用户名: 密码: 验证码:
液压电梯变转速闭式电液系统速度控制特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
液压系统的节能研究是流体传动领域的重要课题之一,变转速容积调速的液压系统由于其功率自适应的特点而具有较好的节能效果,其中,闭式油路的变转速容积调速液压系统具有结构简单和节能效果显著的优点,适合应用在势能可回收且速度持续变化的大惯量液压提升机械中,如液压电梯、液压抽油机等。然而,在节能化的同时仍然要保证系统的运行性能及控制特性,在闭式油路的变转速容积调速液压系统的应用研究中,发现其存在着开环控制精度不高和启动始终有滞后的问题,而这也是大惯量的变转速容积调速液压系统的共性问题和难点,因此,需要从以下两个方面开展研究:第一,分析开环控制策略和传统的闭环控制策略在该类惯量变转速容积调速液压系统的速度控制中存在的局限性,提出有效的速度控制策略;第二,分析影响该类系统的启动性能的因素,提出智能控制策略以实现良好的启动。除上述两方面外,基于液压提升机械节能技术发展的要求,探索变转速容积调速以外的新型节能方法.
     论文以闭式油路变转速液压电梯为研究对象,研究该类系统除节能特性以外的运行性能及控制特性。为提高系统的速度运行精度,对系统的稳定性进行分析,由于该系统是一个高阶零型系统且具有低频的特性,其存在着闭环控制下稳态误差大和采用积分校正有较大滞后的问题;为此,提出了基于比例微分控制的前馈-反馈控制策略来克服上述问题。针对变转速容积调速液压系统的启动控制问题,重点分析了系统运动部件中的非线性摩擦力对启动性能的影响,通过试验建立了系统非线性摩擦力的模型,并提出了基于专家控制器和模型预测控制策略的启动控制方法,变工况下启动性能的试验结果表明,基于智能预测的启动控制方法能使系统在不同负载工况下获得非常好的启动性能。论文还针对闭式油路变转速液压电梯的轿厢振动特性进行分析,建立了系统垂直方向上8自由度的动力学模型,在此基础上对电梯系统进行试验模态分析,结果表明所建立的动态模型是准确的。另外,试验模态分析结果还表明,轿厢的主频率在100-150Hz的范围内,系统在运行过程中应避免该频率段的激励而导致的共振。基于液压提升机械节能技术发展的要求,论文中还从理论上探讨了一种变配重节能方法,提出变液压配重和机械配重变速度的两种方案,详细分析了变液压配重的方案在液压电梯系统中的应用,将其与已有变转速液压电梯系统进行了对比分析,结果表明变配重系统具有更优的节能效果。通过以上研究,大惯量闭式油路的变转速容积调速液压系统的速度闭环控制不好和启动不佳的本质原因得以阐述,且论文中提及的一些研究方法和结论适用于其它变转速容积调速的液压系统。
     论文主要结构如下:
     第一章,介绍了变转速容积调速的液压系统,并由此引出其典型应用——变转速液压电梯;综述了变转速液压电梯的研究和发展历程,分析了目前变转速液压电梯中依然存在的问题,指出目前变转速容积调速液压系统的发展需要和变转速液压电梯依然存在的市场需求,在此基础上提出课题的研究内容。
     第二章,分析了闭式油路变转速液压电梯系统的稳定性,提出适合该系统的速度控制策略。建立了系统中关键环节的数学模型和传递函数,结合经典控制理论对系统的稳定性进行分析,结果表明闭式油路变转速液压电梯系统是低频、低阻尼的高阶零型系统,其存在着闭环控制下有稳态误差和采用积分校正带来较大滞后的问题;针对该问题,提出基于比例微分控制的前馈-反馈控制策略,并通过仿真和试验验证了该方法的有效性。
     第三章,研究了以变转速液压电梯为代表的大惯量变转速容积调速液压系统的启动控制方法。指出了由于系统的大惯量和时滞特性,采用压力预平衡方法和速度比较启动法都存在着问题;重点分析了非线性摩擦力对系统启动性能的影响,指出非线性摩擦力的影响程度并通过试验建立了系统中摩擦力的模型,依据该模型针对性的提出了基于专家控制器和预测控制原理的智能预测启动方法;在变工况下对系统的启动性能进行了试验研究,结果表明基于智能预测的启动方法能使系统获得良好的启动性能。
     第四章,从闭式油路变转速液压电梯轿厢的振动特性入手,分析电梯系统的动态特性和系统中存在的激振源对轿厢振动的影响。通过对电梯轿厢的原始振动加速度信号和液压系统的负载压力信号进行频谱分析来寻找系统中的激振源;建立液压电梯垂直方向上的8自由度集中质量动力学模型并进行计算模态分析,依据该模型对系统进行了计算模态分析,并通过试验模态分析验证了所建立的动态模型的准确性;另外,分析结果还表明,电梯轿厢主频率在100-150Hz的范围内,系统在运行过程中应避免该频率段的激励。
     第五章,基于液压提升机械节能技术发展的要求,阐述了变配重的节能方法。提出了变液压配重和机械配重变速度的两种方案,重点对变液压配重的方案在液压电梯系统中的应用进行了论述,讨论了其中主要元件的设计计算与选型;采用Amesim仿真软件对采用变液压配重的液压电梯系统的能耗特性进行了仿真,将其和已有的三种变转速液压电梯系统进行了对比分析;讨论了变配重的节能技术目前在系统效率、配重预存储能量、动态特性三个方面存在的问题,给出了相应的对策.
     第六章,对本论文所作的研究工作进行总结,给出主要的研究结论,指出课题的创新点,并对未来的研究工作进行展望。
Energy-saving is one of the most important research areas of hydraulic systems.The variable-speed control is applied in the hydrostatic system for its high efficiency.The variable-speed control system is developed for large inertia hydraulic lift equipment,such as hydraulic elevators,hydraulic pumping units.In addition to the discussion of energy-saving, the system performance should be investigated also.In the velocity performance research of the system,there were two problems existed:the open-loop control method had the limitations in achieving high precision control of velocity and the hysteresis occurred in the startup of the system.Therefore,this research focused on developing the appropriate velocity control algorithm and speed startup method for the system.Besides these two aspects,the new energy-saving idea need be discussed because of the requirement of developing higher efficiency approach for hydraulic lift equipment.
     In this thesis,the behavior of the variable-speed controlled hydrostatic system was investigated on a hydraulic elevator test rig.To achieve high precision control of the velocity,the stability of the system was analyzed.Because the hydraulic elevator is a type 0 system with the feature of low frequency,the steady-state error of velocity still existed by unity-feedback control without compensation,and the velocity lag occurred with the integral compensation.A compound algorithm of PD & feedforward-feedback control was proposed to deal with the steady-state error.In order to overcome the hysteresis in the speed startup control of hydraulic elevator,the relationship between the startup performance and the nonlinear friction in the system was investigated.The speed startup method,based on expert control and model predictive strategy was developed,and was validated by the experiments under different working conditions.In addition,the vibration characteristics of the hydraulic elevator were analyzed.The dynamic model with 8 degree-of-freedom was established for describing the vertical dynamics of the hydraulic elevator system.The results of theoretical and experimental modal analysis on the system showed the validity of the dynamic model.And the results indicated that the frequency coverage of the main response of the system were within 100~150 Hz.Therefore,to avoid the resonance vibrations of the cabin in hydraulic elevator,the vibration source with frequencies range of 100~150 Hz should be isolated.Based on the requirement of higher efficiency in hydraulic lift equipment,an innovative idea of variable counterweight was developed.Compared with other variable-speed controlled hydraulic systems,the efficiency of the variable counterweight system was higher.In general,the results from this research can be applied to not only the variable-speed controlled hydraulic elevator,but also other variable-speed controlled hydrostatic systems.The thesis is outlined as follows.
     In chapter 1,the variable-speed controlled hydrostatic system and its typical application in hydraulic elevator are introduced.The development of the hydraulic elevator is expatiated and its existed problems are analyzed.The necessity of research on variable-speed control hydrostatic system and the markets requirement of hydraulic elevator are pointed out.Consequently,the contents and difficulties of the research are proposed.
     In chapter 2,the velocity behavior of the variable-speed controlled hydraulic elevator by feedback control is analyzed.The mathematic models of the system and the transfer function are established.Frequency-domain analyses show that it is a type 0 system with the feature of low frequency and poor damping.The steady-state error still exists in the system by the unity-feedback control without compensation.And the velocity lag occurs if the approach of integral compensation is adopted to eliminate the steady-state error.The compound algorithm of PD & feedforward-feedback control is proposed,which satisfies the requirement of the system against steady-state error and nonlinearities.
     In chapter 3,the method of speed startup control for the system is discussed.The speed startup behavior of the system by pressure pre-balanced control and speed feedback control is poor because of its friction and large inertia.The influence of nonlinear friction on the speed startup behavior of the system is analyzed,and the friction model is established through experiments.The speed startup method is developed based on the expert control and model predictive strategy,and experiments are conducted under different working conditions,namely variable loads and variable friction.The results show that the speed startup behavior of the improved system is excellent.
     In chapter 4,the cabin vibration characteristics of the variable-speed controlled hydrostatic hydraulic elevator are discussed.The 8 degree-of-freedom dynamic model of vertical direction for the system is established and the modal analyses are conducted.The experiments of modal analyses for the system are also carried out,which show that the dynamic model is correct and the frequency coverage of the main response of the system are within 100-150 Hz.And so,if the frequencies of outside vibration source are within 100-150 Hz,it must be avoided.
     In chapter 5,an innovative energy-saving idea of variable counterweight is proposed, and two different kinds of principles of the idea are introduced,namely variable hydraulic-counterweight and mechanical-counterweight with variable speed.The hydraulic elevator system applying the variable hydraulic-counterweight is discussed in detail,and the characteristic of energy consumption of the system is studied based on AMEsim simulation. The features of the system are discussed,which mainly involve efficiency,storage energy in counterweight and dynamic response,and the development of the variable counterweight technology is prospected.
     In chapter 6,all the research contents are summarized,and some new views are put forward in the future.
引文
[1]章宏甲,黄谊主编.液压传动.北京:机械工业出版社,2001
    [2]H.Murrenhoff,吴根茂译,液压控制技术发展趋势(1),工程设计,1997,(3)
    [3]杨华勇,骆季皓编著.液压电梯概论北京:机械工业出版社,1996
    [4]彭天好,徐兵,杨华勇.变频液压技术的发展与研究综述.浙江大学学报(工学版),2004,38(2)
    [5]Helduser,S.,Ruhlicke,I.Elekrohydraulische Antriebssysteme mit drehzahiveranderbaren Pumpen.AIF-AbschluBbericht Nr.25/B 9953,1996
    [6]彭天好.变频泵控马达调速及补偿特性的研究.[博士学位论文].杭州:浙江大学,2003
    [7]黄方平.变频闭式液压动力系统的设计及应用研究.[硕士学位论文].杭州:浙江大学,2005
    [8]邵文彬.基于四象限工作的变频闭式液压回路及其应用研究.[硕士学位论文].杭州:浙江大学,2006
    [9]彭勇刚,洪杰.变频控制在注塑机控制器中的应用.机电工程,2002,119(6)
    [10]Achim Helbig.Injection moulding machine with electric-hydrostatic drives.3rd International fluid power conference.Aachen,Germany,2002
    [11]Rolf Herkommer,Betriebswirt.Ways towards energy saving in hydraulic steering systems.3rd International fluid power conference.Aachen,Germany,2002
    [12]Motamed,Farzin.Use of a variable frequency motor controller to drive AC motor pumps on aircraft hydraulic systems.Aerospace Power Proceedings of the Inter society Energy Conversion Engineering Conference,v l 1995.IEEE,Piscataway,NJ,USA,95CH35829.p 19-24
    [13]Biedermann O.,J.Engelhardt,G.Geerling.More efficient fluid power systems using variable displacement hydraulic motors.Proc.of Ist FPNI-PhD Symp.Hamburg,2000:145-156
    [14]Monika Ivantysynova.Displacement controlled actuator technology-future for fluid power in aircraft and other applications.3rd International fluid power conference.Aachen,Germany,2002
    [15]Peter Dahmann.Closed loop speed and position control of a hydraulic manipulator in brick works with a frequency controlled internal gear pump in motor/pump operation.3rd International fluid power conference.Aachen,Germany,2002
    [16]Yamamotoi Tomoichiro.Apparatus for controlling a hydraulic elevator United States Patent:4593792,1986
    [17]Shimoaki Motoo.VVVF-controlled hydraulic elevators.Mitsubishi Electric Adance,1992,61(12)
    [18]张健民,杨华勇.变频调速液压电梯.起重运输机械.1998,(4)
    [19]张健民,杨华勇.变频调速技术在液压电梯速度控制中的应用.液压与气动,1997,(5)
    [20]张健民,杨华勇.能量回馈式VVVF液压电梯速度控制系统研究.机械工程学报,2000,36(7)
    [21]黄昕.液压元件节能途径的研究.现代机械,2002,(2)4
    [22]徐兵,杨华勇.液压电梯的节能方法.中国电梯,2000,11(3)
    [23]Beringer AG.The frequency-controlled hydraulic drive.Elevator World,1998,46(2)
    [24]Bucher液压产品样本
    [25]Leistritz升降机液压系统元件产品样本
    [26]Leistritz AG.Reversed acting hydraulic drive.Elevator world,1992,40(1)
    [27]陈钢.变转速容积-比例复合控制电梯液压系统的设计和控制策略的研究:[博士学位论文].杭州:浙江大学,1995
    [28]张健民.VVVF液压电梯速度控制系统研究:[博士学位论文].杭州:浙江大学,1997
    [29]孙威.变频调速液压电梯下降速度控制系统的研究:[硕士学位论文].杭州:浙江大学,2000
    [30]周晨.变频调速液压电梯速度控制系统的研究:[硕士学位论文].杭州:浙江大学,2001
    [31]王兴琪.变频液压电梯工程化关键技术研究:[硕士学位论文].杭州:浙江大学,2006
    [32]冉隆林.新型液压电梯速度控制系统及其节能研究:[博士学位论文].杭州:浙江大学,1998
    [33]徐兵.采用蓄能器的液压电梯变频节能控制系统研究:[博士学位论文].杭州:浙江大学,2001
    [34]林建杰.液压电梯闭式回路节能型电液控制系统研究:[博士学位论文].杭州:浙江大学,2005
    [35]林建杰,徐兵,杨华勇.液压电梯装机功率研究.机床与液压,2005,(1)
    [36]徐兵,林建杰,杨华勇.液压电梯中的能量回收技术.液压与气动,2004,(6)
    [37]杨华勇,廖轲.电梯液压系统的能耗分析及降低能耗的方法.中国电梯,1995,(6)
    [38]林建杰,徐兵,杨华勇.蓄能器作为压力油源的液压电梯节能系统研究.中国机械工程,2003,14(24)
    [39]林建杰,徐兵,杨华勇.配置蓄能器的变频驱动液压电梯能耗特性研究.机械工程学报,2003,39(7)
    [40]赵国军.液压电梯速度反馈单片机控制系统的设计与研究:[硕士学位论文].杭州:浙江大学,1995
    [41]赵国军,杨华勇.采用轿厢速度反馈控制的液压电梯系统.浙江工业大学学报,1996,24(3)
    [42]Yang,H,Y.,Sun,W.,& Xu,B.New investigation in energy regeneration of hydraulic elevators.IEEE/ASME transaction on mechatronics,2007,12(5)
    [43]Sha Dao Hang.,Bajic,V.B.,& Yang Hua Yang.New model and sliding mode control of hydraulic elevator velocity tracking system.Simulation Modeling Practice and Theory,9
    [44]Sha Dao Hang,Yang Hua Yong,Diao Jian Bo.Research on discrete robust optimum control of energy saving hydraulic elevator.Proceedings of the ICMA'98-advanced mechanics:first-time-right,1998,1-2
    [45]Teramoto,T.,& Nakamura,I.High-accuracy car level compensation device for a hydraulic elevator.Transactions of the Japan Society of Mechanical Engineers,Series C,1997,63(611),2321-2328
    [46]Kang,K.H.,& Kim,K.S.(2000).Robust velocity control for inverter-driven hydraulic elevators using DGKF/μApproach.Journal of Control,Automation,and System Engineering,6(2),217-227
    [47]Kim,C.S.,Hong,K.S.,& Kim,M.K.Nonliear robust control of a hydraulic elevator:experiment-based modeling and two-stage Lyapunov redsign.Control Engineering Practice 2005,13
    [48]P.Kallappa,Asok Ray.Fuzzy wide-range control of fossil power plants for life extension and robust performance.Automatica,2000,36
    [49]Abdul Wahab,H.C.Quek & B.H.Lim.Real-time integrated process supervision for autotuners and modified cerebellar model articulation controller.Part of the SPIE Conference on Applications and Science of Neural Networks,Fuzzy Systems and Evolutionary Coniputation·San Diego,California,July 1998
    [50]Saligrama.R.Venkatesha,Young Man Chob,Jongwon Kim.Robust control of vertical motions in ultra-high rise elevators.Control Engineering Practice,2002,10
    [51]Yang Huayong,Zhang Jianming.Investigating of speed feedback control system for hydraulic elevators.The 4th Scandinavian Inter.Conf.On Fluid Power,Tampere,Finland,1995.9
    [52]H.W.WU,C.B.LEE.Influence of a relief valve on the performance of a pump/inverter controlled hydraulic motor system,Mechatronics,1996,6(1)
    [53]Lee,T,Msdayoshi,T.Robust motion controller design for high-accuracy positioning system.IEEE Transactions on Industrial Electronics,1994,43(1)
    [54]Lee,T,H.,Tan,K,K.,& Huang,S,N.Intelligent control of prescision linear actuators.Engineering Applications of Artificial Intelligence,2000,13(6)
    [55]Kim,H.S.,Lee,K.I.,& Cho,Y.M.Robust two-stage nonlinear control for a hydraulic servo-system.International Journal of Control,75(7)
    [56]ASTROM K J.Expert control[J].Automatica,1986,22(3)
    [57]D.A.LINKENS,MINYOU CHEN.Expert Control System-I.Concept,Characteristics,and Issues.Engineering Applications of Artificial Intelligence.1995,8(4)
    [58]D.A.LINKENS,MINYOU CHEN.Expert control systems-2.Design principles and methods.Engineering Applications of Artificial Intelligence.1995,8(4)
    [59]Min Wu,Jin-Hua She,Michio Nakano.An expert control using neural networks for the electrolytic process in zinc hydromentallurgy.Engineering Applications of Artificial Intelligence.2001,14
    [60]Min Wu,Michio Nakano,Jin-Hua She.A distributed expert control system for a hydrometallurgical zinc process.Control Engineering Practice,1998,6
    [61]Jian-Zhong Tang,Qing-Feng Wang.Zhi-Yue Bi.Expert system for operation optimization and control of cutter suction dredger.Expert System with Application,2008,34(3)
    [62]D.Flynn,B.W.Hogg,E.Swidenbank & K.J.Zachariah,Expert control of a self-tuning automatic voltage regulator,Control Engineering Practice,1995,3(11)
    [63]Xu Bing,Yang Jian,Yang Huayong.Comparison of energy-saving on the speed control of VVVF hydraulic elevators with and without pressure accumulator,Mechatronics,2005.7
    [64]顾晨.ADCM电梯速度控制系统的研究:[硕士学位论文].杭州:浙江工业大学,2004
    [65]赵国军,杨华勇.液压电梯软起动控制技术的研究.微计算机信息,1996,12(4)
    [66]杨华勇,张健民,陈钢.液压电梯平稳性及其非线性补偿控制的研究.机床与液压,1997,5
    [67]沈民杰,宋兴智.电梯振动的数理分析.中国电梯,2003,14(13)
    [68]张志谊,华宏星.高速电梯振动控制的理论及试验研究.振动与冲击,2002,21(2)
    [69]崔桂花.控制电梯运行中振动与噪声的方法.中国电梯,2003,14(22)
    [70]李成荣,傅周东,路甬祥.液压电梯系统振动舒适性分析与控制.起重运输机械,1997,3
    [71]邵传敏.影响电梯垂直振动的几个因素.中国电梯,2002,13(7)
    [72]黄风.运用共振理论解决电梯振动.中国电梯,2000,1
    [73]张国安.电梯振动的原因及解决办法.中国电梯,2003,14(15)
    [74]曾健智.电梯运行振动超标的处理方法.中国电梯,2000,9
    [75]张长友,朱昌明,吴广明.电梯系统垂直振动分析与抑制.振动与冲击,2003,22(4)
    [76]赵东方,张文斌.电梯振动分析.中国电梯,2003,14(19)
    [77]李玉瑾.电梯加减速时系统的弹性振动.中国电梯,2001,5
    [78]曾晓东.电梯导靴引起的振动.起重运输机械,1997,12
    [79]李醒飞,张晨阳,李立京等.电梯导轨对轿厢振动影响.中国机械工程,2005,16(2)
    [80]张国雄,电梯综合测试系统与故障诊断技术研究:[博士学位论文].天津:天津大学,2002
    [81]王印辉,电梯减振降噪研究:[硕士学位论文]上海:上海交通大学,2001
    [82]李成荣.电梯系统的动态特性分析与故障诊断方法研究:[博士学位论文].杭州:浙江大学,1997
    [83]张建寿,谢咏絮等编著.机械和液压噪声及其控制.上海:上海科学技术出版社,1987
    [84]曾祥荣等编著.液压噪声控制.哈尔滨:哈尔滨工业大学出版社,1988
    [85]欧阳小平,徐兵,杨华勇等.液压变压器在液压电梯系统中的节能应用.中国机械工程.2003,14(19)
    [86]黎勉,罗勇武,查晓春等.交流变频调速在液压系统中的应用.机床与液压,1997,(6)
    [87]罗勇武,黎勉,查晓春等.交流变频液压调速回路的应用研究.机械,1997,(6)
    [88]罗勇武,周剑,黎勉等.液压变频调速系统数学模型的分析.现代制造工程,2001,(11)
    [89]权龙,李凤兰.注塑机电液控制系统节能原理及最新技术.机床与液压,1999,(5)
    [90]董国福.永磁无齿轮曳引机产品市场发展前景.中国电梯,2005,16(8)
    [91]王武.永磁同步无齿轮曳引电梯.中国电梯,2001,12(4)
    [92]陈文旭.浅谈无机房电梯.中国电梯2002,13(7)
    [93]曾晓东,郝国楠.谈谈无机房电梯.中国电梯,1999,10(11)
    [94]关于WALESS无机房电梯.http://www.waless.com/stsm
    [95]许家群,徐衍亮.电梯曳引驱动系统的现状及发展前景.微特电机,2002,30(3)
    [96]梁广民.电梯技术发展趋势.中国电梯,2002,13(9)
    [97]展望未来电梯发展方向.http://www.chinaelevator.org/association/hysh/200349113437.asp
    [98]朱昌明.电梯市场和技术发展趋势.中国电梯,2000,11(1)
    [99]隆成聚.电梯业的市场竞争.中国电梯,2001,12(1)
    [100]隆成聚.热论电梯业的当前市场.中国电梯,2002,13(7)
    [101]任夭笑.中国大陆电梯市场状况与发展趋势.现代电梯,2000,(5)
    [102]周友仁.WTO与中国电梯业.中国电梯,2002,13(5)
    [103]2007-2008年中国电梯行业市场调查与竟争态势分析研究报告.中国行业研究报告网.2007.7
    [104]宋绍彩.访问电梯协会理事长任夭笑.政府采购信息网.2008.1
    [105]2006中国国际电梯展览会特别报道四.中国电梯,2006,5(10)
    [106]王春行主编.液压控制系统.北京:机械工业出版社,2003
    [107]董景新,赵长德.控制工程基础.北京:清华大学出版社,1992
    [108]李连升,刘绍球.液压伺服理论与实践.北京:国防工业出版社,1990
    [109]卢长耿,李金良编著.液压控制系统的分析与设计.北京:煤炭工业出版社,1991
    [110]陶永华主编.新型PID控制及其应用.北京:机械工业出版社,2002
    [111]梁毅,费敏锐.单参数模糊PID在塑料挤出机温度控制系统中的应用.华东理工大学学报,2006,32(7)
    [112]彭天好,徐兵,杨华勇.变频泵控马达调速系统单神经元自适应PID控制.中国机械工程,2003,14(20)
    [113]周锐.基于模糊控制的PID参速整定.计算机与数字工程,2006,34(8)
    [114]杨建新,杜永贵.模糊自适应整定PID控制及其仿真,2006,5
    [115]江磊,陈新楚.新型专家系统PID控制器的设计.江苏电器,2006,4
    [116]俞压新,金波.一种模糊变系数PID控制器及其在水轮机调速器中的应用.中国机械工程,2007,18(8)
    [117]徐建安,邓云伟,张铭钧.移动机器人模糊PID运动控制技术研究.哈尔滨工业大学学报,2007,27增刊
    [118]于海生等编著.微型计算机控制技术.北京:清华大学出版社,1999
    [119]孙增圻等编.智能控制理论与技术.北京:清华大学出版社,1997
    [120]刘强,尔联洁,刘金琨.摩擦非线性的特性、建模与控制补偿综述.系统工程与电子技术2002,24(11)
    [121]张涛,路长厚,袭著燕.XY交流伺服工作台摩擦实验方法的研究.仪器仪表学报,2006,27(6)
    [122]吴南星,孙庆鸿,冯景华.机床进给伺服系统非线性摩擦特性及控制补偿研究,2004.134(6)
    [123]王中华,王兴松,王群等.新型摩擦模型的参数辨识及补偿实验研究.制造业自动化,2001.23(6)
    [124]克晶,苏宝库,曾鸣.一种直流力矩电机系统的自适应摩擦补偿方法.哈尔滨工业大学学报,2003,35(5)
    [125]李泉,路长厚,袭著燕.X-Y工作台建模与仿真.设计与研究,2005,10
    [126]王英,熊振华,丁汉.基于状态观测的自适应摩擦力补偿的高精度控制.自然科学进展,2005.15(9)
    [127]吴盛林,刘春芳.基于Lugre模型的电液伺服系统摩擦力矩动态补偿.机床与液压,2003,2
    [128]曹健,李尚义,赵克定.新型低速电液伺服叶片马达的控制策略研究.中国机械工程,2003.14(17)
    [129]罗浩.基于摩擦力补偿的气动位置伺服系统的控制研究.液压与气动,2006,2
    [130]吴盛林,刘春芳.超低速高精度转台中摩擦力矩的动态补偿.南京理工大学学报,2002,26(4)
    [131]王晓东,华清,焦宗夏.负载模拟器中的摩擦力及补偿控制.中国机械工程,2003,14(6)
    [132]吴晓明,陈俊兰.液压位置伺服系统的摩擦力观测器的设计.液压与气动,2004,10
    [133]Karnopp,D.Computer simulation of stick-slip friction in mechanical dynamic systems.Journal of Dynamic Systems,Measurement and Control,1985,107(1)
    [134]C.Canduas de Wit,H.Olsson,K.J.Astrom,P.Lischinsky,A new model for control of systems with friction,IEEE Trans,Automat.Control 1995,40(3)
    [135]Arkan,K,J,Francts,Doyle Ⅲ.Friction compensation for a process control valve.Control Engineering Practice,2000,8(7)
    [136]Ying,W.,Zheng,X.,& Han,D.Friction compensation design based on state observe and adaptive law for high-accuracy postioning system.Progress in natural science,2006,16(2),147-152.
    [137]Hiromi Inaba,Masayuki Shigeta,Takeki Ando.Attitude control system of a super-high speed elevator car based on magnetic guides.IECON Proceedings,1994,2
    [138]舒迪前编著.预测控制系统及其应用.北京:机械工业出版社,1996
    [139]刘立峰,李国兴.基于预测控制的直接推力控制系统.天津工业大学学报,2007,26(2)
    [140]王其东,吴勃夫,陈无畏.基于预测控制的主动悬架与电动助力转向集成控制.农业机械学报,2007,38(1)
    [141]王俊,雷勇,戴方.模糊预测控制在时滞系统中的应用,控制理论与应用,2007,26(3)
    [142]李韬,张纪峰,陈增强.一阶滞后对象广义预测控制下的闭环稳定性分析,航空学报,2007,28(3)
    [143]陆妹,邵惠鹤.一类多状态时滞不确定系统的鲁棒预测控制,系统仿真学报,2007,19(11)
    [144]刘晓峰,许忠仁,杨丙聪.一种克服大纯滞后的预测控制方法,河南科技大学学报:自然科学版,2007,28(1)
    [145]刚宪约.曳引电梯系统动态理论及动力学参数优化方法研究:[博士学位论文].杭州:浙江大学,2005
    [146]丁立强.曳引电梯动态特性研究及其仿真平台开发:[硕士学位论文].杭州:浙江大学,2005
    [147]中华人民共和国国家标准.电梯技术条件.GB/T10058-1997
    [148]全国电梯标准化技术委员会编.《电梯标准汇编》.北京:中国标准出版社,1996
    [149]李立京.电梯综合测试系统与故障诊断技术研究:[博士学位论文].天津:天津大学,2002
    [150]贺兴书主编.机械振动学.上海:上海交通大学出版社,1988
    [151]陈凤旺.液压电梯.中国电梯,1996,7(3)
    [152]黄共才.带变配重装置的民用住宅液压电梯[P].中国专利:CN1268478A,2000.10.4
    [153]刘荣侠,张青柏.采油设备节能降耗实践.中国设备工程,2005,8
    [154]李晓亮.配重可变式汽车起重机[P].中国专利:CN1341524A,2002.3.27
    [155]宗群,孙志明,童玲.一种电梯交通流多模式预测方法的研究.信息与控制,2006,35(1)
    [156]Roberto E.Parisi.Higher productivity in oil output through hydraulic drive.Rexroth Information Quarterly,1998(1)
    [157]Michael P.Flynn,Harold Terry.Elevator with variable drag for car and counterweight.United States Patent:2006175142A1,2006
    [158]Dale R.Hoebelheinrich.Variable counterweight arrangement for a forklift-type vehicle.United States Patent:6047791A1,2000
    [159]Kranick,Michael.Variable counterweight for lift cage.WO9207787A1,1992
    [160]Harry L.Owen.Variable counterweight for pumping apparatus.United States Patent:1644393A1,1927
    [161]Charles Lindbergh & Charleston.Variable counterweight system.United States Patent:4236605A1,1980
    [162]付永领,祁晓野主编.AMESim系统建模和仿真-从入门到精通,北京:北京航空航天大学出版社,2006
    [163]张汉杰,王锡仲,朱学莉编著.现代电梯控制技术.哈尔滨:哈尔滨工业大学出版社,2001
    [164]赵应樾主编.液压控制阀及其修理.上海:上海交通大学出版社,1999
    [165]李惠异主编.电梯控制技术.北京:机械工业出版社,2003
    [166]中华人民共和国国家标准.电梯技术条件.GB/T 10058-1997
    [167]林建亚,何存兴.液压元件.北京:机械工业出版社,1988
    [168]陈伯时,陈敏逊编著.交流调速系统.北京:机械工业出版社,1998
    [169]陈伯时主编.电力拖动自动控制系统.第2版.北京:机械工业出版社,2002
    [170]中华人民共和国建筑工业行业标准.液压电梯.JG 5071-1996
    [171]中华人民共和国国家标准.电梯试验方法.GB/T 10059-1997
    [172]杨华勇,徐兵.液压电梯技术讲座之七-电梯液压系统控制方法和策略.中国电梯,1999,10(3)
    [173]杨华勇.智能控制理论和液压电梯.中国电梯,1998,(4)
    [174]徐兵,杨华勇.变频驱动液压电梯控制系统综述.中国机械工程,2001,12(9)
    [175]沙道航,杨华勇.液压系统油温鲁棒变结构控制.机床与液压,1998,(1)
    [176]Doolaard,D.A.“Energy Consumption of Different Types of Lift Drive System.”Elevator Technology 4:Proceedings of Elevcon'92.Editor Dr.G.Barney,The International Association of Elevator Engineers,1992.
    [177]KONE.“V3F:The Green Power”.Product Manual.
    [178]Schroeder,J.“Elevator Traction Drives.” 《Lift Report》.1987.5
    [179]Schroeder,J.“The Energy Consumption of Elevators”.《Elevator Technology》.Editor Dr.G.Barney,Ellis Horwood,1986
    [180]Stawinoga,R.“Designing for Reduced Energy Elevator Costs".Lift Technology 1,Proceedings of LiftTech 94.Editor Dr.G.Barney,The International Association of Elevator Engineers,1994
    [181]Lu Yongxiang.Historical progress and prospects of fluid power transmission and control.Proceedings of the 5th International Conference on Fluid Power Transmission and Control,Zhejiang University,P.R.China.2001
    [182]Alexander Kleist.Comparison of valve driven hydraulic systems and new displacement controlled systems on passenger cars.3rd International fluid power conference.Aachen,Germany,2002
    [183]Peter Dahmann.Closed loop speed and position control of a hydraulic manipulator in brick works with a frequency controlled internal gear pump in motor/pump operation.3rd international fluid power conference.Aachen,Germany,2002
    [184]Rolf Herkommer,Betriebswirt.Ways towards energy saving in hydraulic steering systems.3rd International fluid power conference.Aachen,Germany,2002
    [185]奥蒂斯电梯公司.带有配重的液压电梯.发明专利:97122856.6,1998
    [186]秦健聪.倒拉式液压电梯升降机构.实用新型专利:01273129.3,2003
    [187]Roland Stawinoga著,曹卫东译.电梯传动系统类型及性能比较.中国电梯,1999,10(11)
    [188]C.T.公司.User Guide:Unidrive Model sizes 1 to 5.Control Techniques Drives Ltd,2002
    [189]张泾周.电梯系统控制器设计及S曲线优化研究:[硕士学位论文].西安:西北工业大学,2000
    [190]成大先主编.机械设计手册.第四版.北京:化学工业出版社,2002
    [191]雷天觉.新编液压工程手册.北京:北京理工大学出版社,1998
    [192]张凤均编著.LabWindows/CVI开发入门和进阶.北京:北京航空航天大学出版社,2001
    [193]张志涌编著.精通MATLAB 6.5版.北京:北京航空航天大学出版社,2003

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700