用户名: 密码: 验证码:
潜器变向轴全方位推进器控制系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,在海洋开发和海洋工程中,潜器要执行各种复杂的任务,并且随着各项技术水平的发展,潜器完成任务的难度也在不断提高,这对潜器的操纵性能提出了更高的要求。随着海洋开发和海洋工程的不断深入发展,潜器推进器的小型化、智能化、高效率和高机动性能越来越受到研究者的关注。针对海洋潜器的空间全方位机动行进要求,常规的推进方式已经不能满足研究者对潜器设计的需求。为了使潜器具有更优良的操纵性能,矢量推进技术应运而生,由此而产生的矢量推进系统更是代表了潜器推进系统的发展趋势,也必将成为潜器的主要推进系统之一。本文提出的变向轴全方位推进器正是基于矢量推进技术而设计的一种潜器推进装置,因此,研究潜器变向轴全方位推进器控制系统具有非常重要的意义。
     首先,本文研究了变向轴全方位推进器的工作机理,提出了变向轴全方位推进器的系统构成方案。通过研究轴变向伺服控制系统角位置控制原理,提出了轴变向伺服控制系统的构成方案,最终给出了轴变向控制系统构成。
     其次,本文建立了潜器变向轴全方位推进器控制系统数学模型。采用图谱计算法,通过分析常规桨的敞水特性图谱,运用回归分析方法计算变向轴全方位推进器的敞水特性,建立了可用于工程计算的水动力数学模型。通过分析变向轴全方位推进器的矢量力分解过程,建立了各坐标轴上推力的数学模型,为潜器变向轴全方位推进器的运动控制奠定了基础。在此基础上,本文研究了轴变向伺服控制系统的建模问题,建立了轴变向伺服控制系统的动力学模型和转动力矩模型,并完成了对轴变向伺服控制系统的设计。
     接着,本文研究了潜器艏艉变向轴全方位推进器智能协调控制问题,提出了艏艉变向轴全方位推进器的推力分配策略,对产生的推力进行合理的分配和控制,实现变向轴全方位推进器的推力效率最大化,通过仿真验证了策略的可行性。然后,提出基于固定尺度的最小二乘法支持向量机方法对变向轴全方位推进器推力指令参数进行求解,解决了推力指令参数求解计算过程复杂,求解效率低的问题。通过仿真结果表明,潜器变向轴全方位推进器推力指令参数求解方法有较高的精度及较快的计算速度。
     最后,本文研究了装有变向轴全方位推进器的潜器位姿智能控制问题。针对潜器的运动特点,将潜器位姿智能控制系统划分为三个独立的控制系统并分别设计了水平面运动控制器、垂直面运动控制器和空间运动控制器。在研究水平面运动控制时,考虑到控制系统主要实现潜器的水平回转运动,引入反演设计思想,提出基于反演的模型参考自适应滑模控制方法,同时在滑模控制算法中引入自适应规律,解决了系统复杂性的问题,有效地克服了系统的复杂性和不确定性等因素的影响。在研究垂直面运动控制时,考虑到潜器在垂直面运动过程中重心和浮心变化较强,提出采用模糊滑模控制方法来实现对潜器的垂直面运动控制,克服了模型的不确定性给系统带来的影响,维持了系统的稳定性。考虑到基本模糊控制器很难通过扩充模糊规则库的办法减小稳态误差,本文引入变论域模糊控制器的概念,通过论域的收缩达到增加模糊规则的目的,从而提高系统的控制精度。在研究空间运动控制时,考虑到系统是非线性、时变性、不确定性并存的耦合多变量系统,很难建立其精确数学模型。本文引入变论域的思想,提出了一种基于变论域的多变量自适应模糊滑模控制器,解决了这些问题,有效的实现了潜器空间运动的位姿控制。
Nowadays, the underwater vehicle has to do various complex tasks in both oceanexploitation and ocean engineering area. With the improvement of the technology, theunderwater vehicle needs to deal with some tasks that more and more difficult, so it meansthat the underwater vehicle must have a good maneuverability to adapt to the demand ofsubmersible. With the development of ocean exploitation and ocean engineering, the humanspay more and more attention to underwater vehicle which has the miniaturization, intelligent,high efficiency and high mobility, so the conventional propulsion system has been unable tomeet on the demand of human beings for submarine design. In order to improve themaneuverability of the underwater vehicle, the vector propulsion technology emerges as thetimes require. And the vector propulsion system is led to represent the development directionof the submersible propulsion system, which also will become the main propulsion system ofsubmersible. In this paper, VDA-VVP which has been designed for submersible as apropulsion system is based on vector propulsion technology, so it has a very importantmeaning to research on the VDA-VVP control system of the underwater vehicle.
     Firstly, the working principle of the VDA-VVP was researched, and then the systemcomposing project of VDA-VVP was proposed. The composing project of variable directionaxis servo control system was proposed by researching the principle of angle position control.At last, the composing of servo control system of variable direction axis was given.
     Secondly, the model of VDA-VVP for underwater vehicle is founded. This papercalculates the open water characteristics of VDA-VVP by adopting the open water diagram.The model of hydrodynamic coefficient and thrust coefficient for VDA-VVP were founded.By using the reasonable regress model and the data sampling of chats, the coefficients ofregress models were required by means of the least square algorithm. So we can get theregress models which can be used in engineering calculating. And then, the torque model ofvery axis was given by analyzing the progress of vector force decomposition of VDA-VVP. Atlast, the dynamics model and torque model of servo control system of VDA-VVP wasfounded, and then, the servo control system of variable direction axis was designed.
     Then, this paper studies the problem of intelligent coordination control for bow and sternVDA-VVP. The thrust distributed strategy of VDA-VVP was proposed to distribute and tocontrol the thrust reasonably. The maximum efficiency of VDA-VVP was realized throughthis method. And then, the fixed size recollection least-squares support vector machines was proposed to calculate the thrust parameter by aiming to the complicated calculating processand the low efficiency of characteristic equation.
     Finally, the intelligent pose control system of VDA-VVP for the underwater vehicle wasdesigned. Aiming to the moment characteristic of underwater autonomous, pose intelligentcontrol system is divided into three independent control systems, which include the horizontalmotion controller, the vertical motion controller and the space motion controller respectively.In the study of the horizontal motion control, considering with the control system which is inorder to realize the horizontal turning motion of the underwater vehicle and to solve theproblem of system complexity, this paper adopts backstepping model reference adaptivesliding mode control algorithm. By adding adaptive law into the backstepping sliding modecontrol, this method overcomes the effect of system complexity and uncertainty factorseffectively. In the study of the vertical motion control, considering with the strong variationfor center of gravity and center of buoyancy in the vertical motion process, in order toovercome the uncertainty of the model, to maintain the stability of the system and to keep theconsistency and dynamic characteristics better, this paper adopts fuzzy sliding mode controlalgorithm. The basic fuzzy controller is very difficult to reduce steady-state error by extendingthe fuzzy rule, so it adds the variable universe fuzzy controller. In the same rules, the universebecome small with the smaller error, it means that the rules have been increased. So, it canimprove the control precision of the system. In the study of the space motion control,considering with the system of multi-variables which has nonlinear, time variation andstrong-coupling, and it very difficult to establish the precise model. In order to solve theseproblems, this paper designs a multi-variables adaptive fuzzy sliding mode controller basedon the variable universe method, and then the pose control of underwater vehicle is realizedeffectively.
引文
[1]赵红,孙培廷.吊舱式船舶电力推进装置的发展状况.航海技术.2003,(1):52-53页
    [2]董涛,王志新.吊舱推进器研究开发与应用新进展.船舶工程.2007,29(1):65-68页
    [3] Stenovec, G.M.et al.,The Tandem propeller system.AMETEK,Straza Division.Proceeding of ROV’87.1987:110-116P
    [4]渡边和夫等.3次元推进器‘バリベックロペラ’の开发(第1报).川崎技报,101号.1988:23-30页
    [5]渡边和夫,岩崎泰典,田中泰太郎,井床利之,日野满伸ら.三次元推进器‘バリベックロペラ’の开发(第2报).川崎技报.104号.1989:30-38页
    [6]难波直爱,清水徹,渡边昶彦,星野徹二ら.全方位推进器の开发.关西造船学会志,第21号.1988:1-8页
    [7]永松哲郎,今泉好照.无索无人潜水机の运动性能に开发する研究.三菱重工技报,No.1.1990:27-34页
    [8]星野徹二,VARIVECプロペラ.次世代船开发のたの推进高工学シンポジウム.1991:391-405页
    [9]田村兼吉.バリアブルベクプロペラの研究.船舶技术研究所研究发表会讲演集.1991:75-79页
    [10]黄胜,邵雪明.全方位推进器水动力性能理论预报.中国造船.1996(4):19-24页
    [11]黄胜.全方向推进器定常水动力性能的升力面预报方法.哈尔滨工程大学学报.1997,18(3):1-6页
    [12]黄胜,宁至胜,姜华.升力面方法预报全方向推进器的非定常水动力性能.海洋工程.1998,16(1):23-31页
    [13]宁至胜.横向运动时全方位推进器性能预报.哈尔滨工程大学学报2001,22(3):25-30页
    [14]常欣,黄胜,李风来.潜器全方位推进器研究.第二届全国船舶与海洋工程学术会议.2003
    [15]常欣,黄胜,李风来.水下无人平台全方位推进器水动力性能的理论研究.中国国防科学技术研究报告.2004
    [16]刘胜,郑秀丽,李佳来.潜器全方位推进器控制系统研究.2006年船舶通讯导航学术会议论文集.2006
    [17]宋佳.潜器全方位推进器调距控制装置仿真研究.哈尔滨工程大学硕士论文.2007
    [18]刘胜,宋佳,葛亚明,郑秀丽.基于HGANN的全方位推进器运动学正解研究.中国造船.2008,49(4):115-122页
    [19]刘胜,宋佳.基于GA的潜器全方位推进器奇异位形分析.船舶工程.2008,30(5):20-26页
    [20]张国文.潜器全方位推进器液压伺服控制技术研究.哈尔滨工程大学硕士论文.2005
    [20]宋旭日.全方位推进器液压伺服系统研究.哈尔滨工程大学硕士论文.2006
    [22]刘胜,徐东昊.潜器全方位推进器主轴转速鲁棒H_∞控制.大连海事大学学报.2009,35(2):72-80页
    [23]刘胜,徐东昊.潜器全方位推进器主轴转速鲁棒H_∞控制器设计.电机与控制学报.2009,13(2):276-286页
    [24] H.Mahesh,J.Yuh,R.Lakshmi.A coordinated control of an underwater vehicle and roboticmanipulator.Journal of Robotic Systems.1991,8(3):339-370P
    [25] I.Schjalberg,T.I.Fossen.Modelling and control of underwater vehicle man-ipulatorsystems.In3rd Conference on Marine Craft Maneuvering and Control,MCMC'94,September1994:45-57P
    [26]任福军,张岚,王殿军,孟庆鑫.水下机器人的发展现状.佳木斯大学学报(自然科学版).2000,18(4):317-320页
    [27] Ogata K.Modern Control Engineering.Prentice-Hall International Editions.1987.
    [28] Golten J,Verwer.Control system design and simulation.McGraw Hill.New York,1991
    [29]何斌,徐亦凡.非线性PID控制器在潜艇深度控制中的应用.船海工程.2007,36(6):118-120页
    [30]胡坤,王树宗,郝英泽,李文龙.基于PSO优化的潜艇深度非线性PID控制.控制工程.2009,16(6):752-755页
    [31]熊瑛,许建,何树阳.基于PID的潜器悬停控制仿真研究.舰船科学技术.2010,32(5):107-110页
    [32] Van Ameroongen J.Adaptive Steering of Ships:A model reference approach toimproved manoeuving and economical course-keeping.Ph.D.Thesis,Delft University ofTechnolo-gy,Holland,1982
    [33] Boulton D B.The development of multi-variable control algorithms for a dynamically.positioned ship. Proceeding of the IEE control85.Cambridge, UK.1985,151-156P
    [34] Goheen,K.R.and Jeffery,R.E.IVIultivariable self-tuning autopilots for autonomous andremotely operated miderwater vehicles.IEEE Journal of Oceanic Engineering.1990,15(3):144-151P
    [35] Da Cunha J P V S,Da Costa R R,Hsu L. Design of a highperformance variable structureposition control of ROVs.ISOPE91.Proceeding of the first Offshore and PolarEngineering Conference,Edinburgh,UK.1991
    [36] Choi,S.K,Yuh. J. Experimental study on a learning control system with boundestimation for underwater vehicles.Int'l J. of Autonomous Robots.1996,3(3):187-194P
    [37]樊娜.潜器直流永磁电机推进系统的自适应控制.哈尔滨工程大学硕士论文.2004
    [38]孙斌.自适应神经网络控制在潜器对线控位中的研究.哈尔滨工程大学硕士论文.2006
    [39]张敏.潜器推进器现代控制方法研究.哈尔滨工程大学硕士论文.2008
    [40] Cowling D,Dorchester.Entire operating envelope H∞infinity design for an unmannedunderwater vehicle.OCEANS'96.MTS/IEEE' Prospects for the21st Century ConferenceProceedings.1996
    [41] Hrowitz Issac C.Sorvey of quantitative feedback theory.International Journal ofControl.1991,53(2):255-291P
    [42] Snell S A,Stout P W.Quantitative feedback theory with a scheduled gain for fullenvelope longitudinal control.Journal of Guidance,Control,and Dynamics.1996,19(5):1095-1101P
    [43] Hess R A,Gorder P J.Quantitative feedback theory applied to the design of a rotorcraftflight control system.Journal of Guidance,Control,and Dynamics.1996,16(4):748-753P
    [44] G.Conte,A.Serrani.Robust control of a remotely operated underwater vehicle.Automatica.1998,34(2):193-198P
    [45]肖永利,张琛,吴庆宪.QFT在水下潜器控制系统设计中的应用.上海交通大学学报.1999,33(4):446-449页
    [46]肖永利,张琛,李振波等.水下潜器的鲁棒控制系统设计.上海交通大学学报.1999,33(11):1348-1351页
    [47] Zhengping Feng,Allen R. H∞autopilot for an automomous underwatervehicle.Proceedings of the2002International Conference on Control Applications.2002,350-354P
    [48]孙尧,汤丽平,李雪莲.突变控制及其在水下潜器中的应用.哈尔滨工程大学学报.2004,25(5):569-573页
    [49]俞建成,张艾群,王晓辉.基于SQP算法的7000m载人潜水器有约束非线性控制分配研究.信息与控制.2006,35(4):508-512页
    [50] Smith S M,Rae G J S,Anderson D T,Shein A M.Fuzzy logic control of an autonomousunderwater Vehicle.Proceeding of the first international workshop on autonomousunderwater vehicles,southamptan,UK.1993:318-323P
    [51] DeBitetto P.A.Fuzzy logic for depth control of unmanned undersea vehicles.oroceedingof symposium of autonomous underwater vehicle technology.1994:233-241P
    [52] Debitetto P.Fuzzy logic for depth control of unmanned undersea vehicles.IEEE Journalof Oceanic Engineering.1995,20(3):305-311P
    [53] Egeskov P, bjerrum A,Pascoal A,et al.Design,Construction and Hydrodynamic Testingof AUV MARIUS.Proceedings of1994AUV Conference,Cambridge,Massachusetts
    [54]尚游,徐玉如.基于模糊逻辑的智能水下机器人运动控制技术的研究.中国第五届机器人学术会议论文集.哈尔滨:哈尔滨工业人学出版社.1997
    [55]刘振明,潜伟建,夏志澜.模糊控制技术在水下机器人动力定位中的应用研究.自动化与仪表.2004,(1):43-46页
    [56] Yuh J.A neural net conlroller for underwater robotic vehicles.IEEE Journal of OceanicEngineering.1990,15(3):161-166P
    [57] Waldock M I,Roberts G N,Sutton R.Terrain following control of an unmannedunderwater vehicle using artificial neural network.IEEE colloquium on control andguidance of remotely operated vehicles,Lodon.1995
    [58] Johnson C.Depth and Yaw control of an unmanned underwater vehicle using neuralnetwork.M.Phil.thesis,University of Plymouth.1995
    [59] Kazuo Ishii,Teruo Fujii,Tamaki Ura.An On-line Adaption Method in a Neural NetworkBased Control System for AUV's.IEEE journal of Oceanic Engineering.1995,20(3):221-228P
    [60]彭良,卢迎春,万磊,孙俊岭.水下智能潜器的神经网络运动控制.海洋工程.1995,13(2):38-46页
    [61]张铭钧,孟庆鑫.基于神经网络的无人无缆水下机器人运动建模与控制技术研究.中国造船,1999(2):87-96页
    [62]张铭钧,段群杰.基于神经网络的水下机器人运动预测控制方法.中国造船.2001,42(3):43-51页
    [63] T.W.Kim,J.Yuh.Application of on-line neuro-fuzzy controller to AUVs InformationSciences.2002,145:169-182P
    [64]张铭钧,韩金华,郎毅翔.水下机器人运动规划中多目标遗传算法的操作方法.哈尔滨工程大学学报.2000,21(2):23-27页
    [65]于华男,戴军等.基于遗传算法的水下机器人模糊控制器优化设计.哈尔滨工程大学学报.2002.23(5):12-15页
    [66]郭小溪,李刚,闫伟杰.基于遗传算法整定PID的自主潜器深度控制.长春理工大学学报(自然科学版).2010,33(3):37-39页
    [67] Fossen T I.Non-Liner modeling and control of underwater vehicles. NonwegiamInstitute of echnology,Troudheim.1991
    [68] Yoerger D.N.,Slotine J.E.Robust trajectory control of underwater vehicles.IEEE J.Oceanic Engineering.1985,QE-10(4):462-470P
    [69] Trebi-Ollennu A,King,J,White,B A. A study of robust multivariable Control Design forRemotely Operated Vehicle Depth control system.IEE colloquium an control andguidance,1995
    [70] G Bartolini,E.Punta,E.Usai.Tracking control of underwater vehicles including thrusterdynamics by second order sliding modes.In Oceans'98,September1998:1645-0649P,Nice,France
    [71]陈洪海,李一平.滑模模糊控制应用于自治水下机器人的实验研究.控制与决策.2002,17(增):788-790,794页
    [72]蒋新松,封锡盛,王棣棠.水下机器人.沈阳:辽宁科学技术出版社.2000
    [73] Yamakazi T.An improved algorithm controller.for a self-organizing.Ph.D.T-hesis.University of London.1982
    [74] D.jamts S,Richard Blidherg.A control system architectures for multiple autonomousundersea vehicles.Fifth international symposium unmanned untetherid submersibletechnology June,1987,22-24P
    [75] P.J.Craven,R.Suuon,Y. M. Dai.A neurof“zzy technique applied to UUV autopilotdesign.In IFAC Conference on Marine Craft Maneuvering and Control,MCMC'97,Brijuni,Croatia,September1997
    [76]梁霄,徐玉如,李哗,万磊,秦再白.基于目标规划的水下机器人模糊神经网络控制方法.中国造船.2007,48(3):123-127页
    [77]王丽荣.水下机器人控制系统故障诊断研究.哈尔滨工程大学博士学位论文.2006:23-25页
    [78]李哗,庞永杰,万磊,常文田,梁霄.水下机器人S面控制器的免疫遗传算法优化.哈尔滨工程大学学报.2006,7(sup):324-330页
    [79]刘学敏,刘建成,徐玉如.基于最小扰动BP算法的水下机器人运动控制.哈尔滨工程大学学报.2001,22(2):20-23页
    [80]刑志伟.复杂海洋环境下水下机器人控制问题研究.沈阳:中国科学院沈阳自动化研究所博士论文.2003
    [81] R.Cristi,E A.Papoulias,and A.Healey Adaptive sliding mode control of autonomousunderwater vehicles in the dive plane.IEEE Journal of Ocean Engineering.1990,15(3):152-160P
    [82] J.E Cunha,R.R.Costa,L.Hsu.Design of a high performance variable structure positioncontrol of ROV's. IEEE Journal of Ocean Engineering.1995,21(1):42-55P
    [83] C.Comes,V Vapnik.Support-vector networks.Machine Learning,1995,20(3):273-297P
    [84] Boser B,Guyon I,Vapnik V,A training algorithm for optimal margin classifiers.Proceedings of the5th Annual ACM Workshop on Computational Learning TheoryACM Press,1992:144-152P
    [85] Osuna E,Freund R,Girosi F.Training support vector machines:an application to facedetection.In:Proc.of CVPR'97,Puerto Rico,1997
    [86] Joachims T., Making large scale SVM learning practical. Advances in kernel methodssupport vector learning, Cambridge, MA: MIT Press,1998:169-184P
    [87] J.Platt. Sequential minimal optimization: A fast algorithm for training support vectormachines.Advances in Kernel Methods-Support Vector learning. Cambridge, MA:MIT Press1999
    [88] Keerthi S,Shevade S,Bhattcharyya C.Improvements to Platt’s SMO algo-rithm.forSVM classifier design.Neural Computation,2001,13(3):637-649P
    [89] C.-C.Chang,C.-J.Lin.“LIBSVM: a library for support vector machines”,2001.Software available at “http://www.csie.ntu.edu.tw/”cjlinllibsvm
    [90] C.-J.Lin.On the convergence of the decomposition method for support vectormachines.IEEE Transactions on Neural Networks,2001,12(6):1288-1298P
    [91] C.-J.Lin.“Asymptotic convergence of an SMO algorithm without anyassumptions”.IEEE Transactions on Neural Networks.2002,13(1):248-250P
    [92] Collobert R,Bengio S.SVMTorch:a support vector machine for large-scale regressionand classification problems.Jounary of Machine Learning Research.2001,1:143-160P
    [93] Shuotao Li,Yaonan Wang.Face recognition using wavelet transform and support vectormachines.Pattern Recognition and Image Analysis.2004,14(3):471-478P
    [94] Reyna R.A.,Hernandez N.Esteve D.et al.Segmenting images with support vectormachines.In Proceedings of2000International Conference on Image Processing.Vancouver,BC,Canada.2000,1(1):820-823P
    [95]燕忠,袁春伟.基于蚁群智能和支持向量机的人脸性别分类方法.电路与系统学报.2004,26(8):1177-1182页
    [96] Valentini A.,Zhang Hongjiang.Automatic image orientation detection.IEEE Trans onImage Processing,2002,11(7):746-755P
    [97] Arenas-Garcia J,Perez-Cruz F.Multi-class support vector machines:a new approach.InProceedings of IEEE International Conference on Acoustics Speech and SignalProcessing,New York.2003,2:781-784P
    [98]张敏贵,潘泉,张洪才等.基于支持向量机的人脸分类.计算机工程.2004,38(11):110-112页
    [99]宋晓宁,束鑫.一种改进的模糊支持向量机的人脸识别方法.微机发展.2005,15(3):23-27页
    [100] Shutao Li,James T.,Yaonan Wang,Texture classication using the support vectormachines,Pattern Recognition,2003,36:2883-2893P
    [101] Yongmin Li,Shaogang Gong,Jamie Sherrah,Heather Liddell.Support vector machinebased multi-view face detection and recognition.Image and VisionComputing,2004,22:413–427P
    [102] Jian-xiong Dong,Adam Krzy_zak,Ching Y.Suen.An improved handwritten Chinesecharacter recognition system using support vector machine. Pattern RecognitionLetters,2005,26:1849-1856P
    [103] Cai Yu-dong,Liu Xiao-jun, Xu Xue-biao,et al. Prediction of protein structural classesby support vector machines.Computers and Chemi-stry,2002,26(3):293-296P
    [104] Ruey-Feng Chang,Wen-Jie Wu,Woo Kyung Moon et al. Support vector machines fordiagnosis of breast tumors on US images. Academic Radiology,2003,10(2):189-197P
    [105] Bhanu P.K.N.,Ramakrishnan A.G.,Suresh S.et al.Fetal lung maturity analysis usingultrasound image features.IEEE Trans on Information Technology inBiomedicine,2002,6(1):38-45P
    [106] Kyung-Shik Shin,Taik Soo Lee,Hyun-jung Kim.An application of support vectormachines in bankruptcy prediction model.Expert Systems with Applicationgs,2005,28:127–135P
    [107] Wei Huang,Yoshiteru Nakamori,Shou-Yang Wang.Forecasting stock market moveme-nt direction with support vector machine.Computers and Operations Research.2005,32:2513-2522P
    [108] Ping-Feng Pai,Chih-Sheng Lin.A hybrid ARIMA and support vector machines modelin stock price forecasting.The International Journal of Management Science,2005,33:497-505P
    [109] Abhijit Kulkarni,V.K.Jayaraman,B.D.Kulkarni.Control of chaotic dyna-mical systemsusing support vector machines.Physics Letters A.2003,317:429-435P
    [110] Kai-Ying Chen,Long-Sheng Chen,Mu-Chen Chen,Chia-Lung Lee. Using SVM basedmethod for equipment fault detection in a thermal power plant.Computers inIndustry,2011,62(1):42-50P
    [111] S.Abe.Support vector machines for pattern classification.Springer, London,2005
    [112] H.P.Huang,Y.H Liu.Fuzzy support vector machines for pattern recognition and datamining. International Journal of Fuzzy systems.2002,4(3):826-835P
    [113] Sun Zonghai,Sun Youxian.Optimal control by weighted least squares generalizedsupport vector machines.In Proceedings of the American Control Conference,Denver,Colorado,2003:5323-5328P
    [114] M.A.Mohandes,T.O.Halawani,S.Rehman,et al.Support vector machines for wind speedprediction.Renewable Energy,2004,29:939-947P
    [115]薛开,王平,王文斌等.基于多轴运动控制器的二轴转台控制系统.哈尔滨工程大学学报.2006,27(4):570-573P
    [116] Li Shang-yi,Gang Zhao,Keding Zhao,et.al..Study on electro-hydraulic position servosystem with high accuracy.New
    [117] J L Johnson.Identifying errors in motion-control servoloops.Hydraulics&Pneumatics.1997,50(5):14-15P
    [118] Nomenclature for treating the motion of submerged body through a fluid.SNAMETechnical and Reasearch.1952:1-5P
    [119]于得会.大毂径螺旋桨设计计算方法研究.大连理工大学硕士论文.2007
    [120]朱超,陈泽梁,施用山,袁维谨.JDC三叶可调螺距螺旋桨系列.海洋工程.1989,7(4):32-41P
    [121]刘延柱.高等动力学.北京:高等教育出版社.2001:1108-120P
    [122]赵郁峰.三轴转台的神经网络控制研究及基于RTX控制软件设计.四川大学硕士论文.2005
    [123] De Brabanter K.,De Brabanter J.,Suykens J.A.K.,De Moor B.,Optimized Fixed-SizeLeast Squares Support Vector Machines for Large Datasets, Internal Report08-193,ESAT-SISTA,K.U.Leuven (Leuven, Belgium).2008
    [124]赵冠华.基于二次Renyi熵的非迭代最小二乘支持向量机预测模型.计算机应用.2009,29(10):2751-2757页
    [125] Lin F J,Shen P H,Hsu S P.Adaptive backstepping sliding mode control for linearinduction motor drive.IEE Proceeding Electrical Power application,2002,149(3):184-194P
    [126]高剑.自主式水下航行器的建模与自适应滑模控制.西北工业大学硕士论文.2004
    [127]邹云飞,刘金琨,王宗学.模糊滑模控制及在转台伺服系统中的应用.中国控制与决策年会.2002:369-372页
    [128]张震东,黄琦兰.变论域自适应模糊控制在污水处理中的设计.仪器仪表用户.2010(6):56-57页
    [129]李洪兴.变论域自适应模糊控制器.中国科学,E辑.1999,29(1):32-42页
    [130]杨鲜鲜,宁铎.变论域模糊PID控制器的设计与仿真.化工自动化及仪表.2010,37(4):29-32页
    [131]李洪兴,苗志宏,王加银.非线性系统的变论域稳定自适应模糊控制.中国科学E辑.2002,32(2):211-223页
    [132] L.M.Gambardella and M.Dorigo.Ant-Q:A reinforcement learning approach to thetraveling salesman problem.In A.Prieditis and S.Russell,editors, Proceedings of theTwelfth International Conference on Machine Lear-ning(ML-95).1995:252–260P
    [133] M.Dorigo and L.M.Gombardella.Ant colony system:A cooperative learning approachto the traveling saleaman problem.IEEE Transaetions on Evolutionary Computation.1997,l(l):53-66P
    [134] Wang J,Get S S,Lee T H.Adaptive Fuzzy Sliding Mode Control of a Class ofNonlinear Systems.Proceedings of the3rd Asian Control Conference Shang-hai.2000:599-604P
    [136]侯国莲,李泉,张建华.变论域自适应模糊滑模多变量控制算法及其在单元机组协调控制中的应用.中国电机工程学报.2005,25(9):114-121页
    [137]李泉.新型智能控制系统研究及其在热工过程控制中的应用.华北电力大学硕士论文.2004
    [138]彭亚为,陈娟,刘占富,郭敏.自适应模糊滑模控制在化工过程中的应用.化工学报.2012,63(9):2843-2850页

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700