用户名: 密码: 验证码:
大功率交流传动货运机车整体驱动系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为我国自主开发大功率交流传动货运机车先进的驱动系统,本文重点研究我国引进的120km/h交流传动货运机车的整体驱动系统技术。通过对国际上交流传动货运机车三种主要驱动系统方案的比较分析,确定该驱动系统的结构方案为主动齿轮两端支承、叠片式膜片联轴器、斜齿圆柱齿轮传动、齿轮箱和电机一体式的整体驱动系统。
     根据列车牵引性能和规定剩余加速度的要求,确定C_0—C_0机车的单轴功率为1600kW,牵引5000t/6000t重量,在平直线路上速度为120km/h时,剩余加速度为0.013m/s~2。主动齿轮采用两端支承,四点角接触球轴承轴向定位,根据SKF额定寿命计算公式,轴承寿命均大于300万公里。
     基于在Ansys计算三种工况下传动齿轮的单点和双点啮合时,轮齿的齿根弯曲应力和齿面接触应力。结果表明:主动齿轮齿根弯曲应力和接触应力沿齿宽方向逐渐减小,靠近扭矩输入端出现最大值且变化率较大,远离扭矩输入端应力变化平缓,单点啮合较两点啮合危险。
     在电机轴和主动齿轮轴之间采用叠片式膜片联轴器,首先确定膜片联轴器的结构方案和主要结构参数,从而分析联轴器的强度和扭转刚度、弯曲刚度、轴向刚度和径向刚度等。该联轴器:扭转刚度,基本为常量3.78×10~7N·m/rad;弯曲刚度随弯曲轴转动,呈余弦变化趋势,周期60度,最大弯曲刚度为3.654×10~3N·m/rad;径向刚度为10~9数量级。
     计算扭矩变化的六种不同工况下,由电机轴和主动齿轮轴的附加位移对轴承载荷的影响在2%以内。在电机转速为4065r/min和2275r/min时,转子系统在G16、G6.3和G2.5三种平衡精度等级下,动不平衡对轴承载荷的影响在7%以内。采用径向梯形齿均匀端齿盘联结联轴器和主动齿轮轴,有效的解决大扭矩的传递和空间紧张问题。最后给出整体驱动系统的装配工艺方案,并分析主动齿轮轴和从动齿轮轴平行度的尺寸链,为保证传动齿轮运动的6级精度,需要各组成环的精度等级均在六级以上。
     该驱动系统方案可满足单轴功率为1600kW的机车需要;该系统的核心技术为叠片式膜片联轴器,保证足够大的径向刚度和合适的弯曲刚度是该系统的关键。
The technology of whole drive system for freight locomotive of AC drive at the speed of 120km/h is studied, in order to develop independently advanced drive system for it. The structure scheme of drive system that is drive gear supported averagely by two points, flexible coupling adopted, drived by helical cylindrical gear, gearbox with motor together is made sure, by comparing on three main international drive systems.
     The uniaxial power of C_0—C_0 locomotive is chosen as 1600kW, which can haul 5000t or 6000t on the straight road as the velocity of 120 km/h with residual acceleration of 0.013m/s~2, according to traction index and prescriptive residual acceleration. Drive gear is supported averagely by two points, and four-point contact ball is used to be axial positioning of it. In response to SKF calculation formula of bearing life, the lives are more than three million kilometers.
     The bending stress of tooth root and contact stress of tooth surface for drive gear are calculated on three conditions by ANSYS, when meshing of gear is on the one point and two points. The results are indicated that the bending and contact stress reduce gradually through tooth breadth direction, and the rate is larger close to the end of inputting torque, and the rate is smaller far to it, and the condition of single meshing is more dangerous than that of double-point meshing.
     The flexible coupling is adopted between the axle of motor and the axle of drive gear. Firstly, the structural scheme and main parameters are made sure, then analyzing strength, torsional stiffness, bending stiffness, axial stiffness and radial stiffness for the coupling. The torsional stiffness is a constant value that is 3.78e+7N.m/rad, and the bending stiffness has the trend of cosine as the period of 60 degree by rotating around bending axle, and the maximum of bending stiffness is 3.654e+3N.m/rad. The radial stiffness is the magnitude of 10~9N/m.
     By calculating six conditions of different torsions, we know that the additional displacement of motor axle and drive gear axle affects the load of bearing within 2%. The dynamic-unbalance of rotor system affects the load of bearing within 7% in the G16,G6.3 and G2.5 balance accuracy grades at the rational speed of 4065r/min and 2275r/min. The problems of small space and transferring large torque are solved availably by adopting uniform crown wheel between drive gear axle and coupling. At last the scheme of assembly process for the whole drive system is gained, and analyzing the dimension chain of parallelism between the drive gear axle and the driven gear axle. The precision grades of composition links must be within the sixth grade in order to ensure the sixth grade of motion for drive gear.
     The result of study shows that this drive system is satisfied with the locomotive of the uniaxial power of 1600kW. The key technology is the flexible coupling, and the most important thing is to ensure large enough radial stiffness and appropriate bending stiffness.
引文
[1]G·Kratz,B·Sauer等.大功率机车新型驱动装置的设计[J].国外内燃机车,1994(6):5-11
    [2]柳宇刚,顾振国编著.牵引传动装置[M].北京:中国铁道出版社,1985.
    [3]鲍维千.机车驱动装置述评[J].内燃机车,1988(2):13-19
    [4]卡尔.萨克斯著,孙翔译.电传动机车转向架结构与原理IN].北京:中国铁道出版社,1988:18-21.
    [5]葛来熏.自主创新开发我国第二代轮对空心轴式电机架悬驱动装置[J].电力机车与城轨车辆,2006(2):1-4
    [6]孙竹生,鲍维千.内燃机车总体及走行部[M].北京:中国铁道出版社,1995:42-43.
    [7]铁路机车车辆科技手册编委会编.铁路机车车辆科技手册-铁道机车[M].北京:中国铁道出版社,2000
    [8]王秋允,张红军.机车电机主动齿轮轴轴承布置分析[J].机车电传动,2007(1):22-24
    [9]葛来熏.电动机架悬新型驱动装置的基本结构与分析比较[J].机车电传动,2005(2):1-6
    [10]葛来熏.我国200km/h速度等级机车转向架主要技术特征的探讨[J].机车电传动,2007(4):1-4
    [11]鲍维千.列车在最高速度运行时的剩余加速度的合理确定[J].内燃机车,1998(1):30-34
    [12]饶忠.列车牵引计算IN].北京:中国铁道出版社,2004.
    [13]王三民,诸文俊.机械原理与设计[M].北京:机械工业出版社,2000
    [14]邱宣怀,郭可谦等编著.机械设计[M].北京:高等教育出版社,2002
    [15]濮良贵,纪名刚等.机械设计[M].北京:高等教育出版社,2001
    [16]成大先.机械设计手册(第二卷)[M].北京:化学工业出版社,2002.
    [17]SKF轴承综合型录[M].上海:上海科学技术文献出版社,1991.
    [18]龙洙,权中太编著.铁路机车滚动轴承手册[M].北京:中国铁道出版社,1990.
    [19]李景贤,张莉.高速机车牵引电机轴承选型分析[J].内燃机车,1996(9):5-9
    [20]李景贤,权中太.高速高速动力车驱动装置轴承选型与计算[J].内燃机车,1995(3):26-29
    [21]曾正明主编.机械工程材料手册[M].北京:机械工业出版社,2003.
    [22]刘鸿文主编.材料力学[M].北京:高等教育出版社,1992.
    [23]赵少汴,王忠保.抗疲劳设计—方法与数据[M].北京:机械工业出版社,1995.
    [24]朱景梓,张展等编著.渐开线外啮合圆柱齿轮传动[M].北京:国防工业出版社,1990
    [25]江耕华,胡来珞等.机械传动设计手册[M].北京:煤炭工业出版社,1982
    [26]中国机械工程学会.极限与配合[M].北京:中国计划出版社,2004.
    [27]齿轮手册编委会.齿轮手册上册[M].北京:机械工业出版社,1990.
    [28]段进,倪栋,王国业编著.ANSYS10.0结构分析从入门到精通[M].北京:兵器工业出版社,2006
    [29]阮忠唐.联轴器、离合器设计与选用指南[M].北京:化学工业出版社,2006.
    [30]机械设计手册编委会.联轴器、离合器与制动器[M].北京:机械设计工业出版社,2007.
    [31]徐启清.钢片挠性联轴器的特性和设计[J].传动技术,1999(3):39-42
    [32]徐伟,冯桂军等.膜片联轴器的强度与刚度分析[J].机械设计,1992(5):21-25
    [33]卫冬生等.大功率膜片联轴器扭转刚度计算研究[J].机械传动,2006(6):7-8
    [34]申屠留芳,汤洪涛等.叠片联轴器膜片的应力及其影响因素分析[J].机械强度,1998(4):276-279
    [35]华军,许庆余,张亚红.膜片联轴器膜片应力计算及疲劳寿命分析[J].机械科学与技术,2000(2):203-205
    [36]张浩民,周新光,文志民.金属膜片挠性联轴器设计计算[J].机械研究与应用,2003(3):54-55
    [37]汝宇林,周新光等.金属膜片联轴器圆环式膜片的应力分析[J].兰州大学学报,2005(2):99-102
    [38]申屠留芳,徐其文.轴不对中对叠片联轴器膜片应力的影响[J].淮海工学院学报,1998(3):16-20
    [39]俞汉清,李晓沛,赵秉厚等.公差与配合过盈配合计算和选用指南[M].北京:中国标准出版社,1990.9.
    [40]Kim Kilac.A correlation between low cycle fatigue properties and scufing properties of 4340 steel[J].Journal of Iridology,1995,117(10):107-115.
    [41]J.phillips,Buowles and C.M.Johnsion.The design and application of flexiblex metallic membrance coupling[J].Flexible Ltd,1977(6).
    [42]Gen Sheimer J.How to design flexible coupling[J].Machine Design.1961(11).
    [43]Xut M,Mazangoni R D.Vibration analysis of a motorflexible coupling-rotor system subject to misaligrtment and unbalance[J].Journal of Sound and Vibration,1994,176(5):668
    [44]金令诚编著.端齿盘分度装置[M].北京:国防工业出版社,1995.
    [45]阎庆安.端面齿的设计和强度计算[J].红旗技术,1995(2):2-15
    [46]南欢.端齿盘的参数设计与应用[J].制造技术与机床,2006(10):106-109
    [47]王秋允,张红军.端齿盘在高速转向架空心轴传动中的应用[J].内燃机车,2006(8):8-11
    [48]陈宗舜等编著.机械制造装配工艺设计与装配CAPP[M].北京:机械工业出版社,2006.
    [49]吴庆记等.几何精度设计与控制[M].兰州:兰州大学出版社,2002.
    [50]何东.装配尺寸链中组成环公差的确定[J].山东建筑工程学院学报,2001(3):69-73
    [51]蔡延波,曹增强等.复杂装配尺寸链的分析计算[J].现代制造工程,2008(4):81-84
    [52]王兰群.基于装配尺寸链应用的研究[J].黄石理工学院学报,2007(3):9-12

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700