用户名: 密码: 验证码:
β-榄香烯脂质体的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
β-榄香烯是从中药温莪术(Curcuma wenyujin Chen et C. Ling)的干燥根茎中提取分离得到的倍半萜烯类化合物。β-榄香烯是具有特异性细胞毒性的广谱抗癌药物,具有抗肿瘤、抗菌、抗炎、抗病毒、提高机体免疫力、抑制血小板凝集、改善微循环等作用。其现有制剂,乳注射剂、口服乳等,在临床上主要用于治疗癌性胸腹水、肝癌、肺癌、脑瘤等,疗效确切。近几年来,β-榄香烯已经成为抗癌药物的一个研究热点,也是中药西制的一个典范。
     β-榄香烯不溶于水,口服生物利用度极低,腹腔注射生物利用度也仅有8.49%,静脉注射可迅速被机体消除。β-榄香烯制剂在临床应用中的一个严重的副作用是血管刺激性较大,静脉炎发生率达30%。基于以上原因,本论文的主要研究目的就是通过脂质体新剂型解决β-榄香烯血管刺激性、提高其生物利用度、延长其静脉注射给药时的体内半衰期,进而靶向肿瘤,提高抗肿瘤疗效。为此我们设计了三种不同类型的脂质体,即β-榄香烯普通脂质体(CLE)、长循环脂质体(PLE)和热敏长循环脂质体(TLLE)。
     本论文主要包括以下内容:
     1.β-榄香烯的分离和理化性质测定。温莪术挥发油中分离提取得到了β-榄香烯,并对其理化性质,如油水分配系数、折光率、旋光度、在不同溶剂中的溶解度进行了测定,同时考察了β-榄香烯在乙醇溶液中的稳定性。结果,β-榄香烯油水分配系数为199.5,折光率为1.4932,比旋度为-16.359°,在各种有机溶剂中溶解度均较大。在40℃、60℃加热的条件下,β-榄香烯含量均有所下降。
     2.CLE、PLE、TLLE的制备及制剂性质考察。乙醇注入法为CLE、PLE的制备方法,在单因素考察和正交试验基础上优化CLE处方。结果表明,脂药比、磷脂浓度、水相介质种类对CLE包封率影响较大,其他因素对包封率影响较小。最后确定CLE的最优处方,得到了包封率较高(92.3%)的CLE;通过考察DSPE-PEG_(2000)的用量,在CLE最优处方的基础上,确定了PLE的处方(包封率95.2%);以相变温度和包封率为指标,确定了薄膜分散法制备TLLE的处方,该处方相变温度为41.8℃,符合临床热疗的要求,包封率为87.9%;对CLE、PLE和TLLE的理化性质及制剂稳定性进行了考察。结果,CLE、PLE和TLLE为小单室脂质体,CLE、PLE较TLLE稳定,4℃、25℃下12个月内稳定性较好。
     3.CLE、PLE和TLLE的药物动力学和组织分布的研究。建立了快速、准确、简单的生物样品中p-榄香烯气相色谱分析方法。大鼠尾静脉注射50 mg/kg以上三种制剂后,与市售制剂EE相比,TLLE的t_(1/2)、AUC_((0→t))、MRT_((0→t))分别为EE的3.2、4.2、2.3倍,统计学分析有显著性差异(P<0.001);PLE的t_(1/2)、AUC_((0→t))、MRT_(0→t))分别为EE的2.7、3.9、2.3倍(P<0.001);而与EE相比,CLE只使AUC_((0→t))提高了1.5倍(P>0.05),二者其他药动学参数间无显著性差异。药动学结果表明,PLE、TLLE均可使β-榄香烯体内循环时间延长,有长循环性;TLLE、PLE、CLE均可使β-榄香烯生物利用度得到显著提高。荷瘤小鼠尾静脉注射60mg/kg各种制剂,不同方案的组织分布结果表明,各治疗组肿瘤中药物分布由大到小的顺序为:TLLE+HT>PLE+HT>PLE>CLE>EE+HT>EE。在热疗条件下,以EE+HT为对照,TLLE+HT有最大的肿瘤靶向性,靶向参数为2.57。在生理温度下,PLE、CLE较EE有更好的肿瘤靶向性(靶向参数分别为2.17、1.33)。TLLE、PLE在肝脾中药物分布量均降低,证明了TLLE、PLE可降低肝脾的摄取,更多地靶向肿瘤组织。尤其是TLLE有在加热部位快速释药的热敏性,使其对肿瘤组织的靶向性大大增加。另外,TLLE、PLE、CLE在脂肪中的分布均减少,有望可以克服EE在脂肪中的蓄积现象。
     4.CLE、PLE和TLLE药效学研究。在体外抗肿瘤试验中,以EE作为阳性对照药,用MTT试验测定了三种制剂对6种人癌细胞的半数抑制浓度。结果,细胞毒活性为PLE>CLE≈TLLE>EE,透射电镜对癌细胞结构的观察结果与MTT试验结果一致。体内药效学试验中,以荷瘤小鼠为动物模型,考察了不同给药方案荷瘤鼠的抑瘤率和生命延长率,结果显示,在40mg/kg剂量下,各组抑瘤效果由强至弱依次为:TLLE+HT(69%)>PLE+HT(62%)>CLE+HT(58%)=TLLE(58%)>PLE(56%)>EE+HT(51%)>CLE(48%)>EE(40%)>HT(11%)。TLLE+HT组的抑瘤率高达69%。在生理体温(无热疗)条件下,各组比较时,PLE的抑瘤率较高,为56%。生命延长率实验中,生命延长百分率由大到小的顺序为PLE>CLE>TLLE。PLE、CLE可使荷瘤鼠存活时间延长约1倍;TLLE使荷瘤鼠存活时间延长约25.7%;EE无延长存活时间的作用。各组荷瘤鼠体重变化的结果表明,在抑瘤实验过程中荷瘤鼠的体重变化未超过正常范围,说明给药剂量比较适合,各种制剂毒副作用均较小。总之,CLE、PLE和TLLE体内外抗肿瘤效果均优于EE。
     5.CLE、PLE和TLLE的制剂安全性研究。CLE、PLE、TLLE均为静脉注射剂,本文对制剂的安全性从以下几个方面进行了评价。急性毒性实验考察小鼠最大耐受剂量;家兔溶血性试验考察制剂的渗透压是否合格,能否引起溶血;豚鼠的过敏试验考察制剂能否引起过敏反应;家兔的耳缘静脉刺激性试验考察制剂的血管刺激性。结果,三种制剂在制剂最大浓度和小鼠最大耐受剂量下均有良好的耐受性,无溶血现象、无过敏反应发生、对血管无刺激性,静脉给药是安全可行的。
β-elemene is a sesquiterpene ingredient extracted from one of the traditional Chinese herbal medicine Curcuma wenyujin Chen et C. Ling. Recent studies have shown thatβ-elemene possesses specific cytotoxicity. As a broad-spectrum anti-tumor agent,β-elemene exhibits pharmacological effects including anti-tumor, antibacterial, antivirus, improving immunity, inhibiting platelet aggregation and improving microcirculation, etc. The preparations ofβ-elemene, such as oral emulsion, injection, are extensively used in clinic to treat ascites resulting from cancer, lung cancer, hepatoma, brain cancer, etc. in China. Due to the potent efficacy ofβ-elemene in clinic to treat these diseases, the research ofβ-elemene has become a hot topic in recent years in China andβ-elemene has also become a typical example of TCM made by Hesperian and modern preparation technology.It has been reported that the oral bioavailability ofβ-elemene is very low due to its insolubility in water. Theβ-elemene is rapidly eliminated by injection and the bioavailability ofβ-elemene by i.p. is 8.49%. One of the adverse effects ofβ-elemene formulation used in clinic is the irritability to blood vessel, and the incidence rate of phlebitis is about 30%. Therefore, the purposes of this paper are to reduce irritability to blood vessel, to increase its bioavailability and to prolong its duration in the circulation after i.v. and to target to tumor and to improve efficacy. Three kinds of liposomes, including conventional liposome, PEGylated liposome, thermosensitive long-circulating liposome, were used as the means of fulfilling these purposes.The following parts are included in this paper:1.β-elemene was isolated from Rhizoma Curcumae. The physicochemical properties ofβ-elemene, including n-octanol/water partition coefficient, the solubilities in various solvent, refractive index, specific optical rotation, stability, were determined. The results indicate that:β-elemene is insoluble in water or PBS and soluble in organic solvents. Its n-octanol/water partition coefficient is 199.5, refractive index is 1.4932, specific optical rotation is -16.359°. The concentration ofβ-elemene in ethanol aqueous decreased at 40℃or 60℃for 6 or 12 months.2. The CLE、PLE were prepared by ethanol injection method. Single factor experiment and orthogonal experimental design were used to optimize the formulation of CLE. The effects of various factors on the encapsulation efficiency (EE%) were investigated. The results indicated that the ratio of PC toβ-elemene, different aqueous media and concentration of PC had larger effect on EE%than the other factors. The optimized formulation of CLE was 5%PC, 0.83%CH, 0.5%β-elemene, pH7.4 PBS (33.23mmol/L). The EE%of optimized CLE formulation was above 92%. The quantity of DSPE-PEG_(2000) in formulation was investigated and the formulation of PLE was optimized on the basis of CLE formulation. The EE%of PLE was 95.2%. The T_m and EE%were used to evaluate the formulation of TLLE prepared by film hydration method. The T_m of TLLE formulation was 41.8℃, which accord with the requirement of the clinical heat treatment. The EE%of TLLE formulation was 87.9%. The characteristics of CLE、PLE、TLLE were investigated. The results indicated that the liposomes were mainly unilamellar and the stability of CLE, PLE and TLLE were investigated. The results of stability indicated that CLE, PLE were stable at 4℃or 25℃for 12 months. But the stability of TLLE was not good.
     3. The pharmacokinetics and tissue distribution of CLE, PLE and TLLE were investigated. A simple, accurate, rapid GC method for the determination of 13-elemene in biological sample was developed. The pharmacokinetic behavior in rats via i.v. administration showed that the mean t_(1/2), AUC_((0→t)) and MRT_((0→t)) of PLE was 2.7 fold, 3.9 fold, 2.3 fold higher than those of EE. There was significant difference (P<0.001). The mean t_(1/2), AUC_((0→t)) and MRT_((0→t)) of TLLE was 3.2, 4.3, 2.3 times higher than those of EE. Meanwhile, AUG_((0→t)) showed a significant difference (P<0.05) between CLE and EE. Other PK parameters showed no significant difference (P>0.05) between CLE and EE. The results obtained from pharmacokinetics study showed that the circulation time in vivo ofβ-elemene in TLLE and PLE was significantly prolonged (P<0.001) and the bioavailability of TLLE, PLE, CLE was significantly improved (P<0.001). In in vivo tissue distribution study, the dosage was 60mg/kg and the biodistribution behavior ofβ-elemene in the H_(22) bearing mice via i.v. was changed by encapsulated in conventional liposome, PEGylated liposome and thermosensitive long-circulating liposome. The results of biodistribution showed that: the quantity ofβ-elemene in tumor in different groups was in order that, TLLE+HT>PLE+HT>PLE>CLE>EE+HT>EE. The ability to target to tumor of TLLE+HT was maximal and TI of it was 2.57 when it compared with EE+HT. At 37℃, PLE and CLE had greater tumor target than EE. The TI of PLE and CLE was 2.17, 1.33, respectively. The accumulation ofβ-elemene in liver and spleen in TLLE+HT group and PLE group decreased, which indicated that TLLE and PLE can decrease uptake of liver and spleen and can target to tumor. Especially, TLLE had the thermosensitive property and the ability to target to tumor rapidly increased with HT. Moreover, the accumulation ofβ-elemene encapsulated into TLLE, PLE, CLE in fat drastically decreased, which can be used to resolve the accumulation of EE in fat in clinic.
     4. In pharmacodynamics, we studied the anti-tumor effect of PLE, CLE, TLLE and EE for six cancer cell lines in vitro by MTr assay. The cytotoxicity of different formulations was in order that: PLE>CLE≈TLLE>EE. Morphologic change of CoCl cell observed by transsion electron micrograph was consistent with the result of MTT assay. In in vivo anti-tumor experiment, H_(22) beating mice was used as animal model and IRT and lifespan were used to evaluate the efficacy following intravenous administration at a dose of 40mg/kg. The IRT of different groups was in order that: TLLE+HT(69%)>PLE+HT (62%)>CLE+HT(58%)=TLLE (58%)>PLE(56%)>EE+HT(51%)>CLE (48%)>EE(40%)>HT(11%)。The IRT of TLLE combining with HT was 69%. PLE had high IRT(56%) at normal animal heat. The survival time of different groups was in order that: PLE≈CLE>TLLE. The survival time of PLE and CLE group increased 100%. The percent weight loss was used to evaluate the toxicity of different formulations. The percent weight loss was not above 15%, which indicated that the 40mg/kg dosage is proper and the toxicity of CLE, PLE, TLLE and EE was low. In conclusion, the anti-tumor activities of CLE, PLE and TLLE in vivo and in vitro were superior to EE.
     5. We also studied the pharmaceutical safety of CLE, PLE, TLLE to determine if these formulations were safe via iv administration. The results indicated that (1) no hemolysis, no irritability and no hypersensitivity were found in three formulations, (2) These formulation were tolerated for mice at maximal concentration and maximal injection volume (150mg/kg), which showed the safety of these formulations.
引文
[1] 吴万垠,罗云坚,程剑华,等.莪术油肝动脉灌注治疗大鼠移植性肝癌.华人消化杂志,1998,6(10):859-861.
    [2] 王建军,黄世琪.我国抗早孕中草药的研究进展.包头医学院学报,2001,1:73-75.
    [3] 徐铎,王树松,董彩金,等.复方莪术抗盆腔粘连的实验研究.生殖与避孕,1995,15(5):383-384.
    [4] 石志林,刘慧嫒,胡光春,等.莪术肤康液消毒效果的试验观察.预防医学情报杂志,2003,19(2):181-182.
    [5] 陈斌,孙克伟,刘明德,等.莪术对免疫性肝纤维化大鼠肝细胞功能的影响.湖南中医学院学报,2003,23(1):7-8,12.
    [6] 黄可新,潘建春,张安将,等.温莪术丙酮部分抗惊厥作用的研究.中国药理学会通讯,2000,17(2):56.
    [7] 中华人民共和国卫生部药典委员会编.中华人民共和国药典(1977年版一部),北京:人民卫生出版社,1978,463.
    [8] 许洪霞,郑淑忱,左上贤,孙风英.莪术醇与莪二醇的分离及鉴定.中草药通讯,1979,10: 1-5.
    [9] 郭永沺,初学魁.陈玉仁等.温莪术成分的研究.药学学报,1980,15(4):251-252.
    [10] 田颂九.莪术挥发油研究Ⅰ.毛细管柱气层和气质联用分离鉴定温莪术挥发油.药物分析杂志,1985,5(1):4-6.
    [11] 田颂九.莪术挥发油研究Ⅲ.桂莪术挥发油的分离鉴定及与温莪术挥发油的比较.药物分析杂志,1985,5(6):325-327.
    [12] 郭永沺,吴秀英,陈玉仁.温莪术挥发油中榄香烯的分离与鉴定.中药通报 1983,8(3):31.
    [13] 黄可新,陶正明,张安将,等.温莪术化学成分的研究.中国中药杂志,2000,25(3):162-163.
    [14] 时继慧.温莪术挥发油的实验药理研究:β-榄香烯抗肿瘤作用的研究.中药通报,1981,6(6):32-33.
    [15] 傅乃武.β-榄香烯的抗肿瘤作用及药理学研究.中药通报,1984,9:35-36.
    [16] 王堃,苏成业.β-榄香烯在大鼠体内的药代动力学及体内过程.药学学报,2000,35(10):725-728.
    [17] 李志,王堃,陈玉仁,等.大鼠胆汁中β-榄香烯代谢产物的研究.药学学报,2000,35(11):829-831.
    [18] 李大景.榄香烯的药理研究及临床应用.时珍国医国药,2001,12(12):1123-1124.
    [19] 陆群,朱路佳,谢梅林,等.β-榄香烯抑制大鼠血栓形成及其机理研究.中国现代应用药学杂志,1999,16(4):13-15.
    [20] 杨骅.王仙平,郁琳琳,等.榄香烯抗癌作用与诱发肿瘤细胞凋亡.中华肿瘤杂志,1996,18(3):169-172.
    [21] 徐学军,周子成,罗元辉,等.第三军医大学学报.1999,21(4):268-271.
    [22] 崔秀云,李德山.β-榄香烯对RNA聚合酶活性的抑制及与DNA的结合.中国药理学通报,1991,7(3):228-231.
    [23] 周云,杜英,范魁生.榄香烯乳胸腔灌注对恶性胸水渗出液相关淋巴细胞(EAL)增殖及其LAK活性的增强作用实验研究.中国肿瘤临床,1997,24(9):709.
    [24] 许洪升,黎军,刘军,等.榄香烯对脑肿瘤患者血清SOD活性影响的研究.中国肿瘤临床,1996,23(7):527.
    [25] 肖东,朱路佳.β-榄香烯对大鼠血液流变学的影响.苏州医学院学报,1197,17(5):833-835.
    [26] 佟富中.乔新民.榄香烯乳对化疗药物引起的骨髓抑制的改善和预防作用的临床.中国肿瘤临床,1999,26(7):534-535.
    [27] 胡军,赵瑾瑶,等.β-榄香烯乳剂逆转多药耐药细胞株MCF-7/ADM对阿霉素耐药性研究.中国微生态学杂志,2002,14(4):214-215.
    [28] Wang XW, Elemene [J]. Drugs fut, 1998, 23(3): 266-270.
    [29] 王金万,张和平,孙燕.榄香烯乳治疗晚期恶性肿瘤的Ⅱ期临床试验结果.中国新药杂志,1995,4(2):26.
    [30] 侯菊生,徐英辉.榄香烯乳治疗颅内恶性肿瘤的临床研究.中华神经外科杂志,1994,10(4):225.
    [31] 秦叔逵,钱军,王琳,等.榄香烯乳治疗肺癌的临床观察.中国肿瘤临床,1997,24(3):231.
    [32] 肖立森,朱为民.榄香烯经肝动脉介入治疗原发性肝癌的临床研究总结.中国肿瘤临床,1996,23(10):757.
    [33] 袁静,王平全.榄香烯的药理与临床应用进展.中国药房,1998,9(5):230-231.
    [34] Bangham A. D. Negative staining of phospholipids and their structural modification by surface active agents as observed in the electron microscope. J. Mol. Biol, 1964, 8: 660-668.
    [35] Lasie, D., Martin, F., (eds). Stealth liposomes (Pharmacology and Toxicology series). Baea Raton, FL; CRC Press, 1995.
    [36] Torchilin V. P., Long circulating drug delivery systems. Adv. Drag Deliv. Rev. 1995; 16: 125-348.
    [37] Allen, T. M. and chonn, A., Large unilamellar liposomes with low uptake into the reticuloendothelial system. FEBS Lett. 1987, 223. 42-46.
    [38] Ishida, T., Harashima, H., Kiwada, H., Liposome clearace. Brosci. Rep. 2002, 22 (2): 197-224
    [39] Cottel, L., Ceruti, M., Dosio, F., From conventional to stealth liposomes: a new frontier in cancer chemotherapy, Tumori. 2003, 89(3): 237-249.
    [40] Goren, D. and Gabizon, A., Pharmacologic advantages of anthracyelines encapsulated in poly -ethylene -glycol coated Stealth liposomes: Potential for tumor targeting, In Lasic, D. D. and Papahadjopoulous, D. (Eds.). Medical Applications of Liposome. Elsevier Press, Amsterdan, 1998, chapter 4.3, pp. 259-274.
    [41] Kim, I. S., Choi, H. G, Choi, H. S., Kim, B. K., Kim, C. K., Prolonged systemic delivery of streptokinase using liposome. Arch. Pharm. Res. 1998, 21(3): 248-252.
    [42] Arulsudear, N., Subramanian, N., Mishra, P., Chuttani, K., Sharma, R. K., Murthy, R. S., Preparation, characterization, and biodistribution study of technetium-99m-labeled leuprolide acetate-loaded liposomes in Ehrlich ascites tumor-bearing mice. AAPS Pharmsci. 2004, 6(1): E5.
    [43] Woodle, M. C, Matthay, K. K., Newman, M. S., Hidayat, J. E., Collins, L. R., Redemann, C, Martin, F. J. and Papahadjopoulos, D., Versatility in lipid compositions showing prolonged circulation with sterically stabilized liposomes. Biochim. Biohys. Acta, 1992, 1105, 193-200.
    [44] Klibanov, A.L., Maruyama, K., Torchilin, V. P., and Huang, L., Amphipathic polyethyleneglycols effectively prolong the circulation time of liposomes, FFBS Lett., 1990, 268: 235-237.
    [45] Blume, G, and Cevc, G, Liposomes for the sustained drug release in vivo. Biochim. Biophys. Acta.,1990, 1029: 91-97.
    [46] Senior, J., Delgado, C, Fisher, D., Tilcock, C, and Gregoriadis, G, Influence of surface hydrophilicity of liposomes on their interaction with plasma protein and clearance from the circulation: studies with poly(ethylene glycol)-coated vesicles. Biochim. Biophys. Acta., 1991,1062: 77-82.
    [47] know, K. Thermasensitive polymer-modified liposomes Advanced Drug Deliv Rev. 2001.53,307-319.
    [48] Roux, E., Stomp, R., Giasson, S., PEzolet, M., Moreau, P., Leroux, J. C, Steric stabilization of liposome by pH-responsive N-isopropylacrylamide copolymer. J. Pharmac. Sci. 2002,91(8):1795-1802.
    [49] Iga, K, Hamagnchi N, Igari Y. Enhanced antitumor activity in mice after administration of thermosensitive liposome encapsulating cisplatin with hyperthermia. J. Pharm. Exp. Ther. 1991,257 (3): 1203-1207.
    [50] Iga, K, Hamagnchi N, Igari Y. Rates of systemic degradation and RES uptake of thermosensitive liposome encapsulating cisplatin in rats. Pharm Res, 1993, 10 (9): 1332-1337.
    [51] Iga, K., Hamaguchi, H.,Igari, Y. Dwawa, Y.,Toguchi, H., and Shimamoto, T., Int. J. pharm. 1989,57:241-251.
    [52] Yatvin, M.B., Wenstein, J. N., Dennis, W. H., Design of liposomes for enhanced local release of drugs by hyperthermia. Sci, 1978, 202(20): 1290-1293.
    [53] Margin, R. L. and Weinstein, J. N., in liposome Technology, Vol. III (Gregoriadis,G,ed). 1983, PP.137-155, CRC Press. Boca Raton.
    [54] Maruyama, K., Unezaki, S., Takahashi, N., and Iwatsuru, M., Enhanced delivery of doxorubicin to tumor by long-circulating thermosensitive liposomes and local hyperthermia. Biochim. Biophys. Acta., 1993,1149:209-216.
    
    [55] Gaber, M. H., Hong, K., Huang, S. K., Papahadjopoulos, D., Thermosensitive stencally stabilized liposomes: formulation and in vitro studies on mechanism of doxorubicin release by bovine serum and human plasma. Pharmaceutical Research. 1995, 12(10):1407-1416.
    [1] 陈泽平,庄熹.榄香烯注射剂及其制备方法和用途.专利公开号CN 1451377A,2003.10.29.
    [2] 李爱群,姚崇舜,胡学军,等.不同产地莪术挥发油的有效成分.分析测试学报,2002,21(6):67-69.
    [3] 冯磊,陶文沂,敖宗华,等.莪术挥发油的提取工艺和主要成分测定.无锡轻工业大学学报,2003,22(1):90-92.
    [4] 郭永沺,陈玉仁,吴秀英.榄香烯乳注射液及其制备方法.授权公告号CN 1060036C,2002.12.1.
    [5] 郭永沺,吴秀英,陈玉仁.温莪术挥发油中榄香烯的分离与鉴定.中药通报,1983,8(3):31.
    [6] 董金华,程国宝,胡皆汉.温莪术挥发油中γ-榄香烯的分离鉴定及抗癌活性.中草药,1997,28(1):13-14.
    [7] 王堃,苏成业.气相色谱法测定生物样品中β-榄香烯.药物分析杂志,1998,28(6),394-395.
    [8] 侯丽娟,廉晓红,陈玉仁.气相色谱法测定榄香烯含量.色谱,1996,14(5):412-413.
    [9] Gaydou E. M., Faure, R., Bianchini J. P., Lamaty, G., Rakotonirainy, O., Randriamiharisoa, R., Sesquiterpene composition of Basil oil. Assignment of the 1H and 13C NMR spectra of β-elemene with two-dimensional NMR, J. Agric. Food Chem. 1989, 37: 1032-1037.
    [10] 陈淑莲,游静.超临界流体低压萃取β-榄香烯.色谱,2001,19(2):179-181.
    [1] 候丽娟,廉小红,陈玉仁,等.气相色谱法测定榄香烯含量.色谱,1996,14(9):412-413.
    [2] 郭彤,张惠蓉,接传红,等.气相色谱法测定β-榄香烯在兔眼内的分布.眼科研究,18(4):333-335.
    [3] 王堃,苏成业.气相色谱法测定生物样品中β-榄香烯.药物分析杂志,18(6):394-395.
    [4] 付迎,韩颖,满洪升.毛细管气相色谱法测定榄香烯微乳剂中β-榄香烯的含量.中草药,32 (4):316-317.
    [5] 付迎,韩颖,满洪升.毛细管气相色谱法测定血浆中β-榄香烯的浓度.中国医院药学杂志,21(6):335-336.
    [6] 陈闯,苏德森,王思玲.HPLC法测定β-榄香烯微乳剂中β-榄香烯的含量.中国药剂学杂志,2004,2(6):139-143.
    [7] 中华人民共和国卫生部药典委员会编.中华人民共和国药典(2000年版,附录ⅦE),北京:化学工业出版社,2000,附录44.
    [8] 中华人民共和国卫生部药典委员会编.中华人民共和国药典(2000年版,附录ⅥF,北京:化学工业出版社,2000,附录45.
    [9] 郑俊民主编.经皮给药新剂型.北京:人民卫生出版社,1997.173-178.
    [10] 吴翠栓.硝酸益康唑脂质体凝胶剂的研究.沈阳药科大学硕士学位论文.2000,6.P13.
    [11] 陆彬.药物新机型与新技术[M].北京:人民卫生出版社,1998.128.
    [12] 孙弘,廉晓红。β-榄香烯和γ-榄香烯稳定性的研究。沈阳化工,1999,28(3):11-12。
    [1] New RRC. Liposome a practical approach [M]. Oxford: Oxford University Press, 1990.
    [2] Lin, H. H., Ko, S. M., Hsu, L. R., Tsai, Y. H., The preparation of norfloxacin-loaded liposomes and its in vitro evaluation in pig's eye. J. Pharm. Pharmacol., 48, 801-805(1996).
    [3] Naeff, R., Feasibility of topical liposome drugs produced on an industrial scale. Adv. Drug Deliv. Rev., 18, 343-347(1996).
    [4] Wagner, A., Vorauer-Uhl, K., Kreismayr, G., Katinger, H. The crossflow injection technique: an improvement of the ethanol injection method. J. Liposome Res., 12, 259-270(2002).
    [5] Gregory Gregoriadis, Liposome technology 2nd edition Volume CRC press.London, 1993.
    [6] Arulsudear, N., Subramanian, N., Mishra, P., Chuttani, K., Sharma, R. K., Murthy, R. S., Preparation, characterization, and biodistribution study of technetiurn-99m-labeled leuprolide acetate-loaded liposomes in Ehrlich ascites tumor-bearing mice. AAPS Pharmsci. 2004, 6(1): E5.
    [7] Allen, T. M.,Hansen, C.,Martin,F.,et al.,Liposome containing synthetic lipid derivatives of poly(ethyleneglycol)show prolonged circulation half-lives in vivo.Biochim.Biophys. Acta. 1991, 1066, 29-36.
    [8] John N. Weinstein, Richard L. Magin, Richard L. Cysyk, and Daniel S. Zaharko. Treatment of Solid L 1210 Murine Tumors with Local Hyperthermia and Temperature-sensitive Liposomes Containing Methotrexate. Cancer Res, 1980, May 40: 1388-1395.
    [9] Chong-Kook Kim, Suk-Kyeong Lee and Beom-Jin Lee. Preparation and Evaluation of Temperature Sensitive Liposomes Containing Adriamycin and Cytarabine. Arch Pharm Res,1993, 16(2): 151-742.
    [10] Toshihito Hosokawa, Mari Sami, Yasuki Kato, and Eiji Hayakawa. Alteration in the Temperature-Dependent Content Release Property of Thermosensitive Liposomes in Plasma. Chem Pharm Bull, 2003, 51(11): 1227-1232.
    [11] Yiyu Zou, Maldko Yamagishi, Isamu Horikoshi, Masaharu Ueno, Xueqiu Gu, and Roman Perez-Sloer. Enhanced Therapeutic Effect against Liver W256 Carcinosarcoma with Temperature-sensitive Liposomal Adriamycin Administered into the Hepatic Artery. Cancer Res, 1993, 53: 3046-3051.
    [12] Toshio Tomita, Mariko Watanabe, Takayuki Takahashi, Kiochiro Kumai, Takushi Tadakuma, and Tatsuji Yasuda. Temperature-sensitive release of adriamycin, an amphiphilic antitumor agent, from dipalmitoylphnsphatidylcholine-cholesterol liposomes. Biochim Biophy Acta, 1989, 978: 185-190.
    [13] Sharma D, Chelvi TP, Kaur J, Ralhan R. Thermoscnsitive liposomal taxol formulation: heat-mediated targeted drug delivery in murine melanoma. Melanoma Res, 1998, 8(3): 240-244.
    [14] 赵桂梅,许永慧,于淑红。榄香烯乳、微波透热联合应用治疗卵巢癌腹水临床观察。内蒙古民族大学学报(自然科学版),2002,17(4):350-351。
    [15] 梁品,吴功侃,赵荣宇,等。榄香烯合并加温对H22-F25/L肝癌细胞体外抑癌的实验研究。大连医科大学学报,1995,17(1):16-19。
    [16] 平其能主编,现代药剂学,北京:中国医药科技出版社,1998:613.
    [17] 陈奇主编,中药药理实验方法学,北京:人民卫生出版社,1985:941.
    [1] 王堃,苏成业.气相色谱法测定生物样品中β-榄香烯.药物分析杂志,1998,28(6),394-395.
    [2] 王堃,苏成业.β-榄香烯在大鼠体内的药代动力学及体内过程.药学学报,2000,35(10):725-728.
    [3] Torchilin, V. P., Omelyanenko, V. G., Papisov, M. I., et,al., Poly(ethylene glycol) on the liposome surface: on the mechanism of polymer-coated liposome longevity. Biochim. Biophys. Acta, 1994, 1195: 11-20.
    [4] Yoshioka, H., Surface modification of haemoglobin-containing lipor, omc with polycthylene glycol prevents liposomc aggregation in blood plasma. Biomaterials. 1991, 12(9): 861-864.
    [5] Zeisig, R., Shimada, K., Hirota, S., Arndt, D., Effect of sterical stabilization on macrophage uptake in vitro and on thickness of the fixed aqueous layer of liposomes made from alkylphosphocholines. Biochim. Biophys. Acta, 1996, 1285: 237-245.
    [6] Woodle, M. C., Matthay, K. K., Newman, M. S., Hidayat, J. E., Collins, L. R., Redemann, C., Martin, F. J., and Papahadjopoulos, D., Versatility in lipid compositions showing prolonged circulation with sterically stabilized liposomes. Biochim. Biohys. Acta, 1992, 1105: 193-200.
    [7] 陆彬主编.药剂学.北京:中国医药科技出版社,2000:439-450.
    [8] Senior, J., Delgado, C., Fisher, D., et al., Influence of surface hydrophilicity of liposomes on their interaction with plasma protein and clearance from the circulation: studies with poly(ethylene glycol)-coated vesicles. Biochim. Biohys. Acta, 1991, 1062: 77-82.
    [9] Nishikawa, K., Arai, H., and Inoue, K., Scavenger receptor -mediated uptake and metabolism of lipid vesicles containing acidic phospholipids by mouse peritoneal maerophages. J. Biol. Chem., 1990, 265: 5226-5331.
    [10] Allen, T. M., Hansen, C., and Rudledge, J., Liposomes with prolonged circulation times: factors affecting uptake by reticuloendothelial and other tissues. Biochim. Biohys, Acta, 1989, 981: 27-35.
    [11] Awasthi, V. D., Garcia, D, Goins, B. A., et al. Circulation and biodistribution profiles of long-circulating PEG-liposomes of various sizes in rabbits. International J.Pharmac.2003,253: 121-132.
    [1] 黄富春,范钰,林庚金,等.β-榄香烯诱导结肠癌Lovo细胞凋亡的作用,复旦学报(医学版),2003,30(1):49-51.
    [2] 李文秀,周梁,金晓杰,等.榄香烯诱导细胞凋亡的实验观察,上海第二医科大学学报,2002,22(4):306-308.
    [3] 孙等军,方琴,王季石,等.榄香烯对人肝癌细胞7402、宫颈癌细胞Hela的凋亡诱导作用及下调Bel-2蛋白表达,复旦学报(医学科学版),2001,28(5):403-405.
    [4] 榄香烯对人肺腺癌细胞A549作用机理的初步研究,中国肿瘤临床,2002,29(5):338-341.
    [5] Chelvi TP, Ralhan R. Designing of thermosenitive liposomes from natural lipids for mutimodality cancer therapy. Int J Hyprthermia, 1995, 11(5):685~695.
    [6] Torchilin VP, Omelyanenko VG, Lukyanov AN. Temperature dependent aggregation of pH-sensitive PEDA-CH liposomes as measured by florescent spectroscopy. Anal Biochem, 1992, 207:109-113.
    [7] Iga K, Hamaguchi N, Igari Y. Heat-specific drug-release of large-unilamellar-vesicle as hyperthermia mediated targeting delivery, Int J Pharm, 1989, 57: 241.
    [8] 谢保源,房慧英,陆敏,等.榄香烯脂肪乳注射液及制备方法,专利公开号:CN1507857A.
    [9] 中华人民某和国卫生部药政局编,新药(西药)临床前指导原则,42~43.
    [10] 淑云等主编:药理实验方法学第二版,人民卫生出版社,北京(1993年),1115-1129.
    [1] 陈奇主编:《中药药理研究方法学》,人民卫生出版社,1994,112-119,163-169.
    [2] 袁伯俊主编:《新药临床安全性评价与实践》,中国医药出版社,P164.
    [3] 吴琼,TPT脂质体的研究,沈阳药科大学硕士学位论文,2004.6.
    [4] 徐淑云。药理实验方法学。北京,人民卫生出版社,1982:413.
    [5] 李仪奎。中药药理实验方法学。上海,上海科学技术出版社,1982:539.
    [6] Memoli A, Luisa G, Valter P, Travagli, Alhaique F. Lipid peroxidation of L-α-phosphatidyl from fresh yolk and from soybean during choline liposome preparation and storage. J lipo Res. 1993,3(3): 697.
    [7] 翁帼英,陈明非,王玲玲。脂质体中卵磷脂的氧化产物与溶血的关系。生物化学与生物物理进展,1990,17(1):76.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700