用户名: 密码: 验证码:
奥美拉唑与雷贝拉唑大鼠肠道首过代谢及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景:肠道代谢能力在新药筛选、研发及口服制剂生物利用度中的作用日益受到重视。药物在肠道可以产生I相和II相代谢作用,其中CYP3A是肠道主要I相代谢酶,在人体肠道中占总CYP酶的70%。肠道上皮细胞同样表达如P-糖蛋白(P-gp)多种转运蛋白,CYP3A和P-gp底物具有广泛交叉,能够产生协同作用,共同形成药物肠道吸收的生物屏障。CYP3A4和P-gp常常能够被同一种物质诱导或者抑制,产生药物间交互作用,药物或者其代谢产物浓度呈数量级式的增加或者减少,从而影响疗效,甚至产生不良反应。奥美拉唑和雷贝拉唑口服生物利用度低且存在个体差异性,肠道代谢作用对二者生物利用度的影响研究报道很少,很有必要进行探讨。
     目的;评价奥美拉唑和雷贝拉唑肠道首过代谢及探讨部分机制;初步探讨连续服用奥美拉唑和雷贝拉唑对肠道P-gp功能及蛋白表达的影响。
     方法:经门静脉及十二指肠置管建立肠道-血管通路IVAP大鼠模型。分别经十二指肠(id, 3–9 mg·kg-1)、门静脉(ipv,1.5–6 mg·kg-1)或者外周静脉(iv,1.5–6 mg·kg-1)给予奥美拉唑或者雷贝拉唑,HPLC法测定血药浓度并进行药动学分析,肝脏摄取率(EH)和肠道摄取率(EI)分别由浓度时间曲线下面积(AUC)计算;采取平行对照设计,经十二指肠给予酮康唑(60mg·kg-1)或者维拉帕米(9mg·kg-1),30min后分别经十二指肠(6mg·kg-1)或者外周静脉(3mg·kg-1)给予奥美拉唑或者雷贝拉唑,比较酮康唑或者维拉帕米对两种药物肠道与静脉药动学过程的影响。另外一独立实验,30只大鼠随机分成5组,6只每组,分别为奥美拉唑组、雷贝拉唑组、地塞米松组、维拉帕米组及正常对照组,分别灌胃给予奥美拉唑、雷贝拉唑、地塞米松、维拉帕米,对照组给予等剂量生理盐水,连续7d,d8处死动物,分别取空肠、回肠、结肠制成外翻肠囊,并置于含95%O2和5%CO2混合气体的Krebs-Ringer’S缓冲液中,在囊内(即浆膜侧)注入1mL罗丹明123(5μg·mL),在囊外(即粘膜侧)每隔10min取样500μL,至90min,荧光分光光度计测定罗丹明123浓度。同时取空肠、回肠、结肠组织制备成蜡块,采用免疫组化方法的测定不同肠段P-gp蛋白表达情况并用软件进行平均光密度分析。
     结果:IVAP模型中,奥美拉唑各给药途径药动学参数AUC、Cmax值随剂量成比例增加。id给予不同剂量奥美拉唑,均在15min以内达到峰浓度,提示奥美拉唑在大鼠肠道内能快速吸收。全肠道内奥美拉唑残留量占给药剂量百分比为0.01~0.05%,提示奥美拉唑在大鼠肠道接近完全吸收。id给予3.0和6.0 mg·kg-1后,其绝对生物利用度分别为20.73±2.49%和22.07±2.92%;EH分别为50.00±4.16%, 60.19±1.27%,EI分别为58.59±1.54%, 44.41±9.13%。雷贝拉唑各给药途径药动学参数AUC、Cmax值随剂量成比例增加。id给予不同剂量雷贝拉唑,均在9min以内达到峰浓度,提示雷贝拉唑在大鼠肠道内能快速吸收。全肠道内雷贝拉唑残留量量占给药剂量百分比为0.15~0.25%,提示雷贝拉唑在大鼠肠道几乎完全吸收。id给予3.0和6.0 mg·kg-1后,其绝对生物利用度分别为15.28±2.05%和27.16±2.47%;EH分别为16.77±2.85%, 27.79±3.43%,EI分别为81.65±2.28%, 62.26±4.69%。id预先给予酮康唑或者维拉帕米后,显著增加id途径下奥美拉唑和雷贝拉唑的AUC和Cmax值,但对奥美拉唑和雷贝拉唑静脉药动学参数无显著性影响。连续给予奥美拉唑后,肠道P-gp分泌罗丹明123的能力显著下降,按受抑制程度分,空场>回肠>结肠;肠道P-gp蛋白表达显著降低,按受抑制程度分,空场<回肠<结肠。连续给予雷贝拉唑后,肠道P-gp功能和蛋白表达水平虽然有所降低,但是与对照组比较,不具有统计学差异性。
     结论:奥美拉唑和雷贝拉唑均经历显著的肝脏和肠道代谢作用,奥美拉唑肝脏和肠道首过代谢程度相当,但雷贝拉唑肠道首过代谢程度显著高于肝脏。增加药物剂量可以明显增加雷贝拉唑生物利用度,但是奥美拉唑生物利用度增加不明显。肠道CYP3A介导代谢和P-gp介导的转运过程均参与奥美拉唑和雷贝拉唑肠道首过代谢过程,抑制肠道CYP3A和P-gp功能可以显著增加二者口服生物利用度。连续口服奥美啦可以显著抑制大鼠肠道P-gp活性和蛋白表达水平,但连续口服雷贝拉唑对大鼠肠道P-gp活性和蛋白表达水平不产生显著性影响。
Background: It has been widely hypothesized that intestinal apical secretion and/or CYP3A-mediated metabolism may profoundly affect a drug’s bioavailability (BA); CYP3A is a major phase I drug metabolizing enzyme that potentially mediates the biotransformation of more than 50% of known drugs with its gene expression levels being 30% and 70% of total cytochromes P450 in human liver and intestine, respectively. P-glycoprotein (P-gp) is thought not only to affect the secretion of a variety of drugs in the small intestine of the body, but it can also affect the metabolism and disposition of drugs. CYP3A and P-gp have wide overlapping substrate specificity and may have synergisitic effects on form the barrier to oral drug absorption. However, the ability to directly assess the potential importance of these two intestinal processes in vivo has represented a major technological challenge with little success being demonstrated to date.
     Objective: The aim of this study was to evaluate the effects of intestinal and hepatic extraction on the bioavailability of omeprazole and rabeprazole and the possible involvement of cytochromeCYP3Aand P-gp in this process in rats.The second aim of this study was to investigate the effects of consecutive administration of omeprazole or rabeprazole on the intestinal P-gp activity and protein expression in rats.
     Methods: The current study was performed in intestinal and vascular access ported (IVAP) rats to quantify and differentiate the components of intestinal and hepatic first pass extraction of omeprazole or rabepzole mediated by CYP3A and P-gp. Omeprazole or rabeprazole was administered by intravenous injection (i.v., 1.5–6 mg·kg-1), inrtraportal infusion (ipv, 1.5–6 mg·kg-1) or intraduodenal instillation (id, 3–9 mg·kg-1). The blood concentrations of omeprazole or rabeprazole were measured by the high-performance liquid chromatography. Extraction ratios in the liver and intestinal tract were determined from the area under the plasma concentration-time curve (AUC).The roles of intestinal efflux by means of P-gp and/or metabolism by CYP3A on the first pass intestinal extraction of omeprazole or rabepzole were differentiated by using ketconazole (an inhibitor of CYP3A) or verapamil(a P-gp inhibitor). Omeprazole or rabepzole was administered by id, ipv or iv to rats alone or 30 min after the id administration of ketoconazole(60mg·kg-1) or verapamil(9mg·kg-1), respectively.In another separated experiment, 30 rats were divided into five groups randomly as omeprazle, rabeprazole, verapamil, dexamethasone and control group, respectively. Drugs (omeprazle, rabeprazole, verapamil and dexamethasone) were given to rats by intragastric administration once a day for 7 days. The control group was given the same dose of saline. On d8, rats were sacrificed, everted sac of jejunum, ileum and colon were prepared quicly and put into Krebs-Ringers solution given with 95%O2 and 5%CO2, 1mL rhodamine 123(5μg·mL) was injected in the serosa side and 500μL samples was obtained from the mucosa side very 10min for 90mins. The activity of P-gp of segments of rat intestine was determined by the secretion of rhodamine 123 using everted sac of jejunum, ileum and colon respectively. Expression of P-gp in jejunum, ileum and colon of rat were immunohistochemistry assays.
     Results: In IVAP rat model, pharmacokinetic parameters of AUC and Cmax of omeprazole were increased propotionally after id, ipv, and iv administration at various doses. After id administration of various doses, all reached peak concentration within 15mins, and unchanged omeprazole in the whole gastrointestinal were 0.01~0.05% of the given dose, indicating rhat omeprazole can be absorbed rapidly and completely in rats. The bioavailability after id administration of 3 and 6 mg·kg-1 of omeprazole was 20.73±2.49% and 22.07±2.92%, respectively. And the EH was 50.00±4.16% and 60.19±1.27%, EI was 58.59±1.54%, 44.41±9.13%, respectively. Pharmacokinetic parameters of AUC and Cmax of rabeprazole were increased propotionally after id, ipv, and iv administration at various doses. After id administration of various doses, all reached peak concentration within 9mins, and unchanged rabeprazole in the whole gastrointestinal were 0.15~0.25% of the given dose, indicating rhat rabeprazol can be absorbed rapidly and completely in rats. The bioavailability after id administration of 3 and 6 mg·kg-1 of rabeprazol was 15.28±2.05% and 27.16±2.47%, respectively. And the EH was16.77±2.85% and 27.79±3.43%, EI was 81.65±2.28%, 62.26±4.69%, respectively. Compared with the control group, the presence of ketoconazole (60 mg·kg-1) or verapamil (9 mg·kg-1) significantly increased AUCand Cmax of id-administered omeprazole or rabeprazle, while it had no significant effect on those of omeprazole or rabeprazle administered by iv ports. Consecutive administration of omeprazole for 7ds significantly inhibited intestinal P-gp activity and protein expression of rat respectively, while consecutive administration of rabeprzole have no siginificant effects on them.
     Conclusion: Oral omeprazole or rabeprazole undergoes marked intestinal first pass metabolism in rats. Omeprazole has a comparable hepatic and intestinal first pass metabolism in rat, while intestinal metabolism of rabeprazole significant higer than that of in liver. The BA of rabeprazole may increase dose-dependently, while that of omeprazole may not increase with oral dose. CYP3A-mediated metabolism and P-gp mediated effluex are both involve in the intestinal metabolism of omeprazole or rabeprazole.Inhibition of CYP3A and P-gp may marked increase the BA of omeprazole or rabeprazle. Consecutive administration of omeprazole significantly inhibited intestinal P-gp activity and protein expression of rat, while rabeprzole have no siginificant effects on them.
引文
1. Guidance for Industry Bioavailability and Bioequivalence studies for orally administered drug products- General Considerations available online in http://www.fda.gov/cder/ guidance/4964dft.htm.
    2. Kaminsky LS, Zhang QY. The small intestine as a xenobiotic-metabolizing organ. Drug Metab Dispos 2003,31: 1520-5
    3. Glaeser H, Drescher S, Hofmann U et al. Impact of concentration and rate of intraluminal drug delivery on absorption and gut wall metabolism of verapamil in humans. Clin Pharmacol Ther 2004, 76: 230-8.
    4. Paine MF, Hart HL, Ludington SS, et al. The human intestinal cytochrome P450 "pie". Drug Metab Dispos 2006,34: 880-6.
    5. Stohs SJ, Grafstrom RC, Burke MD, et al. Xenobiotic metabolism and enzyme induction in isolated rat intestinal microsomes. Drug Metab Dispos 1976, 4: 517-21
    6. Tam YK. Individual variation in first-pass metabolism, Clin. Pharmacokinet 1993, 25:300-328.
    7. Kolars JC, Awni WM, Merion RM, et al. First-pass metabolism of cyclosporin by the gut. Lancet 1991, 338(8781):1488-90.
    8. Hoffman DJ, Seifert T, Borre A, et al. Method to estimate the rate and extent of intestinal absorption in conscious rats using an absorption probe and portal blood sampling. Pharm Res 1995; 12:889–894.
    9. Paine, MF, Shen DD, Kunze KL, et al. First-pass metabolism of midazolam by the human intestine. Clin Pharmacol Ther 1996,60:14–24.
    10. Fellenius E. Berglindh T, Sachs G, et al. Substituted benzimidazoles inhibit gastric acid secretion by blocking(H+-K+)ATPase. Nature 1981,290: 159-61
    11. Sachs G, Shin JM, Briving C, Wallmark B, et al. The pharmacology of the gastric acid pump: the H+,K+ ATPase. Annu Rev Pharmacol Toxicol 1995, 35:277-305
    12. Williams MP, Sercombe J, Hamilton MI, et al. A placebo-controlled trial to assess the effects of 8 days of dosing with rabeprazole versus omeprazole on 24-h intragastric acidity and plasma gastrin concentrations in young healthy malesubjects. Aliment Pharmacol Ther 1998, 12: 1079-89
    13. Lehmann DF, Medicis JJ, Franklin PD. Polymorphisms and the pocket book: the cost-effectiveness of cytochrome P450 2C19 genotyping in the eradication of Helicobacter pylori infection associated with duodenal ulcer. J Clin Pharmacol 2003,43(12):1316-23.
    14. Kaminsky LS, Zhang QY. The small intestine as a xenobiotic-metabolizing organ. Drug Metab Dispos 2003,31: 1520-5
    15. Glaeser H, Drescher S, Hofmann U, et al. Impact of concentration and rate of intraluminal drug delivery on absorption and gut wall metabolism of verapamil in humans. Clin Pharmacol Ther 2004, 76: 230-8.
    16. Chang M, Tybring G, Dahl ML, et al. Interphenotype differences in disposition and effect on gastrin levels of omeprazole-suitability of omeprazole as a probe for CYP2C19. Br J Clin Pharmacol 1995, 39: 511-8
    17. Ishizaki T. Horai Y. Review article: cytochrome P450 and the metabolism of proton pump inhibitors-emphasis on rabeprazole. Aliment Pharmacol Ther 1999,13(Suppl.3): 27-36
    18. Klotz U. Clinical impact of CYP2C19 polymorphism on the action of proton pump inhibitors: a review of a special problem. Int J Clin Pharmacol Ther 2006, 44(7): 297-302.
    19. Horn J. Review article: relationship between the metabolism and efficacy of proton pump inhibitors--focus on rabeprazole. Aliment Pharmacol Ther 2004, 20 Suppl 6:11-9.
    20. HU YM, XU JM, MEI Q etal.Pharmacodynamic effects and kinetic disposition of rabeprazole in relation to CYP2C19 genotype in healthy Chinese subjects.Acta Pharmacologica Sinica 2005 ,26 (3): 384-388.
    21.许建明,胡咏梅,梅俏等.细胞色素P4502C19基因多态性对雷贝拉唑药动学和药效学的影响.中华消化杂志,2004,10:594-97.
    22. Lin JH, Chiba M, Baillie TA. Is the role of the smal intestine in first-pass metabolism overemphasized? Pharmacol Rev 1999, 51: 135-583.
    23.王堃.肠道CYP3A和P-gp:口服药物的吸收屏障.中国药理学通报, 2003;19:1216-9.
    24. Guengerich, FP. Cytochrome P-450 3A4: regulation and role in drug metabolism. Annu Rev Pharmacol Toxicol 1999, 39:1-17
    25. Benet L Z , Izumi T ,Zhang Y , et al 1Intestinal MDR t ransport proteins and P450 enzymes as barriers to oral drug delivery .J Cont rol Release, 1999, 62 (1-2) :25.
    26.孙雅,陈西敬.CYP3A4和P-糖蛋白在药物肠首过效应中的协同作用.中国药科大学学报,2008,39(3):285-88.
    27. Thummel, KE, and Wilkinson, G.R. In vitro and in vivo drug interactions involving human CYP3A. Annu. Rev. Pharmacol. Toxicol 1998,38:389–430.
    28. Barone GW, Gurley BJ, Ketel BL, Lightfoot ML, Abul-Ezz SR. Drug interaction between St. John's wort and cyclosporine. Ann Pharmacother 2000,34: 1013-6
    29. Ruschitzka F, Meier PJ, Turina M, Luscher TF, Noll G. Acute heart transplant rejection due to Saint John's wort. Lancet 2000,355: 548-9
    30. Food and Drug Administration. Public Health Advisory 17 November 2009: updated Safety Information about a drug interaction between Clopidogrel Bisulfate (marketed as Plavix) and Omeprazole (marketed as Prilosec and Prilosec OTC). Available at: DrugSafety/PublicHealthAdvisories/ucm 190825.htm (accessed 15 December 2009).
    31. Van Wekum JW, ten Berg JM, Bedenoord AJ. Proton pump inhibitors and clopidogrel: a difficult dilemma. Am Heart J 2009; 157: e43.
    32. Moayyedi P, Sadowski DC. Proton pump inhibitors and clopidogrel– hazardous drug interaction or hazardous interpretation of data? Can J Gastroenterol 2009, 23: 251-2.
    33. Rude MK, Chey WD. Proton-pump inhibitors, clopidogrel and cardiovascularadverse events: fact, fiction or something in between? Gastroenterology 2009, 137: 1168-71.
    34. Sibbing D, Kastrati A. Risk of combining PPIs with thienopyridines: fact or fiction? Lancet 2009, 374: 952-4.
    35. Laine L, Hennekens C. Proton pump inhibitor and clopidogrel interaction: fact or fiction? Am J Gastroenterol 2010, 105: 34-41.
    36. Juurlink DN. Proton pump inhibitors and clopidogrel: putting the interaction in perspective. Circulation 2009, 120: 2310-2.
    37. Kim J, Kim SH, Lee MG. Liver and gastrointestinal first-pass effects of azosemide in rats. J Pharm Pharmacol 1997, 49:878-83.
    38.方海明,梅俏,金娟等.药物肠道首过效应定量评价及机制研究方法的建立.中国药理学通报2009;25(12):1679-80.
    39. Hu XP,Xu JM,Hu YM, et al. Effects of CYP2C19 genetic polymorphism on the pharmacokinetics and pharmacodynamics of OME in Chinese people. J Clin Pharm Ther,2007,32(5):517-24.
    40. Fang HM, Xu JM, Mei Q et al. Involvement of CytochromeP450 3A4 and P-glycoprotein in the Intestinal First-pass Extraction of Omeprazole in Rabbits. Acta Pharmacologica Sinica 2009;11(30): 1566-72.
    41. Cousein E,Barthélémy C,Poullain S,et al. P-glycoprotein and cytochrome P450 3A4 involvement in risperidone transport using an in vitro Caco-2/TC7 model and an in vivo model.Prog Neuropsychopharmacol Biol Psychiatry 2007,31(4):878-86.
    42. Shimizu M, Uno T, Yasui-Furukori N, etal. Effects of clarithromycin and verapamil on rabeprazole pharmacokinetics between CYP2C19 genotypes Eur J Clin Pharmacol 2006, 62: 597-603
    43. Abhinav N, William AP. Component Analysis of CYP2C9 and CYP3A4 Probe Substrate/Inhibitor Panels. Drug Metab Dispos 2008,36(11):2151-55.
    44. Tang H, Min G, Ge B, etal. Evaluation of protective effects of Chi-Zhi-Huangdecoction on Phase I drug metabolism of liver injured rats by cocktail probe drugs. J Ethnopharmacol 2008, 117(3): 420-26.
    45. Hashimoto Y, Sasa H, Shimomura M, etal.Effects of intestinal and hepatic metabolism on the bioavailability of tacrolimus in rats. Pharm Res 1998, 15: 1609-13.
    46. Emoto C, Yamazaki H, Yamasaki S, etal.Use of everted sacs of mouse small intestine as enzyme sources for the study of drug oxidation activities in vitro. Xenobiotica 2000, 30: 971-82.
    47. Uno S, Kawase A, Tsuji A, etal. Decreased Intestinal CYP3A and P-glycoprotein Activities in Rats with Adjuvant Arthritis Drug Metab Pharmacokinet 2007,22 (4): 313-21.
    48. Lee YH, Perry BA, Lee HS, Kunta JR, Sutyak JP, Sinko PJ. Differentiation of gut and hepatic first-pass effect of drugs: 1. Studies of verapamil in ported dogs. Pharm Res 2001, 18(12):1721-8.
    49. Lin JH, Sugiyama Y, Awazu S etal. In vitro and in vivo evaluation of the tissue-to-blood partition coefficient for physiological pharmacokinetic models. J Pharmacokinet Biopharm 1982,10, 637 -47.
    50. Stohs SJ, Grafstrom RC, Burke MD, Orrenius S. Xenobiotic metabolism and enzyme induction in isolated rat intestinal microsomes. Drug Metab Dispos 1976, 4: 517-21
    51. Tam YK. Individual variation in first-pass metabolism. Clin. Pharmacokinet 1993, 25:300-28.
    52. Morgan, DJ. Clinical pharmacokinetics of beta-agonists. Clin. Pharmacokinet. 1990,18:270-94.
    53. van Herwaarden AE, Wagenaar E, van der Kruijssen CM, et al. Knockout of cytochrome P450 3A yields new mouse models for understanding xenobiotic metabolism. J Clin Invest 2007, 117:3583-92.
    54. Kwan KC.Oral bioavailability and first-pass effects. Drug Metab Dispos 2008,25(12):1329-36.
    55. Yamazaki M, Neway WE, Ohe T, et al. In vitro substrate identification studies for P-glycoprotein-mediated transport: species difference and predictability of in vivo results. J Pharmacol Exp Ther. 2001, 296:723-35.
    56. Polli JW, Wring SA, Humphreys JE, et al. Rational use of in vitro P-glycoprotein assays in drug discovery. J Pharmacol Exp Ther 2001, 299:620-8.
    57. Schuetz EG, Umbenhauer DR, Yasuda K, et al. Altered expression of hepatic cytochromes P-450 in mice deficient in one or more mdr1 genes. Mol Pharmacol 2000, 57:188-97.
    58. Schuetz EG, Umbenhauer DR, Yasuda K, et al. Altered expression of hepatic cytochromes P-450 in mice deficient in one or more mdr1 genes. Mol Pharmaco 2000, l57:188-197.
    59. Thummel KE, O’Shea D, Paine MF, etal.Oral first-pass elimination of midazolam involves both gastrointestinal and hepatic CYP3A-mediated metabolism. Clin Pharmacol Ther 1996,59, 491-502.
    60. Guengerich FP. Cytochrome P-450 3A4: regulation and role in drug metabolism. Annu Rev Pharmacol Toxicol 1999, 39:1-17.
    61. SLC1-45:http://www.gene.ucl.ac.uk/nomenclature/genefamily/slc.php Or ABCA to ABCG:http://www.gene.ucl.ac.uk/nomenclature/genefamily/abc.html.
    62. Juliano RL, Ling V. A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants.Biochim Biophys Acta 1976, 455, 152-162.
    63. Cui YJ, Cheng X, Weaver YM, etal. Tissue distribution, gender-divergent expression, ontogeny and chemical induction of multidrug resistance transporter genes (mdr1a, mdr1b, mdr2) in mice. Drug Metab Dispos 2009,37(1),203-10
    64.贺云霞,孙进,程刚.多药耐药性P-糖蛋白在药物肠道吸收中的作用.沈阳药科大学学报,2004,5:389-93.
    65. Thummel KE. Gut instincts: CYP3A4 and intestinal drug metabolism. J Clin Invest 2007,117(11): 3173-6.
    66. Mizuno N, Niwa T, Yotsumoto Y, etal.Impact of drug transporter studies on drug discovery and development.Pharmacol Rev 2003,55, 425-461
    67. Schuetz EG, Beck WT, Schuetz JD. Modulators and substrates of P-glycoprotein and cytochrome P4503A coordinately up-regulate these proteins in human colon carcinoma cells. Mol. Pharmacol 1996, 49, 311-318.
    68. Schuetz EG, Umbenhauer DR, Yasuda K, et al. Altered expression of hepatic cytochromes P-450 in mice deficient in one or more mdr1 genes. Mol. Pharmacol 2000, 57, 188-197.
    69. Schuetz G, Yasuda K, Arimori K, et al. Human MDR1 and mouse mdr1a P-glycoprotein alter the cellular retention and disposition of erythromycin, but not of retinoic acid or benzo(a)pyrene. Arch. Biochem. Biophys 1998,350, 340-347.
    70. Troutman MD, Luo G, Gan L, et al.The role of P-glycoprotein in drug disposition: significance to drug development. In: Rodrigues, A.D. (Ed.), Drug-Drug Interactions 2002, 295-357.
    71. Thummel KE, Kunze KL, Shen DD. Enzyme-catalyzed processes of first-pass hepatic and intestinal drug extraction. Adv Drug Deliv Rev 1997,27: 99-127.
    72. Krishna DR, Klotz U. Extrahepatic metabolism of drugs in humans. Clin Pharmacokinet 1994,26: 144-60.
    73. Shen DD, Kunze KL, Thummel KE. Enzyme-catalyzed processes of first-pass hepatic and intestinal drug extraction. Adv Drug Deliv Rev 1997,27: 99-127.
    74. Thorn M, Finnstrom N, Lundgren S, Rane A, Loof L. Cytochromes P450 and MDR1 mRNA expression along the human gastrointestinal tract. Br J Clin Pharmacol 2005,60: 54-60.
    75. Kaminsky LS, Zhang QY. The small intestine as a xenobiotic-metabolizing organ.Drug Metab Dispos 2003,31:1520-5.
    76. Paine MF, Khalighi M, Fisher JM, et al.Characterization of interintestinal and intraintestinal variations in human CYP3A-dependent metabolism. J Pharmacol Exp Ther 1997,283: 1552-62.
    77. Masters B, Marohnic C. Cytochromes P450 - A family of proteins and scientists - understanding their relationships 2006,38: 209-25.
    78. Pelkonen O, Boobis AR, Gundert-Remy U. In vitro prediction of gastrointestinal absorption and bioavailability:an experts meeting report. Eur J Clin Pharmacol 2001,57: 621-9.
    79. Takemoto K, Yamazaki H, Tanaka Y,et al. Catalytic activities of cytochrome P450 enzymes and UDP-glucuronosyltransferases involved in drug metabolism in rat everted sacs and intestinal microsomes. Xenobiotica 2003,33: 43-55.
    80. van de Kerkhof EG, de Graaf IA, de Jager MH,et al.Characterization of rat small intestinal and colon precision-cut slices as an in vitro system for drug metabolism and induction studies. Drug Metab Dispos 2005,33: 1613-20.
    81. Mouly S, Paine MF. P-glycoprotein increases from proximal to distal regions of human small intestine. Pharm.Res 2003,20, 1595-1599.
    1. Stohs SJ, Grafstrom RC, Burke MD, Orrenius S. Xenobiotic metabolism and enzyme induction in isolated rat intestinal microsomes. Drug Metab Dispos 1976, 4: 517-21
    2. Y.K. Tam, Individual variation in first-pass metabolism, Clin. Pharmacokinet. 1993, 25:300-328
    3. Kolars, JC et al. First-pass metabolism of cyclosporin by the gut. Lancet.1991,338:1488–1490.
    4. Paine, M.F., et al. First-pass metabolism of midazolam by the human intestine. Clin. Pharmacol.Ther. 1996,60:14–24.
    5. Intestinal drug metabolism and anttransport processes: a potential paradigm shift in oral drug delivery. Journal of controlled release.1996,(39):139-143.
    6. Morgan, D.J. Clinical pharmacokinetics of beta-agonists. Clin. Pharmacokinet. 1990,18:270–294.
    7. van Herwaarden, A.E., et al. Knockout of cytochrome P450 3A yields new mouse models for understanding xenobiotic metabolism. J. Clin. Invest. 2007, 117:3583–3592.
    8. Lin JH, Chiba M, Baillie TA. Is the role of the smal intestine in first-passmetabolism overemphasized? Pharmacol Rev 1999, 51: 135-583.
    9. Paine MF, Hart HL, Ludington SS et al. The human intestinal cytochrome P450 "pie". Drug Metab Dispos. 2006; 34: 880-6.
    10. Benet L Z , Izumi T ,Zhang Y , et al 1Intestinal MDR t ransport proteins and P450 enzymes as barriers to oral drug delivery .J Cont rol Release, 1999, 62 (1-2) :25.
    11.王堃.肠道CYP3A和P-gp:口服药物的吸收屏障.中国药理学通报, 2003;19:1216-9.
    12.辛华雯.CYP3A4和P-糖蛋白与药物的肠道处置.中国临床药理学与治疗学.2005,10:721-5.
    13.孙雅,陈西敬.CYP3A4和P-糖蛋白在药物肠首过效应中的协同作用.中国药科大学学报,2008,39(3):285-88.
    14. Pelkonen O, Boobis AR, Gundert-RemyU. In vitro prediction of gastrointestinal absorption and bioavailability: an experts' meeting report. Eur J Clin Pharmacol 2001, 57:621-9.
    15. Bailey DG, Malcolm J, Arnold O, etal. Grapefruit juice-drug interactions. Br J Clin Pharmaco1998,l 46: 101-10
    16. Niemi M, Backman JT, Fromm MF, etal. Pharmacokinetic interactions with rifampicin: clinical relevance. Clin Pharmacokinet 2003,42: 819-50.
    17. Doherty MM, Charman WN. The mucosa of the small intestine: how clinically relevant as an organ of drug metabolism? Clin Pharmacokinet 2002,41: 235-53.
    18. Paine MF, Shen DD, Kunze KL, etal.(1996) First-pass metabolism of midazolam by the human intestine. Clin Pharmacol Ther 60: 14-24.
    19. Kharasch ED, Walker A, Hoffer C, etal. Intravenous and oral alfentanil as in vivo probes for hepatic and first-pass cytochrome P450 3A activity: noninvasive assessment by use of pupillary miosis. Clin Pharmacol Ther 2004,76: 452-66.
    20. Lennernas H, Nylander S, Ungell AL. Jejunal permeability: a comparison between the ussing chamber technique and the single-pass perfusion in humans. Pharm Res1997, 14: 667-71.
    21. Yu DK. The contribution of P-glycoprotein to pharmacokinetic drug-drug interactions. J Clin Pharmacol 1999, 39: 1203-11.
    22. Tamura S, Ohike A, Ibuki R, Amidon GL, Yamashita S. Tacrolimus is a class II low-solubility high-permeability drug: the effect of P-glycoprotein efflux on regional permeability of tacrolimus in rats. J Pharm Sci 2002,91: 719-29.
    23. Baldwin SJ, Bramhall JL, Ashby CA,etal.. Cytochrome P450 gene induction in rats ex vivo assessed by quantitative real-time reverse transcriptase-polymerase chain reaction (TaqMan). Drug Metab Dispos 2006,34: 1063-9.
    24. Chen J, Pang KS. Effect of flow on first-pass metabolism of drugs: single pass studies on 4-methylumbelliferone conjugation in the serially perfused rat intestine and liver preparations. J Pharmacol Exp Ther 1997,280: 24-31.
    25. Fisher RB, Parsons DS.A preparation of surviving rat small intestine for the study of absorption. J Physiol. 1949, 110: 36-46.
    26. Plumb JA, Burston D, Baker TG, etal. A comparison of the structural integrity of several commonly used preparations of rat smal intestine in vitro. Clin Sci (Lond) 1987, 73: 53-9
    27. Hirayama H, Xu X, Pang KS. Viability of the vascularly perfused, recirculating rat intestine and intestine-liver preparations. Am J Physiol 1989,257: G249-58.
    28. Castle SJ, Tucker GT, Woods HF, etal. Assessments of an in situ rat intestine preparation with perfused vascular bed for studying the absorption and first-pass metabolism of drugs. J Pharmacol Methods 1985, 14:255-74.
    29. Andlauer W, Kolb J, Furst P. Isoflavones from tofu are absorbed and metabolized in the isolated rat smal intestine. J Nutr 2000,130: 3021-7.
    30. de Vries MH, Hofman GA, Koster AS, etal.Systemic intestinal metabolism of 1-naphthol-A study in the isolated vascularly perfused rat small intestine. Drug Metab Dispos 1989, 17: 573-8.
    31. Doherty MM, Pang KS.Route-dependent metabolism of morphine in the vascularlyperfused rat small intestine preparation. Pharm Res 2000, 17: 291-8.
    32. Sababi M, Borga O, Hultkvist-Bengtsson U.The role of P-glycoprotein in limiting intestinal regional absorption of digoxin in rats. Eur J Pharm Sci 2001,14: 21-7.
    33. Higashikawa F, Murakami T, Kaneda T, etal.Dose-dependent intestinal and hepatic first-pass metabolism of midazolam, a cytochrome P450 3A substrate with differently modulated enzyme activity in rats. J Pharm Pharmacol1999, 51: 67-72.
    34. Merino G, Molina AJ, Garcia JL, etal.Intestinal elimination of albendazole sulfoxide: pharmacokinetic effects of inhibitors. Int J Pharm 2003, 263: 123-32.
    35. Wilson TH, Wiseman G.The use of sacs of everted smal intestine for the study of the transference of substances from the mucosal to the serosal surface. J Physiol 1954, 123: 116-25.
    36. Mariappan TT, Singh S. Evidence of efflux-mediated and saturable absorption of rifampicin in rat intestine using the ligated loop and everted gut sac techniques. Mol Pharm 2004, 1: 363-7.
    37. Rehner G, Daniel H, Aeppli-Schmidt R.In vitro perfusion technique for investigations on the intestinal transport of water soluble substances. J Pharmacol Methods.1981, 5: 193-201.
    38. Dragoni S, Gee J, Bennett R, etal. Red wine alcohol promotes quercetin absorption and directs its metabolism towards isorhamnetin and tamarixetin in rat intestine in vitro. Br J Pharmacol 2006, 147: 765-71.
    39. Hashimoto Y, Sasa H, Shimomura M, etal.Effects of intestinal and hepatic metabolism on the bioavailability of tacrolimus in rats. Pharm Res 1998, 15: 1609-13.
    40. Emoto C, Yamazaki H, Yamasaki S, etal.Use of everted sacs of mouse small intestine as enzyme sources for the study of drug oxidation activities in vitro. Xenobiotica 2000, 30: 971-82.
    41. Bohets H, Annaert P, Mannens G, etal.Strategies for absorption screening in drugdiscovery and development. Curr Top Med Chem2001, 1: 367-83.
    42. Farthing MJ, Vinson GP, Edwards CR, Dawson AM.Testosterone metabolism by the rat gastrointestinal tract, in vitro and in vivo. Gut 1982, 23: 226-34
    43. Arellano C, Philibert C, Dane a Yakan EN, etal.Validation of a liquid chromatography-mass spectrometry method to assess the metabolism of dextromethorphan in rat everted gut sacs. J Chromatogr B Analyt Technol Biomed Life Sci 2005, 819: 105-13.
    44. Ballent M, Lifschitz A, Virkel G, etal.Modulation of the P-glycoprotein-mediated intestinal secretion of ivermectin: in vitro and in vivo assessments.Drug Metab Dispos 2006, 34: 457-63.
    45. Ussing HH, Zerahn K.Active transport of sodium as the source of electric current in the short-circuited isolated frog skin. Acta Physiol Scand 1951, 23: 110-27.
    46. Pratha VS, Thompson SM, Hogan DL, etal. Utility of endoscopic biopsy samples to quantitate human duodenal ion transport. J Lab Clin Med. 1998, 132: 512-8.
    47. Larsen R, Mertz-Nielsen A, Hansen MB,etal. Novel modified Ussing chamber for the study of absorption and secretion in human endoscopic biopsies. Acta Physiol Scand 2001, 173: 213-22.
    48. Narawane M, Podder SK, Bundgaard H,etal.Segmental differences in drug permeability, esterase activity and ketone reductase activity in the albino rabbit intestine. J Drug Target1: 1993, 29-39.
    49. Yang H, Soderholm J, Larsson J, etal. Glutamine effects on permeability and ATP content of jejunal mucosa in starved rats. Clin Nutr 1999, 18: 301-6.
    50. Nejdfors P, Ekelund M, Jeppsson B, etal. Mucosal in vitro permeability in the intestinal tract of the pig, the rat, and man: species- and region-related differences. Scand J Gastroenterol. 2000, 35: 501-7.
    51. Gotoh Y, Kamada N, Momose D. The advantages of the Ussing chamber in drug absorption studies. J Biomol Screen.2005, 10: 517-23.
    52. Soderholm JD, Hedman L, Artursson P, etal.Integrity and metabolism of human ileal mucosa in vitro in the Ussing chamber. Acta PhysiolScand 1998, 162: 47-56.
    53. Polentarutti BI, Peterson AL, Sjoberg AK, etal. Evaluation of viability of excised rat intestinal segments in the Ussing chamber: investigation of morphology, electrical parameters, and permeability characteristics. Pharm Res 1999, 16: 446-54.
    54. Lampen A, Zhang Y, Hackbarth I, etal.Metabolism and transport of the macrolide immunosuppressant sirolimus in the small intestine.J Pharmacol Exp Ther.1998, 285:1104-12.
    55. Menon RM, Barr WH. Comparison of ceftibuten transport across Caco-2 cells and rat jejunum mounted on modified Ussing chambers. Biopharm Drug Dispos 2003, 24: 299-308.
    56. Mardones P, Andrinolo D, Csendes A, etal.Permeability of human jejunal segments to gonyautoxins measured by the Ussing chamber technique. Toxicon 2004, 44: 521-8.
    57. Rogers SM, Back DJ, Orme ML. Intestinal metabolism of ethinyloestradiol and paracetamol in vitro: studies using Ussing chambers. Br J Clin Pharmacol 1987, 23: 727-34
    58. Sung JH, Hong SS, Ahn SH, etal.Mechanismfor increased bioavailability of tacrine in fasted rats. J Pharm Pharmacol 2006, 58: 643-9.
    59. Lampen A, Christians U, Gonschior AK,etal. Metabolism of the macrolide immunosuppressant, tacrolimus, by the pig gut mucosa in the Ussing chamber. Br J Pharmacol.1996, 117: 1730-4.
    60. Le Ferrec E, Chesne C, Artursson P, Brayden D, Fabre G, Gires P, Guillou F, Rousset M, Rubas W, Scarino M-L. In vitro models of the intestinal barrier. ATLA 2001,29: 649-68.
    61. Vickers AE, Fischer V, Connors S, Fisher RL, Baldeck JP, Maurer G, Brendel K.Cyclosporin A metabolism in human liver, kidney, and intestine slices. Comparison to rat and dog slices and human cell lines. Drug Metab Dispos 1992,20: 802-9.
    62. Nygard G, Larsson A, Gerdin B, Ejerblad S, Berglindh T.Viability, prostaglandin E2 production, and protein handling in normal and inflamed human colonic mucosa cultured for up to 48 h in vitro. Scand J Gastroenterol 1992,27: 303-10.
    63. Quaroni A, Hochman J. Development of intestinal cel culture models for drug transport and metabolism studies. Adv Drug Deliv Rev 1996, 22: 3-52.
    64. de Kanter R, Tuin A, van de Kerkhof E,etal. A new technique for preparing precision-cut slices from small intestine and colon for drug biotransformation studies. J Pharmacol Toxicol Methods 2005,51: 65-72.
    65. Theodoropoulos C, Demers C, Delvin E,etal. Calcitriol regulates the expression of the genes encoding the three key vitamin D3 hydroxylases and the drug-metabolizing enzyme CYP3A4 in the human fetal intestine. Clin Endocrinol (Oxf) 2003, 58: 489-99.
    66. Armbrecht HJ, Boltz MA, Kumar VB. Development of a vitamin D-responsive organ culture system for adult and old rat intestine. Dig Dis Sci 2002, 47: 2831-8.
    67. Cohen GM, Grafstrom RC, Gibby EM, etal.Metabolism of benzo(a)pyrene and 1-naphthol in cultured human tumorous and nontumorous colon.Cancer Res 1983,43 :1312-5.
    68. Lerche-Langrand C, Toutain HJ. Precision-cut liver slices: characteristics and use for in vitro pharmaco-toxicology. Toxicology 2000, 153: 221-53
    69. Krumdieck CL, dos Santos JE, Ho KJ. A new instrument for the rapid preparation of tissue slices. Anal Biochem 1980, 104: 118-23.
    70. Vickers AE, Fisher RL. Organ slices for the evaluation of human drug toxicity. Chem Biol Interact 2004, 150: 87-96.
    71. van de Kerkhof EG, Ungell AL, Sjoberg AK,etal. Innovative methods to study human intestinal drug metabolism in vitro: precision-cut slices compared withussing chamber preparations. Drug Metab Dispos 2006,34:1893-902.
    72. Martignoni M,Groothuis G, de Kanter R. Comparison of mouse and rat cytochrome P450-mediated metabolism in liver and intestine. Drug Metab Dispos 2006,34: 1047-54.
    73. Martignoni M, de Kanter R, Grossi P,etal. An in vivo and in vitro comparison of CYP induction in rat liver and intestine using slices and quantitative RT-PCR. Chem Biol Interact 2004,151:1-11.
    74. van de Kerkhof EG, de Graaf IA, de Jager MH, Meijer DK, Groothuis GM. 2005,Characterization of rat small intestinal and colon precision-cut slices as an in vitro system for drug metabolism and induction studies. Drug Metab Dispos 33: 1613-20.
    75. Hansen T, Borlak J, Bader A. Cytochrome P450 enzyme activity and proteinexpression in primary porcine enterocyte and hepatocyte cultures. Xenobiotica 2000,30: 27-46.
    76. Bonkovsky HL, Hauri HP, Marti U, etal. Cytochrome P450 of small intestinal epithelial cells, immunochemical characterization of the increase in cytochrome P450 caused by phenobarbital. Gastroenterology 1985,88: 458-67
    77. Zhang QY, Dunbar D, Ostrowska A, etal.Characterization of human small intestinal cytochromes P-450. Drug Metab Dispos 1999,27: 804-9.
    78. von Richter O, Burk O, Fromm MF, etal. Cytochrome P450 3A4 and P-glycoprotein expression in human small intestinal enterocytes and hepatocytes: a comparative analysis in paired tissue specimens. Clin Pharmacol Ther 2004,75: 172-83.
    79. Fasco MJ, Silkworth JB, Dunbar DA,etal. Rat small intestinal cytochromes P450 probed by warfarin metabolism. Mol Pharmacol 1993, 43: 226-33.
    80. Glaeser H, Drescher S, van der Kuip H, Behrens C, Geick A, Burk O, Dent J, Somogyi A, Von Richter O, Griese EU, et al. Shed human enterocytes as a tool forthe study of expression and function of intestinal drug-metabolizing enzymes and transporters. Clin Pharmacol Ther 2002,71: 131-40.
    81. Glaeser H, Drescher S, Hofmann U, Heinkele G, Somogyi AA, Eichelbaum M, Fromm MF. Impact of concentration and rate of intraluminal drug delivery on absorption and gut wall metabolism of verapamil in humans. Clin Pharmacol Ther 2004,76: 230-8
    82. Sohlenius-Sternbeck AK, Orzechowski A. Characterization of the rates of testosterone metabolism to various products and of glutathione transferase and sulfotransferase activities in rat intestine and comparison to the corresponding hepatic and renal drug-metabolizing enzymes. Chem Biol Interact 2004,148: 49-56.
    83. Pinto AG, Wang YH, Chalasani N,etal. Inhibition of human intestinal wall metabolism by macrolide antibiotics: effect of clarithromycin on cytochrome P450 3A4/5 activity and expression. Clin Pharmacol Ther 2005,77: 178-88.
    84. Emoto C, Yamazaki H, Yamasaki S, etal. Characterization of cytochrome P450 enzymes involved in drug oxidations in mouse intestinal microsomes. Xenobiotica 2000,30: 943-53.
    85. Sohlenius-Sternbeck AK, Orzechowski A. Characterization of the rates of testosterone metabolism to various products and of glutathione transferase and sulfotransferase activities in rat intestine and comparison to the corresponding hepatic and renal drug-metabolizing enzymes. Chem Biol Interact 2004,148: 49-56.
    86. Borm PJ, Frankhuijzen-Sierevogel A,Noordhoek J.Kinetics of in vitro O-deethylation of phenacetin and 7-ethoxycoumarin by rat intestinal mucosal cells and microsomes,the effect of induction with 3-methylcholanthrene and inhibition with alpha-naphthoflavone. Biochem Pharmacol 1983, 32: 1573-80.
    87. Vargas M, Franklin MR. Intestinal UDP-glucuronosyltransferase activities in ratand rabbit. Xenobiotica 1997,27: 413-21.
    88. Emoto C, Yamazaki H, Yamasaki S, etal.Use of everted sacs of mouse small intestine as enzyme sources for the study of drug oxidation activities in vitro. Xenobiotica 2000, 30: 971-82.
    89. Kaminsky LS,Zhang QY.The small intestine as a xenobiotic-metabolizing organ. Drug Metab Dispos 2003,31: 1520-5
    90. Takemoto K,Yamazaki H,Tanaka Y, Nakajima M, Yokoi T. Catalytic activities of cytochrome P450 enzymes and UDP-glucuronosyltransferases involved in drug metabolism in rat everted sacs and intestinal microsomes. Xenobiotica 2003,33: 43-55
    91. Zhang QY, Wikoff J, Dunbar D, etal. Regulation of cytochrome P4501A1 expression in rat small intestine. Drug Metab Dispos 1997, 25: 21-6.
    92. Paine MF, Khalighi M, Fisher JM, etal.Characterization of interintestinal and intraintestinal variations in human CYP3A-dependent metabolism. J Pharmacol Exp Ther 1997,283: 1552-62.
    93. Galetin A,Houston JB. Intestinal and hepatic metabolic activity of five cytochrome P450 enzymes: impact on prediction of first-pass metabolism. J Pharmacol Exp Ther 2006,318: 1220-9.
    94. Prueksaritanont T, Gorham LM, Hochman JH,etal. Comparative studies of drug-metabolizing enzymes in dog, monkey, and human small intestines, and in Caco-2 cells. Drug Metab Dispos 1996,24: 634-42.
    95. Hidalgo IJ, Raub TJ, Borchardt RT.Chatacterization of the human colon carcinoma cell line(Caco-2) as a model system for intestinal epithelia permeability. Gastroenterology.1989, 3:736-39.
    96. Artursson S, Epithelia transport of drugs in cell culture:a model for studying the passive diffusion of drugs over intestinal absorptive(Caco-2) cells.J Pharm Sci.1990,7:476-483=2.
    97.王彦荣,何应.Caco-2细胞模型在天然药物吸收研究中的应用.中国生化药物杂志.2007,1:66-69.
    98. Carriere V, Chambaz J, Rousset M. Intestinal responses to xenobiotics. Toxicol In Vitro 2001,15: 373-8
    99.关溯,赵立子,陈杰等.Caco-2细胞模型的建立及意义.山东医药.2005,26:1-3.
    100.Neuhoff S, Ungell AL, Zamora I, etal. pH-dependent bidirectional transport of weakly basic drugs across Caco-2 monolayers: implications for drug-drug interactions. Pharm Res 2003,20:1141-8.
    101.Artursson P, Palm K, Luthman K.Caco-2 monolayers in experimental and theoretical predictions of drug transport. Adv Drug Deliv Rev 2001,46: 27-43.
    102.Sun D, Lennernas H, Welage LS, etal.Comparison of human duodenum and Caco-2 gene expression profiles for 12,000 gene sequences tags and correlation with permeability of 26 drugs. Pharm Res 2002,19: 1400-16.
    103.Boulenc X, Bourrie M, Fabre I, etal. Regulation of cytochrome P450IA1 gene expression in a human intestinal cell line, Caco-2. J Pharmacol Exp Ther.1992,263: 1471-8.
    104.Pfrunder A, Gutmann H, Beglinger C, etal. Gene expression of CYP3A4, ABC-transporters (MDR1 and MRP1-MRP5) and hPXR in three different human colon carcinoma cell lines. J Pharm Pharmacol 2003,55: 59-66.
    105.Li Q, Sai Y, Kato Y, etal. Influence of drugs and nutrients on transporter gene expression levels in Caco-2 and LS180 intestinal epithelial cel lines. Pharm Res 2003,20: 1119-24.
    106.Korjamo T, Monkkonen J, Uusitalo J,etal. Metabolic and efflux properties of Caco-2 cells stably transfected with nuclear receptors. Pharm Res 2006,23:1991-01.
    107.Hilgendorf C, Spahn-Langguth H, Regardh CG, etal.Caco-2 versus Caco-2/HT29-MTX co-cultured cell lines: permeabilities via diffusion, inside- and outside-directed carrier-mediated transport. J Pharm Sci 2000,89: 63-75.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700