线,可见粗粒含量高土样的土水特征曲线在下方。相同含水率下,粗粒含量少的土样的基质吸力值更大,饱和含水率更低。粗颗粒含量高的土样的进气值更低,持水能力更强,残余含水量也低。总之巴东组软岩碎屑土夹层的土-水特性明显,孔隙结构(干密度、初始含水率)、粒径对碎屑土夹层的土-水特性影响很大,研究成果对从非饱和土力学角度分析不同物理状态对碎屑土夹层的工程性质及边坡稳定性的影响具有重要的参考意义。
     (3)巴东组软岩碎屑土夹层的非饱和强度与变形特性。利用GDS非饱和三轴仪开展了碎屑土夹层的饱和、非饱和三轴压缩试验,结果表明基质吸力对巴东组软岩碎屑土夹层的强度与变形特性影响显著。
     饱和三轴试验表明碎屑土夹层土样在不同围压下的应力-应变都呈现应变硬化特性,偏应力都随着应变的增加而增大,最终达到峰值强度。相同应变下,土样的偏应力随围压的增大而增大,峰值强度随围压的增大而明显增大。由应变-体变曲线可见,土样体积在剪切过程中均发生剪缩,随着剪切的进行体变量最终趋于稳定。土样剪切产生的体变也随着围压的增大而增大,剪缩效应也越明显,说明围压对碎屑土夹层的变形性质影响显著。根据试验求取了巴东组软岩碎屑土夹层的饱和强度指标,粘聚力c为2.25kPa,有效内摩擦角φ'为31。。碎屑土夹层的非饱和强度试验表明其应力-应变曲线都呈现应变硬化特性,偏应力随应变增加而快速增大,最终趋于稳定值,达到峰值强度。对比不同基质吸力下土样的应力-应变曲线,可见相同应变下土样的偏应力随基质吸力的增加而增加,破坏时的峰值强度也随着增大,说明土体的抗剪强度随基质吸力的增大而明显增大。对比土样的应变-体变曲线,可见土样体积在剪切的过程中均发生剪缩,最终趋于稳定,基质吸力越大,土样剪切产生的体变量也越大,说明基质吸力对碎屑土夹层的变形性质影响显著。根据试验结果,求取了非饱和碎屑土夹层的强度指标,c'为2.25kPa,φ'为31°,φb,矿在基质吸力100kPa、200kPa、300kPa、400kPa下分别为30°、24°、23°、23°,可见φb不是常数,随基质吸力的增大而不断减小,最终趋于定值。在工程实践中,应根据巴东组软岩碎屑土夹层的实际含水状态,选择相应的φb角进行强度计算。不同基质吸力下碎屑土夹层的总粘聚力均大于饱和土的粘聚力,且基质吸力越大,总粘聚力越大,即碎屑土夹层的非饱和抗剪强度远远大于饱和抗剪强度,基质吸力对巴东组软岩碎屑土夹层的强度与变形性质影响显著,其抗剪强度随着基质吸力的增加而增大。
     (4)巴东组软岩碎屑土夹层的非饱和蠕变特性。利用GDS非饱和三轴仪对碎屑土夹层开展了非饱和蠕变试验研究,分析了其蠕变特性,建立了非饱和蠕变模型,并对模型进行了验证。同时求取了碎屑土夹层的长期强度,为后期路堑边坡稳定性分析提供参考依据。研究结果表明巴东组软岩碎屑土夹层的非饱和蠕变特性显著,基质吸力对其蠕行为影响明显,碎屑土夹层蠕变后的长期强度明显降低,对于含巴东组软岩碎屑土夹层的路堑边坡而言,这些特性对其稳定性不利,应加以重视。
     巴东组软岩碎屑土夹层土样的非饱和蠕变曲线呈现一定的非线性,应力水平越高,变形随时间增长越明显。对于不同基质吸下土样的蠕变曲线,当偏应力大小相同时,基质吸力越小,土样产生的应变越大,即同一应力水平下含水量高的土样产生的变形更大,这种趋势在高应力水平时更明显。当土样的基质吸力大小相同时,偏应力越大,土样产生的轴向应变越大。根据蠕变曲线,将碎屑土夹层的非饱和土蠕变过程分为蠕变开始、衰减蠕变、等速蠕变三个阶段。根据蠕变试验数据,建立了3种预测巴东组软岩碎屑土夹层蠕变特性的非饱和经验蠕变模型,其中2种模型是基于Singh-Mitchell蠕变模型、Mesri蠕变模型,对其进行改进而得到的,使其模型中包含了基质吸力变量。为了能更好的预测碎屑土夹层的蠕变行为,分别对应变-时间曲线、应力-应变曲线进行非线性拟合,组合函数建立了本文提出的包含基质吸力-应力-应变-时间的非饱和蠕变模型。结果表明改进的Mesri模型及本文建立的蠕变模型基本能够实现预测蠕变曲线的开始阶段、衰减蠕变阶段、等速蠕变阶段,虽然当偏应力水平较高时,在等速蠕变阶段,预测曲线都高于试验点,模型预测存在偏差,但对于工程实践来说,尤其是巴东组软岩碎屑土夹层,误差在可接受的范围内。综合对比3种非饱和蠕变模型的预测精度,可见改进的Mesri模型预测碎屑土夹层的蠕变行为的精度较好,本文建立的非饱和蠕变模型效果一般,改进的Singh-Mitchel模型预测效果较差,传统的Mesri模型、Singh-Mitchel模型预测效果最差。根据蠕变试验数据,利用等时曲线法确定了碎屑土夹层土的长期强度值。可见不同基质吸力下土样的长期强度较瞬时强度都有大幅降低,强度产生折损,损失率在34%-62%之间,说明巴东组软岩碎屑土夹层在荷载的长期作用下强度值会越来越低。随着基质吸力的增大,碎屑土夹层的长期强度也呈线性增大的趋势,即碎屑土夹层的含水率越低,其在荷载长期作用下的强度越高。碎屑土夹层的基质吸力越小,强度损失率越大,即对于巴东组软岩碎屑土夹层而言,含水率越高,其在荷载长期作用下的强度越小,强度损失越大,并且随着含水率的不断增大,强度损失率增加的幅度也不断增大。
     (5)利用数值模拟技术分析了是否含碎屑土夹层、碎屑土夹层的不同基质吸力状态对巴东组软岩路堑边坡稳定性的影响。结果表明碎屑土夹层对巴东组软岩路堑边坡的稳定性影响很大,不含碎屑土夹层的软岩路堑边坡在天然工况下是很稳定的,安全系数很高。当巴东组软岩路堑边坡发育碎屑土夹层时,天然工况下也是稳定的,但碎屑土夹层出现了塑性屈服带,边坡前缘产生了剪切应变及位移增量,在外力(地震)及降雨条件下,碎屑土夹层可能成为路堑边坡失稳破坏的滑动面。对于含碎屑土夹层的巴东组软岩路堑边坡而言,碎屑土夹层的不同基质吸力状态对边坡稳定性影响也很大。当碎屑土夹层的基质吸力不断减小时,碎屑土夹层会产生塑性屈服直至贯通,边坡后缘由于张拉应力而产生的塑性区也不断增大,主要集中在碎屑土夹层前缘的剪应变增量范围也明显增大,最终贯通整个碎屑土夹层,夹层及坡体后缘的剪应力增量最大,夹层上部坡体各部位的位移量也不断增大,最后直至整个边坡产生滑动破坏,碎屑土夹层成为滑动面。
     通过计算分析巴东组软岩路堑边坡的稳定性系数,表明天然工况下,含碎屑土夹层路堑边坡的稳定性远远低于不含碎屑土夹层的路堑边坡。对于发育顺层碎屑土夹层的巴东组软岩边坡而言,碎屑土夹层的基质吸力对边坡的稳定性影响很大,碎屑土夹层的基质吸力越小,边坡的稳定性越差。巴东组软岩碎屑土夹层存在一个界限基质吸力状态,当碎屑土夹层的基质吸力等于该值时,边坡处于极限平衡状态。当碎屑土夹层的基质吸力高于该值时,边坡稳定。当碎屑土夹层的基质吸力低于该值时,碎屑土夹层在坡体应力作用下更容易产生塑性屈服,甚至剪切破坏,边坡可能沿碎屑土夹层产生滑动破坏。对于实际工程,可以根据当地气候条件及碎屑土夹层发育分布情况,在开挖过程中综合预判此类边坡的稳定性及碎屑土夹层能够引起其失稳破坏的含水率范围。研究成果为含碎屑土夹层的巴东组软岩路堑边坡稳定性分析及防护治理提供了参考依据。
     (6)高速公路建设过程中不可避免的开挖形成路堑边坡,对于研究区的巴东组软岩路堑边坡而言,如果边坡发育顺层碎屑土夹层,则对边坡稳定性十分不利。在综合分析碎屑土夹层的工程特性、非饱和特性及对路堑边坡稳定性影响的基础上,为预防此类路堑边坡病害的产生,从公路勘察、施工以及后期运营三个方面提出了一些预防措施与建议。
The red beds of Badong formation are widely distributed in east Sichuan, west Hubei, northwest Hunan and north Guizhou. The purplish red soft rock of this easy sliding strata is also widely distributed in Badong area. Because of a certain amount of illite and montmorillonite, which make the interaction between water and rock happen easily, the mudstone has the certain features of swelling and disintegration, that further accelerates its physical weathering process. The weak intercalation, which determines the strength and deformation characteristics of rock mass, is widely distributed in the Badong strata. Many sliding failures of the rock mass are along the weak intercalation. With the advancement of the western development strategy, the constructions of highway and railway have vigorous development. Because the railway, highway constructions in Badong region would inevitably encounter the above strata, the harms of weak intercalation to the slope engineering frequently happen. There are30kilometers-length highway through the Badong formation stratum, in where lots of cutting slopes formed with weak intercalation in. There are a risk of instability and failures for cutting slopes that could be generated along weak intercalations, which there are no mature theory or experiences can be drawn lessons from now.
     The weak intercalation from a typical cutting slope in Yichang-Badong high way is enumerated as the research object in this paper. In order to study the effect of water on weak intercalation and analyze the influence of weak intercalation on the stability of cutting slope comprehensively, some unsaturated characteristic tests were conducted. Those researches would provide some important engineering experiences to the local engineering practices.
     Based on the sedimentary information of the soft rock and weak intercalation, the disaster characteristics of weak intercalation on the cutting slopes, the X-ray diffraction mineral appraisal test, chemical composition analysis test, the basic physical and mechanical properties test, the soil-water characteristic test, unsaturated strength test, unsaturated creep test and numerical simulation test were conducted in order to investigate the mineral composition, chemical composition and physical properties indexes, soil-water characteristics, unsaturated strength characteristics, unsaturated creep characteristics of the weak intercalation and the effects of weak intercalation on the stability of slope. Based on the above test results, the engineering characteristics of weak intercalation were studied through qualitative analysis, the influences of moisture contents on the strength and deformation characteristics of weak intercalation through quantitative analysis, the effect of different water contents of weak intercalation on the stability of slope engineering are summarized. Based on the above researches, the engineering properties of weak intercalation have been achieved as following.
     (1)The engineering geological properties, physical and mechanical properties of weak intercalation. The sedimentary environment and distribution characteristics, the formation process of weak intercalations in the study area were mastered by the geology survey and researched on the engineering geological properties of weak intercalation development in soft rock slope in Yichang-Badong highway. In view of the main engineering problems of cutting slopes in the study area, the research mainly focused on investigating of the distribution characteristics of weak intercalation and its potential hazards to soft rock cutting slope. This kind of soft rock cutting slopes should be taken more attention to in engineering practice. The mineral and chemical composition, the basic physical property indexes and the influences of water on the strength characteristics of weak intercalation in the study area were preliminary mastered by X-ray diffraction experiment test, chemical analysis test and basic physical and mechanical properties test, which provided some references for later quantitative research of water effects on the strength and deformation properties of weak intercalations. The study has shown that the clay mineral contents of weak intercalation are high, the water sensitivity of it is strong, the influence of water on its engineering property is great. The direct shear test shows that the cohesive force and internal friction angle of weak intercalation have a non-linear decrease with the increase of moisture content. The greater the moisture content of weak intercalation is, the worse the intensity is. The cohesive force and the overall strength increase with the dense of weak intercalation at the same time.
     (2) The soil-water characteristics of weak intercalation. The soil-water characteristic curve test of the weak intercalation with different dry density, different initial moisture content, different grain size distribution was conducted in order to investigate the soil-water characteristics of weak intercalation. The VG model was adopted to fit the soil-water curves and the fitting parameters, by which a complete soil-water characteristic curve was draw, were calculated. The study on soil-water characteristics of weak intercalation shows that the matrix suction of weak intercalation decreases with the increase of the moisture content. With the same dry density, the soil-water characteristic curve of soil sample with higher initial moisture content is above the curve of sample with lower initial moisture content. The higher the initial moisture content of sample is, the more sensitive the matrix suction change of sample with the moisture content is. The inlet value and residual moisture content of sample increase with the increase of initial moisture content. The range of the inlet value increasing with the initial moisture content decreases with increase of dry density of sample. With the same initial moisture content, the higher the dry density of sample is, the higher the inlet value is. The growth range of this change decreases with the increase of the initial moisture content of the soil sample. The location and shape of soil-water characteristic curves of soil samples with the same initial moisture content and different dry density are different. Due to the lower dry density soil samples with higher saturated moisture content, the soil-water characteristic curve of low dry density sample is over the curve of the high dry density sample in low matrix suction range. In high matrix suction range, the soil-water characteristic curve of small dry density sample is under the curve of high dry density sample, which shows that the matrix suction of small dry density sample changes with the moisture content more sensitively. With the Dry density higher, the changing susceptibility of matrix suction with the moisture content of samples reduces, also with the residual moisture content getting higher and the ability of water-holding getting intensive. Compared the soil-water characteristic curves of different particle size distribution samples, it can be found that the soil-water characteristic curve of the sample with high content of coarse particles is visibly below. With the same moisture content, the matrix suction value of lower content coarse particles samples is higher, but the saturated moisture content is lower. These above studies show that the soil-water characteristic of weak intercalations in Badong formation is significant and the pore structure (dry density, initial moisture content), particle size of particles have obvious influences on the properties, which have important significance for analyzing the engineering properties of weak intercalation with different physical state and the influence on the stability of cutting slopes.
     (3)The unsaturated strength and deformation properties of weak intercalation. The saturated triaxial compression and unsaturated triaxial compression tests of weak intercalation were carried out by GDS triaxial test system to realize the unsaturated strength and deformation properties of weak intercalation. The results show that the strength and deformation characteristics of weak intercalation are affected by matrix suction obviously. It shows that the stress-strain curves of weak intercalation under different confining pressure all present the hardening behavior, from which it can be seen that the deviator stress of sample increases with the strain increase to the peak strength finally. Under the same strain, the deviator stress and the peak intensity of samples increase with the increasing of confining pressure. By the strain-volume deformation curves, it can be seen that the volume shrinkage of soil samples occurs in shear progress and the volume change of sample tends to be stable in the end. The volume change of sample increases with the increase of confining pressure, which shows that the deformation properties of weak intercalation are obviously affected by the confining pressure. The saturation intensity index are got from the test, cohesion is2.25kPa, effective internal friction angle is31°
     The unsaturated strength test shows that the stress-strain curves of weak intercalation under different confining pressure all present the hardening behavior, from which it can be seen that the deviator stress of sample increases with the strain increase to the peak strength. It can be found that the deviator stress and peak strength of samples under the same strain increase with the increase of the matrix suction from the stress-strain curves of samples under different matrix suction, which also shows that the shear strength of weak intercalation increases obviously with the increase of matrix suction. By the strain-volume deformation curves, it could be seen that the volume shrinkage of soil samples occurs in the shear progress and the volume change of samples tends to be stable in the end. The volume change of sample increases with the increase of matrix suction, which shows that the deformation properties of weak intercalation are obviously affected by matrix suction. According to experimental results, the strength indexes of the unsaturated weak intercalation are as follows, cohesion is2.25kPa,φ'is31°, φb of samples in the matrix suction of100kPa,200kPa,300kPa,400kPa are respectively30°,24°,20°,23°. The index φb, which decreases continuously with the increase of matrix suction, is not constant. In engineering practice, the index φb can be selected for strength calculation according to the actual moisture content of weak intercalation. It is shown that the total cohesive force and shear strength that increase continuously with the increase of matrix suction of unsaturated weak intercalation are much higher than that of saturated weak intercalation from the test, which tells us the strength and deformation properties of weak intercalation are significantly affected by the matrix suction.
     (4) The unsaturated creep properties of weak intercalation. In order to study the unsaturated creep behaviors of the weak intercalation, a GDS unsaturated triaxial test system was used. Then the triaxial creep tests on intercalated soils under varying matric suction were conducted to obtain the unsaturated creep curves, according to which some unsaturated creep models were built. At the same time the long-term strength were calculated, which provided a reference for the stability analysis of cutting slope. The results show that the weak intercalated soils have apparent creep behaviors, which are significantly affected by the moisture contents of the samples. It should be paid more attention to that the strength of weak intercalation decreases after the creep deformation, which would have significant impact on the stability of cutting slopes. The strain of weak intercalation is in nonlinear relationships with the stress and time. The higher the deviator stress level is, the more obvious the growth of deformation with time is. Under a constant deviator stress load, the creep deformation increases with the reduction of matric suction and this trend is more obvious when the deviator stress load is larger. According to the characteristics of creep curves, the unsaturated creep is divided into three stages, creep occurrence stage, creep attenuation stage and steady creep stage. Based on the creep test data, three experiential creep models were built to fit the creep behaviors of weak intercalation. Two of them were improved from the Singh-Mitchell creep model and Mesri creep model. In order to predict the creep behavior of weak intercalation better, the third kind of unsaturated creep model was tried. In comparison of the calculated values with the experimental values, the improved Mesri model and the third kind creep model can well predict the creep behaviors in every stage of creep of weak intercalated soils. Though at high stress levels, the creep models deviate from the test results in some extent, combined with the stress status of practical engineering in real weak intercalation their forecast precisions satisfies requirements for engineering application. By comparing those kinds of unsaturated creep models, it can be found that the effect of improved Mesri model to predict creep behavior of weak intercalation is the most accurate, the third kind unsaturated creep model predicts the creep behavior of weak intercalation preferably, the effect of improved Singh-Mitchell model is not good, the worst models for weak intercalation are Mesri and Singh-Mitchell models.
     According to the creep curves, the long-term strength is calculated by the isochronous curve method.
     The long-term strength of the samples under different suction is reduced greatly than the instantaneous intensity. The loss rate of strength is between51%and73%, which shows that the strength of weak intercalation under the action of load for a long time decreases obviously. With the increase of matrix suction, the long-term strength of weak intercalation shows a trend of linear increasing, which also shows that the long-term strength of weak intercalation with lower the moisture content will be higher when under the load. When with higher moisture content, the long-term strength of weak intercalation under load is lower. The higher the moisture content is, the greater the strength loss is.
     (5) The influences of weak intercalation and its matrix suction on the stability of soft rock cutting slope are analyzed by using the numerical simulation technology. The results show that the influence of weak intercalation on the stability of soft rock cutting slope is great. The soft rock cutting slope excluding weak intercalation under natural conditions is very stable with a high safety coefficient. Although the soft rock cutting slope including weak intercalation after excavation under natural conditions is also stable, the plastic yield zone in weak intercalation, the shear strain and displacement increment zone in the leading edge of slope appear and the weak intercalation will become the sliding surface of the slope under the condition of the external force (earthquake) or rainfall. To the soft rock cutting slope including weak intercalation, the different matrix suction states of weak intercalation have a great influence on the stability of the slope. When the matrix suction of weak intercalation is continuously reduced, the plastic yield zone in weak intercalation and the rear of slope increase, the range of shear strain zone in the front of weak intercalation and the rear of slope increase obviously at the same time, the displacement in every slope area is also increasing, which result in the sliding failure of the slope eventually along the weak intercalation as the sliding surface.
     The stability calculation and analysis of soft rock cutting slope show that the stability of cutting slope including weak intercalation under natural conditions is far lower than that excluding weak intercalation. For the cutting slopes including weak intercalation, the matrix suction of weak intercalation has a great influence on the stability of the slopes. The lower the matrix suction is, the worse the stability of the slope is. There is a boundary value for matrix suction of the weak intercalation, under which the slope is in the limit equilibrium state. When the matrix suction of the weak intercalation is higher than this value, the slope is stable. When it is lower than this value, the flow of plastic yield and shear failure of weak intercalation in the slope under the action of stress are more likely to occur, which results in the failure of slopes along the weak intercalation. For practical engineering, according to local climate conditions and the distribution of weak intercalation, the stability of this kind slope and moisture content scope of weak intercalation that could cause the failure of slope would be predicted in the slope excavation process, which would provide references for the protective engineering of the slope.
     (6) The soft rock cutting slopes including weak intercalation in Badong formation, which formed inevitably due to the excavation in the highway construction process, will result in many engineering diseases. Based on the analysis of the engineering properties, unsaturated properties of weak intercalation and its impacts on the slope stability, some protective suggestions and advices are put forward to prevent such slope diseases from the view of the survey, protection design, construction and later operation of the cutting slopes.
引文
[1]刘听成.岩石力学有关名词解释[M].北京:煤炭工业出版社,1986.
    [2]沈明荣.岩体力学[M].上海:同济大学出版社,1999.
    [3]李先炜.岩体力学性质[M].北京:煤炭工业出版社,1990.
    [4]海外传真.台湾地工小百科之一软弱夹层的工程特性[J].岩土工程界,2005(11):24-25.
    [5]杨海峰.软弱夹层对隧道围岩稳定性的影响研究[[D].北京:北京交通大学,2011.
    [6]倪建明.淮北矿区煤巷围岩稳定性分类与支护对策研究[D].徐州:中国矿业大学,2008.
    [7]葛修润.岩体中节理面、软弱夹层等的力学性质和模拟分析方法(一)[J].岩土力学,1979(01):54-75.
    [8]曾锋,彭静.红层地区软弱夹层地质问题研究[J].人民长江,2011,42(22):15-17.
    [9]项伟.软弱夹层微结构研究及其力学意义[J].地球科学,1985(01):165-169.
    [10]项伟.软弱夹层粘粒含量与抗剪强度参数之间的经验公式[J].水文地质工程地质,1989(05):4546.
    [11]张咸恭,聂德新,韩文峰.影响软弱夹层抗剪强度的主要因素及其相关关系研究[J].地质灾害与环境保护,1990,1(02):30-33.
    [12]徐开祥,潘伟,林坚.链子崖危岩体岩体结构及软弱夹层的工程地质研究[J].中国地质灾害与防治学报,1991,2(3):42-51.
    [13]丁多文,罗国煜.链子崖危岩体软弱夹层的力学特性[J].水文地质工程地质,1994(6):7-9.
    [14]张奇华,彭光忠.链子崖危岩体软弱夹层的蠕变性质研究[J].岩土力学,1997,11(01):60-64.
    [15]郭广,赵泽三,马映清等.重庆市粘土岩中泥化软弱夹层的工程地质特征[J].地质灾害与环境保护,1991,4(01):53-57.
    [16]罗增益,吕民康.江阴长江大桥软弱夹层剪切试验及参数选取[J].河海大学学报,1996,24(04):111-113.
    [17]杨令强,练继建,陈祖坪.软弱夹层的接触问题与强度问题探讨[J].水利水电技术,2002,33(06):17-19.
    [18]唐良琴,聂德新,任光明.软弱结构面粒度成分与抗剪强度参数的关系探讨[J].工程地质学报,2003,11(02):143-147.
    [19]闫汝华,樊卫花.马家岩水库坝基软弱夹层剪切特征及强度[J].岩石力学与工程学报,2004,23(22):3761-3764.
    [20]黄志全,陈尚星,李华晔等.溪洛渡电站软弱夹层剪切强度分析研究[J].地质与勘探,2005,41(04):98-101.
    [21]刘一伟,张继春,郭学彬等.软弱夹层强度参数的室内模拟[J].西南科技大学学 报,2007,22(01):30-34.
    [22]唐良琴,聂德新,刘东燕等.软弱夹层强度参数的主要影响因素分析[J].工程地质学报,2012,20(02):289-295.
    [23]王在泉,余锋,陆文兴.软弱夹层的流变模型及长期强度研究[A].中国岩石力学与工程学会第三次大会论文集[C].北京,1994.
    [24]马丽英,范兴业,王沿东.软弱泥化夹层的流变特性及模型研究[J].试验技术与试验机,1995,35(1-2):28-30.
    [25]刘晶辉,王山长,杨洪海.软弱夹层流变试验长期强度确定方法[J].勘察科学技术,1996(05):3-7.
    [26]王在泉.泥化夹层长期强度的灰色预测[J].金属矿山,1998(02):16-17.
    [27]芮勇勤,徐小荷,马新民等.露天煤矿边坡中软弱夹层的蠕动变形特性分析[J].东北大学学报,1999,20(06):612-614.
    [28]刘晶辉,申力,陈雪松.软弱泥化夹层蠕变特征与边坡变形分析[J].露天采煤技术,2001(01):28-30.
    [29]王志俭,殷坤龙,简文星.万州区红层软弱夹层蠕变试验研究[J].岩土力学,2007,28(S1):40-44.
    [30]杨天鸿,芮勇勤,朱万成等.炭质泥岩泥化夹层的流变特性及长期强度[J].实验力学,2008,23(05):396-402.
    [31]李鹏,刘建,朱杰兵等.软弱结构面剪切蠕变特性与含水率关系研究[J].岩土力学,2008,29(07):1865-1871.
    [32]程强,周德培,封志军.典型红层软岩软弱夹层剪切蠕变性质研究[J].岩石力学与工程学报,2009,28(S1):3176-3180.
    [33]许宝田,阎长虹,刘军熙等.边坡岩体软弱夹层剪切变形本构模型研究[J].岩土力学,2010,31(S2):65-69.
    [34]王春山,聂德新,李树森.埋藏条件下软弱夹层变形模量研究[J].土木工程学报,2011,44(03):109-112.
    [35]孙广忠.岩体结构力学[M].北京:科学出版社,1988.
    [36]刘晶辉,白富英,陈雪松.露天煤矿软弱夹层剪切强度特性分析[J].露天采煤技术,1999(1):16-18.
    [37]陈斌,曹朋,刘安秀.煤矿软弱夹层特性分析及本构模型研究[J].山西焦煤科技,2011(04):9-11.
    [38]丁立明,才庆祥,刘雷等.软弱夹层对露天矿边坡稳定性的影响[J].金属矿山,2012(04):40-42.
    [39]郭诚谦.有软弱夹层岩体边坡稳定分析安全系数的确定[J].水利水电技术,1995(03):27-31.
    [40]王在泉.泥化夹层对边坡工程稳定性影响及控制方法研究[A].新世纪岩石力学与工程的开拓和发展-中国岩石力学与工程学会第六次学术大会论文集[C].武汉,2000.
    [41]刘小丽,周德培.有软弱夹层岩体边坡的稳定性评价[J].西南交通大学学报,2002,37(04): 382-386.
    [42]王祥秋,高文华,杨林德等.边坡滑移面软弱夹层时间效应与相关特性的试验研究[J].湘潭矿业学院学报,2002,17(01):65-68.
    [43]王志勇.含软弱夹层软岩边坡稳定性分析研究[D].长沙:中南大学,2004.
    [44]刘红星,苏爱军,王永平等.软弱夹层对斜坡稳定性的影响分析[J].武汉理工大学学报(交通科学与工程版),2004,28(05):766-770.
    [45]许宝田,阎长虹,陈汉永等.边坡岩体软弱夹层力学特性试验研究[J].岩土力学,2008,29(11):3077-3081.
    [46]卢海峰,陈从新,沈强等.鄂西南巴东组红层边坡夹层成因及特性[J].水文地质工程地质,2010,37(01):54-61.
    [47]赵晓,赵建军,巨能攀等.层间软弱夹层发育的切向边坡失稳模式及稳定性研究[J].地质灾害与环境保护,2006,17(03):110-114.
    [48]刘文方,隋严春,周菊芳等.含软弱夹层岩体边坡的突变模式分析[J].岩石力学与工程学,2006,25(S1):2663-2669.
    [49]吴顺川,张晓平,刘洋.基于颗粒元模拟的含软弱夹层类土质边坡变形破坏过程分析[J].岩土力学,2008,29(11):2899-2904.
    [50]许宝田,钱七虎,阎长虹等.多层软弱夹层边坡岩体稳定性及加固分析[J].岩石力学与工程学报,2009,28(S2):3959-3964.
    [51]秦鸿.软弱夹层边坡变形性状及其影响因素分析[J].重庆交通大学学报(自然科学版),2011,30(02):282-286.
    [52]敖琪轶.含软弱夹层的路堑边坡开挖稳定性分析[J].贵州大学学报(自然科学版),2012,29(04):97-100.
    [53]魏安辉.川中红层工程地质特性与路用性研究[D].成都:西南交通大学,2006.
    [54]程强,寇小兵,黄绍槟等.中国红层的分布及地质环境特征[J].工程地质学报,2004,12(01):34-40.
    [55]任纽.地层地质学[M].北京:中国工业出版社,1965.
    [56]郑家坚,丘占祥.华南白坐纪一早第三纪陆相地层的特征及有关问题的讨论[A].中国科学院古脊椎动物与古人类研究所.华南中、新生代红层[C]北京:科学出版社,1979:1-57.
    [57]杨恒仁,王震,李曼英.华南中生代晚期至早第三纪生物群及地层的划分和对比[A].华南中、新生代红层广东南雄“华南白垩纪-早第三纪红层现场会议”论文选集[C].北京:科学出版社,1979:58-78.
    [58]云南省冶金局地质勘探公司中国科学院南京地质古生物研究所云南省地质局.云南中生代红层[M]北京:科学出版社,1975:1-76.
    [59]周名魁,刘俨然.西昌一滇中地区地质构造特征及地史演化[M].重庆:重庆出版社,1988:144-190.
    [60]张忠胤.俄罗斯地台东部上二叠纪红层的成因及该地层粘土质岩石的工程地质性质[M].北京:地质出版社,1958:5-124.
    [61]Hecht. Christian A. Geomeehanical and Petrophysical properties of fraeture systems in Permocarboniferous "red-beds" [C].Washington D.C./USA:2001.
    [62]曹乐安,张鸣动,朱文华.葛洲坝工程丛书-基础设计与处理[M].北京:中国水利水电出版社,1998:1-123.
    [63]戴广秀,凌泽民,石秀峰等.葛洲坝水利枢纽坝基红层内软弱夹层及其泥化层的某些工程地质性质[J].地质学报,1979(02):153-166.
    [64]徐瑞春.葛洲坝红层中软弱夹层的构造类型研究[J].人民长江,1981(02):44-50.
    [65]林伟平,田开圣.成层岩体中软弱层带的工程特性[J].长江水利水电科学研究院院报,1986(02):30-39.
    [66]陆恩施.“红层”软弱泥化夹层抗剪强度研究方法探讨[J].水电工程研究,2001(3):47-50.
    [67]肖拥军,殷坤龙,黄学斌等.巴东新城白土坡深层岩体软弱夹层地质特征[J].水文地质工程地质,2007(06):72-75.
    [68]柴波,殷坤龙.三峡库区巴东新城区库岸三叠系巴东组层间软弱带[J].工程地质学报,2009,17(06):809-816.
    [69]龚裔芳,金福喜,张可能等.红砂岩泥化夹层力学特性及其对边坡稳定性的影响[J].重庆交通大学学报(自然科学版),2010,29(02):220-223.
    [70]谭超,潘国耀,刘宗祥等.川东红层丘陵区软弱夹层工程特性[J].四川地质学报,2011,31(02):212-214.
    [71]柳群义,朱自强.不同含水量条件下红砂岩泥化夹层的剪切特性[J].沈阳工业大学学报,2012,34(02):220-223.
    [72]祝艳波,余宏明,付克俭等.红层软岩泥化夹层土水特征曲线影响因素[J].中南大学学报(自然科学版),2013,44(07):2919-2926.
    [73]殷坤龙,吴益平.三峡库区一个特殊古滑坡的综合研究[J].中国地质灾害与防治学报,1998,9(S1):204-210.
    [74]李守定,李晓,张年学等.三峡库区宝塔滑坡泥化夹层泥化过程的水岩作用[J].岩土力学,2006,27(10):1841-1846.
    [75]李守定,李晓,张年学等.三峡库区侏罗系易滑地层沉积特征及其对岩石物理力学性质的影响[J].工程地质学报,2004,12(04):385-389.
    [76]柴波,殷坤龙,简文星等.红层水岩作用特征及库岸失稳过程分析[J].南大学学报(自然科学版),2009,40(04):1092-1098.
    [77]简文星,殷坤龙,罗冲等.三峡库区万州安乐寺滑坡滑带特征[J].地球科学(中国地质大学学报),2008,33(05):672-678.
    [78]简文星,殷坤龙,马昌前等.万州侏罗纪红层软弱夹层特征[J].岩土力学,2005,26(06):901-905.
    [79]王志俭.万州区红层岩土流变特性及近水平地层滑坡成因机理研究[D].武汉:中国地质大学,2008.
    [80]简文星,王志俭,殷坤龙.三峡库区万州缓倾角红层基岩滑坡启滑机制[A].和谐地球上的水工岩石力学—第三届全国水工岩石力学学术会议论文集[C].上海,2010.
    [81]FREDLUND D G,RAHADJO H非饱和土土力学[M].陈仲颐译.北京:中国建筑工业出版 社,1997.
    [82]Ostashev N A. The law of Distribution of Moisture in Soils and Metheds for the Study of Soil[C].1936.
    [83]Terzaghi K. Theoretical Soil Mechanies[M].NewYork:Wiley,1943.
    [84]W. B. The determination of the capillary rise in sand by means of Prism pressure test[C]. Rotterdam,Netherlands:1948.
    [85]A. W. Bishop N R. Mongenstern. Stability coefficient for earth slopes[J].Geotechnique. 1960,10(4):129-147.
    [86]W. Rm. Black D C J C. Field studies of the movement of soil moisture[J].Tech.Paper. 1959(41):24-32.
    [87]Williams. A B. Studies of shear strength and bearing capability of some Partially saturated sands[C].1957.
    [88]E. L. Matyas H S R. Volume change characteristic of partially saturated soils[J]. Geotechnique.1968,18(4):432-448.
    [89]D. G. Fredlund N R M. Stress state variables for unsaturated soil[J].Geotech Engneering, 1977(103):44-466.
    [90]俞培基,陈愈炯.非饱和土的水-气形态及其与力学性质的关系[J].水利学报,1965(01):16-24.
    [91]包承纲.非饱和压实土的气相状态及孔隙压力消散问题[A].第三届全国土力学和基础工程会议论文选集[C].北京,1979:58-71
    [92]Fredlund D G R H. Soil mechanics for unsaturated soils[M].New York:John Wiley and Sons,lnc,1993.
    [93]Yuji Kohgo Y H I A. A cyclic plasticity model for unsaturated soils[A].Proc.3rd Asian Conf. on UnsaturatedSoils[C].Nanjing,2007.
    [94]沈珠江.广义吸力和非饱和土的统一变形理论[J].岩土工程学报,1996,18(02):1-9.
    [95]徐永福,史春乐.用土的分形结构确定土的水份特征曲线[J].岩土力学,1997,18(02):40-43.
    [96]陈正汉,谢定义,王永胜.非饱和土的水气运动规律及其工程性质研究[J].岩土工程学报,1993,15(03):9-20.
    [97]汤连生,王思敬.湿吸力及非饱和土的有效应力原理探讨[J].岩土工程学报,2000,22(01):86-91.
    [98]殷宗泽.土体本构模型剖析[J].岩土工程学报,1996,18(04):98-100.
    [99]陈正汉.重塑非饱和黄土的变形、强度、屈服和水量变化特性[J].岩土工程学报,1999,21(1):82-90.
    [100]杨代泉.非饱和广义固结理论及其数值模拟与试验研究[D].南京:南京水利水电科学研究院,1990.
    [101]杨代泉.非饱和土二维广义固结非线性数值模型[J].岩土工程学报,1992,14(S1):2-12.
    [102]卢宁.非饱和土力学[M].韦昌富,侯龙,简文星译.北京:高等教育出版社,2012.
    [103]王菁莪.黄土坡滑坡滑带土的结构特征与水-力相互作用性质研究[D].武汉:中国地质大学,2012.
    [104]Williams P J.The surface of the Earth:An introduction to geotechnical seience[M]. Newyork:Longman Ine,1982.
    [105]胡波.非饱和土土-水特征曲线的研究[D].武汉:武汉大学,2005.
    [106]侯景儒,黄竞先地质统计学及其在矿产储量计算中的应用[M].北京:地质出版社,1982.
    [107]徐敏.非饱和带水分特征曲线的实验研究[D].西安:长安大学,2008.
    [108]胡定宇,田长山,程文礼.应用土壤湿度计(张力计)对塿土水分特征曲线与持水性能的初步研究[J].西北农林科技大学学报(自然科学版),1982(04):29-40.
    [109]党进谦,李靖,王力.非饱和黄土水分特征曲线的研究[J].西北农业大学学报,1997,25(03):62-65.
    [110]刘晓敏,赵慧丽,王连俊.非饱和粉质粘土的土水特性试验研究[J].地下空间,2001,21(5):375-378.
    [111]李爱国,岳中琦,谭国焕等.野外土-水特征及其工程意义[J].岩石力学与工程学报,2004,23(06):969-973.
    [112]龚壁卫,吴宏伟,于斌.应力状态对膨胀土SWCC的影响研究[J].岩土力学,2004,25(12):1915-1918.
    [113]李孝平,王世梅,王卓娟等.千将坪滑坡非饱和土的土-水特征曲线试验研究[J].三峡大学学报(自然科学版),2007,29(01):40-42.
    [114]叶为民,白云,金麒等.上海软土土水特征的室内试验研究[J].岩土工程学报,2006,28(02):260-263.
    [115]谈云志,王世梅.某滑坡滑带土的土水特征曲线试验研究[J].合肥工业大学学报(自然科学版),2007,30(03):298-300.
    [116]刘小文,常立君,胡小荣.非饱和红土基质吸力与含水率及密度关系试验研究[J].岩土力学,2009,30(11):3302-3306.
    [117]Brooks Rh C A. Hydraulic properties of porous media[C].Colorado State University, 1964.
    [118]Gardner W R. Some steady state solutions of the unsaturated moisture flowe quation with applieation to evaporation from a water table[J] Soil scienee.1958,85(4):228-232.
    [119]Van Genuchten M T. A closed form equation for Predicting the hydraulic eonductivity of Unsaturated soils[J].Soils Seience Soeiety of Amerieca Journal.1980,44(5):892-898.
    [120]Mekee C R,BUMB A C. The importance of unsaturated flow Parameters in designing a monitoring system for hazardous wastes and environmental emergencies[C].Proceeding of Hazardous Materials Control Research Institude National Conference,Houston City,1984:50-58.
    [121]Fredlund D G X A. Equations for soil-water characteristic curve[J]. Canadian Geotechnical Journal.1994,31 (4):521-532.
    [122]吴凤彩.低吸力下土壤水分特征曲线的计算[J].水利学报,1986(07):49-55.
    [123]张喜英,张橹,刘昌明.太行山前平原土壤水分特征曲线拟合参数的确定[J].华北农学报,2001,16(02):75-82.
    [124]徐绍辉,刘建立.土壤水力性质确定方法研究进展[J].水科学进展,2003,14(04):394-401.
    [125]程冬兵,张平仓,赵健等.三峡库区不同水保措施下紫色土水分特征曲线特征及模型拟合[J].长江流域资源与环境,2009,18(11):1045-1049.
    [126]马少坤,扈萍,秦会来.红黏土土水特征曲线试验及拟合实用技术研究[J].公路,2010(01):135-138.
    [127]王铁行,王晓峰.密度对砂土基质吸力的影响研究[J].岩土力学,2003,24(06):979-982.
    [128]方祥位,陈正汉,中春妮等.剪切对非饱和土土-水特征曲线影响的探讨[J].岩土力学,2004,25(09):1451-1454.
    [129]栾茂田,李顺群,杨庆.非饱和土的理论土-水特征曲线[J].岩土工程学报,2005,27(06):611-615.
    [130]卢靖,程彬.非饱和黄土土水特征曲线的研究[J].岩土工程学报,2007.29(10):1591-1592.
    [131]徐炎兵,韦昌富,陈辉等.任意干湿路径下非饱和岩土介质的土水特征关系模型[J].岩石力学与工程学报,2008,27(05):1046-1052.
    [132]蔡国庆,赵成刚,刘艳.非饱和土土-水特征曲线的温度效应[J].岩土力学,2010,31(04):1055-1060.
    [133]陈辉,韦昌富,陈芳芳等.非饱和土土-水特征曲线预估方法研究[J].岩土力学,2013,34(01):128-132.
    [134]Vanapalli S K F D G P. Relationship between soil-water characteristic curves Relationship between soil-water characteristic curves and the as-compacted water content versus soil for a clay till[C].Brazil:Iguanzu Falls,1999.
    [135]伊盼盼,牛圣宽,韦昌富.干密度和初始含水率对非饱和重塑粉土土水特征曲线的影响[J].水文地质工程地质,2012,39(01):42-46.
    [136]Black W P M.A method of estimating the California bearing ratio of eohesive soils from Plastieity data[J].Geoteehnique.1962,12(4):271-282.
    [137]Mitchell P W A D. A technique to Predictect Pansive soil movements[C].1984.
    [138]邵明安,李开元,钟良平.根据土壤水分特征曲线推求土壤的导水参数[A].中国科学院水利部西北水土保持研究所集刊[C].1991(01):26-32.
    [139]李志清,胡瑞林,王立朝等.非饱和膨胀土SWCC研究[J].岩土力学,2006,27(05):730-734.
    [140]闫亚景,文宝萍.非饱和重塑黄土基质吸力变化特征与物理性质的关系[J].水文地质工程地质,2011,38(06):49-55.
    [141]王协群,邹维列,骆以道等.压实度与级配对路基重塑黏土土-水特征曲线的影响[J].岩土力学,2011,32(S1):181-184.
    [142]文宝萍,胡艳青.颗粒级配对非饱和粘性土基质吸力的影响规律[J].水文地质工程地质,2008(06):50-55.
    [143]王铁行,卢靖,岳彩坤.考虑温度和密度影响的非饱和黄土土-水特征曲线研究[J].岩土 力学,2008,29(01):1-5.
    [144]张雪东.土水特征曲线及其在非饱和土力学中应用的基本问题研究[D].北京:北京交通大学,2010.
    [145]Delage P L G. Study of the structure of sensitive ChamPlain clay and of its evolution During consolidation[J].Can.Geoteeh.1984,21(1):21-35.
    [146]Childs E C C N. The permeability of porous materials[C].Proceding of Royal Society 1950,210A:392-405.
    [147]李开元,李玉山.土壤水分特征曲线的意义及其应用[J].陕西农业科学,1991(04):47-48.
    [148]徐永福,董平.非饱和土的水分特征曲线的分形模型[J].岩土力学,2002,23(04):400-405.
    [149]叶为民,钱丽鑫,白云等.由土-水特征曲线预测上海非饱和软土渗透系数[J].岩土工程学报,2005,27(11):27-30.
    [150]曹军义.土-水特征曲线的试验研究及其在边坡稳定分析中的应用[D].南京:河海大学,2005.
    [151]林鸿州,于玉贞,李广信等.土水特征曲线在滑坡预测中的应用性探讨[J].岩石力学与工程学报,2009,28(12):2569-2576.
    [152]杨和平,林丽萍,肖杰等.用土水特征曲线分析膨胀土的改良效果[J].公路交通科技,2011,28(10):1-6.
    [153]唐军,余沛,颜荣涛等.毕威高速公路玄武岩红土土水特征曲线测定与模型应用研究[J].路基工程,2011(05):66-68.
    [154]刘艳敏.巴东组软岩残坡积非饱和红粘土土水特征研究[D].武汉:中国地质大学,2011.
    [155]常波,吴益平,何高峰.临江Ⅱ号崩滑体土水特征曲线试验研究[J].长江科学院院,2012,29(09):53-58.
    [156]杨金忠等.多孔介质中水分及溶质运移的随机理论[M].北京:科学出版社,2000.
    [157]曾志姣.非饱和红粘土抗剪强度特性研究及其应用[D].长沙:中南大学,2008.
    [158]Bishop A W B G E. Some aspects of effective stress in saturated and partly saturated soils[J].Geotechnique.1963,13(3):177-197.
    [159]Jing L. Strength characteristics of unsaturated palouse loess[C].University of Idaho:1989.
    [160]卢肇钧,张惠明,陈建华等.非饱和土的抗剪强度与膨胀压力[J].岩土工程学报,1992,14(03):1-8.
    [161]卢肇钧,吴肖茗,孙玉珍等.膨胀力在非饱和土强度理论中的作用[J].岩土工程学报,1997,19(05):22-29.
    [162]Parashars. P W S C R. Shear Strength,volume chang and Permeability ehataeteristies of a compacted residual soil[C].Paris:1995.
    [163]徐永福,陈永战,刘松玉等.非饱和膨胀土的三轴试验研究[J].岩土工程学报,1998,20(03):14-18.
    [164]缪林昌,殷宗泽.非饱和土的剪切强度[J].岩土力学,1999,20(03):1-6.
    [165]汤连生.从粒间吸力特性再认识非饱和土抗剪强度理论[J].岩土工程学报,2001,,23(04):412-417.
    [166]汤连生.结构吸力及非饱和土的总有效应力原理探讨[J].中山大学学报(自然科学版),2000,39(06):95-100.
    [167]黄润秋,吴礼舟.基于一种新强度理论的非饱和土边坡稳定性分析[J].成都理工大学学报(自然科学版),2008,35(01):57-60.
    [168]Escario V. Suction-controlled penetration and shear tests[C]. Proccedings of the 4th Interatinal Conference on Expansive Soil, Denver, Colorado:1980(2):781-797.
    [169]陈正汉,谢定义,王永胜.非饱和土的有效应力探讨[J].岩土工程学报,1994,16(03):62-69.
    [170]Estabragh. A R. Shear strength properties of an compacted unsaturated silty soil[C]. Proc. 3rd Asian Conf. on Unsaturated Soils, Nanjing, China:2007.
    [171]Nishimura. T. Direct shear strength of an unsaturated silty soil under low vertical stress[C].Nanjing:2007.
    [172]V. Sivakumar J V J B. Shear strength of heavily compacted high plasticity elay[J]. Comparative assessment of sub-critical versus advanced super-critical oxyfuel fired PF boilers with CO2 sequestration facilities,2007,86(14):2134-2143.
    [173]朱建华.饱和与非饱和压实粘性土的抗拉强度影响因素的研究[J].大坝观测与土工测试,1986(04):25-29.
    [174]包承纲,詹良通,龚壁卫.非饱和土的特性及其抗剪强度问题[A].中国土木工程学会第八届土力学及岩土工程学术会议论文集[C].南京,1999.
    [175]邢义川.非饱和土的有效应力与变形—强度特性规律的研究[D].西安:西安理工大学,2001.
    [176]龚壁卫,周小文,周武华.干-湿循环过程中吸力与强度关系研究[J].岩土工程学报,2006,26(02):207-209.
    [177]詹良通,吴宏伟.非饱和膨胀土变形和强度特性的三轴试验研究[J].岩土工程学报,2006,26(02):196-201.
    [178]黄润秋,吴礼舟.非饱和土抗剪强度的研究[J].成都理工大学学报(自然科学版),2007,34(03):221-224.
    [179]黄志全,陈贤挺,姜彤等.小浪底水库1-##滑坡体非饱和土强度特性试验研究[J].岩土力学,2009,30(03):640-644.
    [180]张炜,张苏民.非饱和黄土的结构强度特性[J].水文地质工程地质,1990(04):22-25.
    [181]张炜,张苏民.非饱和黄土室内力学性质试验研究[J].工程勘察,1991(03):6-11.
    [182]骆亚生,邢义川,吴培安.非饱和原状黄土三轴试验方法研究[J].水利学报,1996(01):47-52.
    [183]倪万魁,牛富俊,刘东燕.降雨入渗对非饱和黄土强度的影响分析[J].工程勘察,2002(03):15-18.
    [184]闫亚景,文宝萍,计博勋.基质吸力对非饱和重塑黄土抗剪强度的贡献[J].工程地质学报,2011,19(06):865-874.
    [185]叶为民,陈宝,卞祚麻等.上海软土的非饱和三轴强度[J].岩土工程学报,2006,28(03):317-321.
    [186]徐永福,龚友平,殷宗泽.非饱和膨胀土强度的分形特征[J].工程力学,1998,15(02):76-81.
    [187]龚壁卫,詹良通,刘艳华等.非饱和膨胀土的抗剪强度特性研究[J].长江科学院院报,2000,17(05):19-22.
    [188]杨庆,张慧珍,栾茂田.非饱和膨胀土抗剪强度的试验研究[J].岩石力学与工程学报,2004,23(03):420-425.
    [189]熊承仁,刘宝琛,张家生等.重塑非饱和粘土抗剪强度参数与饱和度的关系研究[J].岩土力学,2003,24(S2):195-198.
    [190]李帅.三峡库区非饱和土变形和强度特性研究[D].上海:同济大学,2008.
    [191]谈云志.非饱和红粘土三轴试验研究[J].合肥工业大学学报(自然科学版),2009,32(05):725-729.
    [192]骆圣明.非饱和粉质粘土抗剪强度特性试验研究及其对边坡稳定性的影响分析[D].杭州:浙江工业大学,2012.
    [193]李涛,刘波,杨伟红等.基质吸力对重塑红黏土抗剪强度影响的试验研究[J].中国矿业大学学报,2013,42(03):375-381.
    [194]祝艳波,余宏明,高建伟等.巴东组非饱和红土强度与变形特性试验研究[J].工程地质学报,2012,20(06):1050-1056.
    [195]王连俊,张弥.基坑开挖对非饱和土边坡土体强度影响及稳定性研究[A].第六届全国工程地质大会论文集[C].2000.
    [196]田军,邹银生.非饱和土边坡稳定的可靠性分析[J].公路,2003(11):148-150.
    [197]吴俊杰,王成华,李广信.非饱和土基质吸力对边坡稳定的影响[J].岩土力学,2004,25(05):732-736.
    [198]李荣建,于玉贞,邓丽军等.非饱和土边坡稳定分析方法探讨[J].岩土力学,2007,28(10):2060-2064.
    [199]刘子振,言志信,凌松耀等.非饱和土边坡抗剪强度的力学参数影响及灵敏度分析[J].中南大学学报(自然科学版),2012,43(11):4508-4513.
    [200]但汉波.天然软粘土的流变特性[D].杭州:浙江大学,2009.
    [201]Taylor D W. Fundamental Problems inViseo-Plastieity[M].New york:1966.
    [202]Drueker D C G R. Soil meehanics and work hardening theories of Plastieity[J]. Transactions ASCE.1957,122:338-346.
    [203]Pattont. L. F C. A theologicall model for fractured rock[J]. Journal of structural Geology. 1998,20(5):491-502.
    [204]Matsuokah G. A stress-strain model for granular materials considering meehanism of fabric change[J].Soils and Foundations.1983,23(2):83-97.
    [205]Lade P V D J. Elasto-plastic stress-strain theory for cohesionless soil[J].Journal of Geoteehnical Engineering.1975,101(10):1037-1064.
    [206]钱征.软土的流变性质及其长期强度[M].天津:天津科技出版社,1986.
    [207]Singh A. M J K. General stress-strain-time function for clay[J]. Journal of the clay mechanics and foundation division, ASCE.1968,94:21-46.
    [208]Mesri G. R E S D. Shear stress-strain-time behaviour of clays[J].Geotechnique.l981, 31(4):537-552.
    [209]詹美礼,钱家欢,陈绪禄.软土流变特性试验及流变模型[J].岩土工程学报.1993,15(03):54-62.
    [210]朱鸿鹄,陈晓平,程小俊等.考虑排水条件的软土蠕变特性及模型研究[J].岩土力学,2006,27(05):694-698.
    [211]周秋娟,陈晓平.软土蠕变特性试验研究[J].岩土工程学报,2006,28(05):626-630.
    [212]刘雄.岩石流变学概论[M].北京:地质出版社,1994.
    [213]曾静,卢萍珍,陈守义.竹城公路路基软粘土蠕变试验研究[A].中国土木工程学会第十届土力学及岩土工程学术会议[C].重庆,2007.
    [214]Mosleh D C S F. Constitutive model for (geologieal) materiais[J].Journal of Engineering Meehanies.1984,110(9):1391-1408.
    [215]Yf D. On Rate Dependence and Anisotropy in soil constitutive Modeling[C].Results of
    the Int,Workshop on Constitutive Relation for Soils.Paris:1982:79-83.
    [216]Borja R I. Generalized creep and stress relaxation model for elays[J].Geotech. Engrg ASCE.1992,118(11):1765-1786.
    [217]L B. Engineering Geoolgy of Norwegian normally eonsolidated marin clays as related to settlement of buildings[J].Geoteehnique.1967,17(2):81-118.
    [218]袁静,龚晓南,益德清.岩土流变模型的比较研究[J].岩石力学与工程学报,2001,20(06):772-779.
    [219]苏伯苓.宁波软土流变规律及其工程应用[J].河北地质学院学报,1990(02):111-120.
    [220]夏冰,夏明耀.上海地区饱和软土的流变特性研究及基坑工程的流变时效分析[J].地下工程与隧道,1997,3(3):11-18.
    [221]冯紫良,范厚彬.软土流变试验的数值模拟[J].同济大学学报(自然科学版).2003,31(04):379-382.
    [222]Borja R I K E. A constitutive model for the stress-strain-time behaviour of wet clays[J]. Geotechnique.1985(35):283-298.
    [223]廖红建,俞茂宏,赤石胜等.粘性土的弹粘塑性本构方程及其应用[J].岩土工程学报,1998,20(02):41-44.
    [224]Sekiguchi H. Theory of undrained creep rupture of normallyconsolidated clay based on elasto-viscoplasticity[J].Clays and Foundation.1984,24(1):129-147.
    [225]H S. Rheological characteristics of clays[C].Tokyo,1977.
    [226]Vermeer P A S D F A. From the classical theory of secondary compression to modern creep analysis[C].Wuhan,China:1997.
    [227]殷宗泽.一个土体的双屈服面应力-应变模型[J].岩土工程学报,1988,10(04):64-71.
    [228]袁静,龚晓南,刘兴旺等.软土各向异性三屈服面流变模型[J].岩土工程学报,2004,26(01):88-94.
    [229]Mesri G R E S D. Shear stress-strain-time behaviour of clays[J].Geotechnique.1981,31(4): 537-552.
    [230]H. D. Lin C C W. Stress-strain-time function of clay[J]. Journal of Geotechnical and Geoenviromental Engineering.1998,124(4):289-296.
    [231]王常明,王清,张淑华.滨海软土蠕变特性及蠕变模型[J].岩石力学与工程学报,2004,23(02):227-230.
    [232]谢宁.土流变试验设计及有关问题研究[J].云南工学院学报,1994,10(04):76-82.
    [233]谢宁,孙钧.上海地区饱和软粘土流变特性[J].同济大学学报,1996,24(3):233-237.
    [234]王琛,唐明,刘浩吾等.三峡泄滩滑坡滑动带土的Singh-mitchell蠕变方程[J].四川大学学报(工程科学版).2003,26(05):93-95.
    [235]王琛,胡德金,刘浩吾等.三峡泄滩滑坡体滑动带土的蠕变试验研究[J].岩土力学,2003,24(06):1007-1010.
    [236]王琛,刘浩吾,许强.三峡泄滩滑坡滑动带土的改进Mesri蠕变模型[J].西南交通大学学报,2004,39(1):15-19.
    [237]李军世,林咏梅.上海淤泥质粉质粘土的singh-Mitchell蠕变模型[J].岩土力学,2000,21(4):363-367.
    [238]李军世,孙钧.上海淤泥质粘土的Mesri蠕变模型[A].盛世岁月——祝贺孙钧院士八秩华诞论文选集[C].2006.
    [239]Singh A M J K. Geeneral stress-strain-time function for clay[J].Journal of the clay mechanics and foundation division,ASCE.1968(94):21-46.
    [240]Mesri G. R E S D. Shear stress-strain-time behaviour of clays[J].Geotechnique.l981, 31(4):537-552.
    [241]Kavazanjianjre M. Time-dependent deformation behavior of elays[J].Journal of Geoteehnical and Geoenvironmental Engineering,ASCE.1980,106(3):611-631.
    [242]郑榕明,陆浩亮,孙钧.软土工程中的非线性流变分析[J].岩土工程学报.1996,18(05):5-17.
    [243]郭增玉,张朝鹏,夏旺民.高湿度Q2黄土的非线性流变本构模型及参数[J].岩石力学与工程学报,2000,19(06):780-784.
    [244]王祥秋,陈秋南,王文星.两种地基土非线性流变特性与模型理论研究[J].湘潭大学学报,2001,23(2):106-112.
    [245]张敏江,张丽萍,张树标等.结构性软土非线性流变本构关系模型的研究[J].吉林大学学报(地球科学版),2004,34(02):242-246.
    [246]许宏发,钱七虎,吴华杰等.确定软土流变模型参数的回归反演法[J].岩土工程学报,2003,25(3):365-367.
    [247]于新豹,刘松玉,缪林昌.连云港软土蠕变特性及其工程应用[J].岩土力学,2003,24(06):1001-1006.
    [248]但汉波.天然软粘土的流变特性[D].杭州:浙江大学,2009.
    [249]张先伟,王常明.饱和软土的经验型蠕变模型[J].中南大学学报(自然科学版),2011,42(03):791-796.
    [250]张建勋.饱和砂性土流变特性的试验与研究[J].福州大学学报(自然科学版),1995,23(04):75-80.
    [251]张云,薛禹群,施小清.饱和砂性土非线性蠕变模型试验研究[J].岩土力学,2005,25(12):1869-1873.
    [252]胡桂衔,房营光,袁杰.砂性土的蠕变性质影响试验研究[J].工程勘察,2012(12):8-11.
    [253]韩世莲,周虎鑫,陈荣生.土和碎石混合料的蠕变试验研究[J].岩土工程学报,1999,21(02):61-64.
    [254]陈晓斌,张家生,安关峰.路用红砂岩粗粒土的流变特性试验研究[J].中南大学学报(自然科学版),2007,38(01):154-159.
    [255]施小清,薛禹群,吴吉春等.饱和砂性土流变模型的试验研究[J].工程地质学报,2007,15(02):212-216.
    [256]夏明耀,孙逸明,王大龄.饱和软粘土固结、蠕变变形和应力松弛规律[J].同济大学学报,1989,17(03):319-327.
    [257]熊军民,李作勤.粘土的蠕变-松弛耦合试验研究[J].岩土力学,1993,14(04):17-24.
    [258]刘志峰.粘性土流变特性及其在桥梁桩基工程中的应用[D].上海:同济大学,2007.
    [259]孔令伟,张先伟,郭爱国等.湛江强结构性黏土的三轴排水蠕变特征[J].岩石力学与工程学报,2011,30(02):365-372.
    [260]刘业科,邓志斌,曹平等.软黏土的三轴蠕变试验与修正的Singh-Mitchell蠕变模型[J].中南大学学报(自然科学版),2012,43(04):1440-1446.
    [261]马小杰,张建明,常小晓等.高温-高含冰量冻土蠕变试验研究[J].岩土工程学报,2007,29(06):848-852.
    [262]刘世伟,张建明,张虎等.青藏高原多年冻土长期蠕变变形试验研究[J].岩石力学与工程学报,2012,31(S1):3245-3253.
    [263]姜峰林.考虑黄土流变特性的边坡稳定性研究[D].西安:西安建筑科技大学,2005.
    [264]胡焕校,魏涛,晏露超等.原状网纹红土的蠕变特性及模型研究[J].水资源与水工程学报,2010,21(01):26-28.
    [265]余鹏程.吹填土蠕变特性试验研究[D].大连:大连理工大学,2012.
    [266]王文星,张继业.雾江滑坡滑动面粘土蠕变试验及积分蠕变方程[J].中南工业大学学报,1996,27(04):392-395.
    [267]王祥秋,张继业,王文星.雾江滑动面粘土蠕变特性的试验研究[J].江西有色金属,1998,12(02):14-16.
    [268]韩爱果,聂德新,任光明等.大型滑坡滑带土剪切流变特性研究[J].工程地质学报,2001,9(4):345-347.
    [269]陈晶晶,刘德富,王世梅.清江古树包滑坡滑带土的Mesri蠕变模型[J].三峡大学学报(自然科学版),2005,27(01):16-19.
    [270]汪斌,朱杰兵,唐辉明等.黄土坡滑坡滑带土的蠕变特性研究[J].长江科学院院报,2008,25(01):49-52.
    [271]严绍军,项伟,唐辉明等.大岩淌滑坡滑带土蠕变性质研究[J].岩土力 学,2008,29(01):58-62.
    [272]李建伟,简文星,张宏家等.川东天台乡滑坡滑带土蠕变特征[J].安全与环境工程,2010,17(04):105-110.
    [273]邹良超,王世梅.古树包滑坡滑带土蠕变经验模型[J].工程地质学报,2011,19(01):59-64.
    [274]郭培军.砂土振动蠕变与长期强度研究[J].岩土工程学报,1995,17(01):53-60.
    [275]吴紫汪,马巍,蒲毅彬等.冻土蠕变变形特征的细观分析[J]岩土工程学报,1997,19(03):4-9.
    [276]施斌,王宝军,宁文务.各向异性粘性土蠕变的微观力学模型[J].岩土工程学报,1997,19(03):10-16.
    [277]寇亚飞.压实黄土流变特性及其工程应用研究[D].西安:长安大学,2007.
    [278]张先伟,王常明,李军霞等.蠕变条件下软土微观孔隙变化特性[J].岩土力学,2010,31(04):1061-1067.
    [279]谷任国,房营光.一种改进的土体直剪蠕变仪及应用[J].岩石力学与工程学报,2006,25(S2):3552-3558.
    [280]曾庆国,陆沿强.非饱和南宁膨胀土蠕变特性试验研究[J].山西建筑,2009,35(04):120-121.
    [281]朱彭涛.非饱和重塑黄土变形特性试验研究[D].杨凌:西北农林科技大学,2011.
    [282]滕珂,肖宏彬,许豪等.非饱和膨胀土与红粘土的对比试验研究及微观结构分析[J].公路工程.2010,35(05):4-9.
    [283]肖宏彬,许豪,滕珂等.非饱和重塑膨胀土一维压缩蠕变特性试验研究[J].公路工程.2009,34(06):1-7.
    [284]董晓宏,张爱军,连江波等.非饱和冻融黄土固结蠕变特性研究[J].人民长江,2010,41(03):88-91.
    [285]关倪,王世梅.非饱和土蠕变试验方法探讨[J].三峡大学学报(自然科学版),2008,30(02):32-34.
    [286]尹清杰,王世梅.非饱和土流变试验方法及注意事项[J].灾害与防治工程,2006(01):35-38.
    [287]蒋晓庆,程桦,刘奇.合肥地区典型非饱和膨胀土蠕变模型试验研究[J].合肥工业大学学报(自然科学版),2010,33(11):1665-1668.
    [288]范志强,肖宏彬,汤艳.南宁非饱和膨胀土蠕变特性试验研究[J].公路工程,2011,36(06):43-47.
    [289]金文婷.南宁非饱和膨胀土非线性流变特性试验研究[D].长沙:湖南工业大学,2011.
    [290]马珂.合肥非饱和膨胀土蠕变试验与模型研究[D].合肥:安徽建筑工业学院,2012.
    [291]赖小玲,刘印,秦洪斌.三峡千将坪滑坡滑动带土的非饱和蠕变模型[J].灾害与防治工程,2009(01):41-46.
    [292]赖小玲,叶为民,王世梅.滑坡滑带土非饱和蠕变特性试验研究[J].岩土工程学报,2012,34(02):286-293.
    [293]Brodabent Cd K. Rheologic aspects of rock slope failures[J].International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts.1971:573-593.
    [294]钱家欢.粘弹性理论在土力学方面的应用[J].高等学校自然科学学报,1996,2(]):73.
    [295]苏伯芩.宁波软土流变特性及在稳定性评价中的应用[A].全国第三次工程地质大会论文选集(上卷)[C].成都,1988.
    [296]马金荣,姜振泉,李文平等.淮河大堤老应段土体蠕变特性研究及工程应用[J].工程地质学报,1997,5(01):54-59.
    [297]郑孝玉,曹炳兰.滑坡时间预报的实验研究[J].长春科技大学学报,2000,30(02):170-172.
    [298]孙法文,刘艳玲,谭秀萍等.土的蠕变与土坝稳定[J].西北地质,1999,32(02):55-57.
    [299]夏熙伦,徐平,丁秀丽.岩石流变特性及高边坡稳定性流变分析[J].岩石力学与工程学报,1996,15(04):9-19.
    [300]张伟,茜平一,陈晓平等.流变理论在深基坑开挖中的应用探讨[J].武汉大学学报(工学版),2003(02):92-96.
    [301]杨军,姚正学,王念秦.流变力学原理在黄土滑坡研究中的应用[J].甘肃科学学报,2006,18(01):40-43.
    [302]卢萍珍.饱和软粘土蠕变特性研究[D].武汉:中国科学院研究生院(武汉岩土力学研究所,2008.
    [303]孔宪京,孙秀丽,邹德高.垃圾土蠕变-降解特性的室内试验研究[J].岩土力学,2008,29(02):337-341.
    [304]郭建光.考虑土体蠕变的铁路边坡稳定性分析[D].长沙:中南大学,2009.
    [305]龙建辉,郭文斌,李萍等.黄土滑坡滑带土的蠕变特性[J].岩土工程学报,2010,32(07):1023-1028.
    [306]Fredlund D G X. A Equations for the soil-water characteristic curve[J].Geoteclmical Jounal.1994,31:521-532.
    [307]邵明申,李最雄.PS对非饱和重塑黏土的土-水特征曲线的影响[J].中南大学学报(自然科学版),2011,42(05):1432-1436.
    [308]苏金明,阮沈勇.Matlab 6.1实用指南(下册)[M].北京:北京电子工业出版社,2002.
    [309]J. M C. Impact of soil type and compaction conditions on soil water characteristic[J]. Journal of Geotechnical and Geoenvironmental Engineering,ASCE.2002,128(9): 733-742.
    [310]Rao S M R K. Role of soil structure and matric suction in collapse of a compacted clay soil[J].Geotechnical Testing Journal.2003,26(1):1-9.
    [311]Liang-Tong Z. Field and laboratory study of an unsaturated expansive soil associated with rain-induced slope instability[D].Hong Kong:The Hong Kong University of Science and Technology,2003.
    [312]Ng CWWZLTC. A new simple system for measuring volume changes in unsaturated soils[J].Canadian Geotechnical Journal,2002,39(2):757-764.
    [313]邓志斌.软粘土蠕变试验与本构模型辨识方法研究及应用[D].长沙:中南大学,2007.
    [314]Tan Tjong-Kie K W. On the locked in stress, creep and dilatation of rocks, and the constitutive equations[J].Chinese Journal of Rock Mechanics and Engineering,1991(4): 299-312.
    [315]维亚洛夫C.C.土力学的流变原理[M].北京:科学出版社,1987.
    [316]N. J. Soil compressibility as determined by oedometer and triaxial tests[C].Wiesbaden, 1963.
    [317]黎克日,康文法.岩体中泥化夹层的流变试验及其长期强度的确定[J].岩土力学,1983(01):39-46.
    [318]陈宗基.地下巷道长期稳定性的力学问题[J].岩石力学与工程学,1982,1(1):1-20.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700