用户名: 密码: 验证码:
电能质量扰动信号检测与识别算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,我国正处在工业化、城镇化加快推进的重要时期,这一时期电力需求一直保持较快的增长态势,给现代大电网互联的迅速发展以及电力系统规模的日益扩大带来了发展契机。但随之而来的各种电力电子设备、冲击性与非线性负荷的大量投入,导致供电质量出现电压暂降、电压暂升、电压波动、谐波、电压缺口、脉冲与振荡暂态干扰等一系列电能质量问题。因此,对电能质量信号进行实时监控与智能化分析,搭建电能质量扰动分析的理论框架,不仅可为电能质量扰动的检测、识别与扰动源定位等问题提供一定的解决思路和辅助方法,还为电能质量的管理与治理提供辅助决策,具有重要的现实意义。基于此,本文在分析稳态扰动、暂态扰动以及混合扰动的基础上,进行了电能质量扰动的检测、识别以及定位研究。
     在扰动检测方面,论文首先提出了一种新的基于数学形态学与熵理论的电能质量扰动信号检测方案。该方案利用广义形态滤波器对信号进行滤波处理,使其在滤除噪声的同时尽量保持信号原有扰动特征;再利用自定义的差分熵对信号突变程度进行度量,一般来说,信号突变处的熵值会比较大,由此可定位扰动开始与结束的时刻。其次,论文定义了一种新的形态非抽样小波(Morphological Undecimated Wavelet, MUDW),并将其应用于电能质量扰动信号的检测定位。该形态小波包含了开闭与闭开组合滤波器与可检测突变信号上下边缘的形态梯度,完全满足信号重构条件。利用MATLAB对单一扰动信号与混合扰动信号进行了仿真验证,并与前人构造的形态非抽样小波进行了对比分析。结果表明,自定义的形态非抽样小波具有很好的扰动信号特征描述能力及抗噪性能,即使在强噪声环境下,也能正确指示扰动起止时刻以及突变极性
     在单一扰动识别方面,论文首先提出了一种基于数学形态学与动态时间扭曲的识别算法(Mathematical Morphology-Dynamic Time Warping, MM-DTW)。算法首先利用形态滤波器对扰动信号进行滤波处理,再利用dq变换提取信号的幅值特征,最后将处理后的扰动测试信号与参考信号的特征模板进行匹配,计算信号之间的距离矩阵,采用动态时间扭曲算法在距离矩阵中寻求测试信号与各类参考信号间路径长度最短的最优扭曲路径,根据两信号距离最小、相似度最大的原则,选取路径最短的一次匹配为识别结果。仿真验证表明该算法识别效果较好,且不受原始扰动的幅值变化、扰动发生时刻(包括过零点扰动)、持续时间变化以及噪声强度的影响,具有较好的适应性。其次,论文专门针对振荡暂态与脉冲暂态两类高频暂态扰动,提出了一种基于高阶累积量(Higher order cumulants, HOC)与支持向量机(Support vector machine, SVM)的识别算法。该算法利用高阶累积量提取脉冲暂态与振荡暂态两类扰动的3阶与4阶统计特征,并选取各阶统计结果中的极大值个数、极小值个数以及最大值、最小值共8个特征量作为支持向量机的输入,从而得出识别结果。该算法在有噪声干扰与其他扰动干扰的情况下也能正确识别出两类高频扰动。
     在混合扰动的识别方面,论文基于小波变换、Teager能量算子(Teager Energy Operator, TEO)以及prony算法,构建了一个适用于混合电能质量扰动的识别系统,本系统首先对混合扰动进行小波变换,将其分解到不同的频率空间;再利用TEO算法对低频空间的信号分量进行分析,判断信号是否发生了频率波动、电压暂降、电压暂升或电压中断扰动;紧接着采用prony法分析去除低频分量后的其他分量,判断信号是否包含有谐波、间谐波与振荡暂态扰动;最后对高频分量进行扰动起止时刻与加窗的扰动能量计算,判断信号是否发生脉冲暂态或是电压缺口扰动。利用大量的理论混合扰动信号与PSCAD仿真信号对此识别系统进行了验证,结果表明,本系统对混合信号的识别具有较好的适应性,识别率较高。
     在扰动源定位方面,论文首先研究了两处电容器同时投切时的定位问题,以电容器投切造成的暂态信息为切入点,利用联网监测信息计算得出扰动能量与支路电流变化值,并将这两种特征向量输入到概率神经网络,从而得出电容器投切时的具体位置。论文还讨论了系统发生暂降扰动的定位问题,通过计算各条线路上的有功功率与无功功率的大小及变化方向,判断暂降源所在位置以及暂降原因,该方法可有效定位及辨识由电容切除、对称故障、不对称故障以及感应电机引起的电压暂降源。
     总的说来,本论文最终形成了一个从扰动检测到扰动识别(单一扰动与混合扰动)再到扰动定位的电能质量扰动智能分析框架。
     本论文是教育部留学回国人员科研启动基金—“基于联网的电能质量扰动检测、识别与定位算法及系统研究”的组成部分。
Nowadays, our country is stepping into an accelerating period of industrialization and urbanization. The requirement of power supply keeps fast increasing all the while, which brings huge opportunities to the development of interconnected power grid and the scale-up of power system. However, the coming substantive power electronic equipments, impactive and nonlinear loads in power system lead to a series of power quality problems, such as voltage sag, voltage swell, voltage fluctuation, harmonics, voltage notch, impulse, oscillation transient and so on. Hence, it is significative to real-time monitor, intelligently analyze those power quality disturbances (PQD), and to build the analysis frame of them. It can provide solutions and methods for PQD detection, recognition and source location. Besides, it can supply decisions for the PQ management. Thus, the dissertation researches on the detection, recognition and source location of PQD based on the study of steady disturbances, transient disturbances and multiple disturbances.
     About disturbances detection, firstly, the dissertation proposes a new detection scheme on basis of generalized morphologic filter and difference-entropy. Power quality disturbances are processed by generalized morphologic filter, which can maintain their original features during the denoising process. Then, the complexity of disturbances is measured by self-defined difference-entropy to locate the starting and ending time by checking the entropy values of singular points. Secondly, a new morphological undecimated wavelet (MUDW) is defined and applied for power quality disturbances detection. The proposed MUDW composed of open-close-plus-close-open morphology filter and morphology gradient operators, which can detect the verges of disturbances, besides, the MUDW satisfies the signal reconstruct condition. Simulations are done in MATLAB and a comparison with other MUDW is given. The results show that the proposed MUDW has good depicting-characteristics ability and resisting-noise performance, also, it can direct the start-end time and variation polarity rightly even in the strong noise environment.
     About single disturbance recognition, on one hand, the dissertation presents a novel algorithm based on mathematical morphology (MM) and dynamic time warping (DTW). In this algorithm, firstly, morphological filter is used in disturbances filtering. Secondly, a dq transform method is used in feature extraction of those disturbances. Thirdly, it calculated distances matrix between testing disturbances and six kinds of reference disturbances, then, DTW algorithm is used to search the optimum path which needs to be shortest in every distances matrix to guarantee the testing signals and reference signals resemble most. Finally, it selectes the shortest path as classification result. Simulation results show that this novel algorithm has an excellent recognition effect, which is not influenced by the amplitude, start-end time (including zero-crossing disturbance), disturbances duration time and noise strength. On the other hand, a new recognition method based on High-order Cumulants (HOC) and Support Vector Machines (SVM) is proposed for recognizing two kinds of high-frequency disturbances: oscillation transient and impulse transient. This method utilizes HOC to extract the 3rd order and 4th order statistic features of impulse transient and oscillation transient, and selects 8 features including the amount of local maxima and local minima, the value of maximum and minimum for each cumulants as input of SVM. The proposed method is available for classifying two kinds of disturbances without influencing by strong noise and other disturbances.
     About multiple disturbances recognition, a classification system is constructed using wavelet transform, teager energy operators (TEO) and prony algorithm. In the First place, the system uses wavelet transform to decompose the multiple disturbances into different frequency-space. In the next place, the low-frequency component is analyzed by TEO (Teager Operators) algorithm in order to distinguish whether the signal contains frequency variation, sag, swell or interruption. Furthermore, prony algorithm is adopted to analyze the signal without low-frequency component, and it can estimate the existence of harmonics, inter-harmonics or oscillation transients. Finally, it detects the start-end instants and windowed disturbance energy of high-frequency component to identify whether it is composed of impulse or notch disturbance. A mass of single disturbances and multiple disturbances are generated for testing the proposed recognition system and the results show that the system has good adaptability and high recognition rate for those kinds of signals.
     About disturbance source location, on one hand, it researches on locating switched capacitors on two different buses in distribution system. It calculates the average disturbance energy and average branch current variation as features by the web-based monitoring information, and those features are put into the probabilistic neural network to get the position of capacitors. On the other hand, the dissertation focuses on the source location of sag disturbance. It presents an algorithm to determine the position and reason of sag source by computing the value and direction of active power and reactive power. Simulation results indicate that this method can locate and distinguish the sag disturbances generated by capacitor clearing, symmetrical line fault, non-symmetrical line fault and induction motor starting.
     From the study above, the dissertation finally forms a PQD analysis frame including disturbances detection, disturbances recognition (single disturbance and multiple disturbances) and disturbances sources location.
     This dissertation is supported by the Scientific Research Foundation for the Returned Overseas Chinese Scholars—'Research on the power quality disturbances detection, recognition and location methods and system based on the network-based information'
引文
[1]ORTMEYER T. H., HIYAMA T., SALEHFAR H. Power quality effects of distribution system faults[J]. International Journal of Electrical Power & Energy Systems,1996,18(5):323-329.
    [2]BOLLEN M. H. J. What is power quality?[J]. Electric Power Systems Research,2003,66(1):5-14.
    [3]DUGAN ROGER, MCGRANAGHAM MARK F., SANTOSO SURYA, et al. Electric Power Systems Quality[M]. McGraw-Hill Education,2003.
    [4]JOHN STONES, ALAN COLLINSON. Power quality[J]. Power Engineering Journal,2001,15(2):58-64.
    [5]吕广强,赵剑锋,程明,等.配电网动态电能质量问题及其解决方案[J].高电压技术,2007,33(1):53-56.
    [6]肖湘宁,徐永海.电能质量问题剖析[J].电网技术,2001,25(3):66-69.
    [7]杨洪耕,肖先勇,刘俊勇.电能质量问题的研究和技术进展(二)--供电网谐波的测量与分析[J].电力自动化设备,2003,23(11):1-4.
    [8]杨洪耕,肖先勇,刘俊勇.电能质量问题的研究和技术进展(三)--电力系统的电压凹陷[J].电力自动化设备,2003,23(12):1-4.
    [9]杨洪耕,肖先勇,刘俊勇.电能质量问题的研究和技术进展(四)--电压波动与闪变的测量分析[J].电力自动化设备,2004,24(1):1-4.
    [10]刘俊勇,杨洪耕,肖先勇.电能质量问题的研究和技术进展(五)--电能质量监测与数据管理[J].电力自动化设备,2004,24(2):1-4.
    [11]李天云,程思勇,杨梅.基于希尔伯特-黄变换的电力系统谐波分析[J].中国电机工程学报,2008,28(4):109-113.
    [12]边海龙,(?)禹陈光,杜天军.基于小波神经网络的时变谐波信号检测[J].中国电机工程学报,2008,28(7):104-109.
    [13]王公宝,向东阳,马伟明.基于FFT和神经网络的非整数次谐波分析改进算法[J].中国电机工程学报,2008,28(4):102-108.
    [14]冯宇,唐轶,史丽萍,等.基于图形模式识别的稳态电能质量指标[J].电工技术学报,2008,23(3):108-114.
    [15]GB/T 12326-2008电能质量电压波动和闪变[S].中国标准出版社,2008.
    [16]能源部电力司.GB/T 14549-1993电能质量 公用电网谐波[S].中国标准出版社,1993.
    [17]GB/T 15543-1995电能质量 三相电压允许不平衡度[S].中国标准出版社,1995.
    [18]GB/T 15945-1995电能质量 电力系统频率允许偏差[S].中国标准出版社,1995.
    [19]机械科学研究院.GB/T 12325-2003电能质量 供电电压允许偏差[S].中国标准出版社,2003.
    [20]董金发,梁羽生,张应榜,等.电能质量监测方法和在线电能质量监测仪:CN101706539[P].
    [21]房宇雄,欧阳森,余涛.一种电能质量综合监测装置:CN201203652[P].
    [22]张新太,阎天圣,煦黎,等.电能质量在线监测装置:CN201218822[P].
    [23]DE LA ROSA JUAN JOS GONZLEZ, MUOZ ANTONIO MORENO, DE CASTRO AURORA GIL, et al. A web-based distributed measurement system for electrical power quality assessment[J]. Measurement, 2010,43(6):771-780.
    [24]CHAOUI ABDELMADJID, KRIM FATEH, GAUBERT JEAN-PAUL, et al. DPC controlled three-phase active filter for power quality improvement[J]. International Journal of Electrical Power & Energy Systems, 2008,30(8):476-485.
    [25]KALYUZHNY A., ZISSU S., SHEIN D. Analytical Study of Voltage Magnification Transients Due to Capacitor Switching[J]. IEEE Transactions on Power Delivery,2009,24(2):797-805.
    [26]RADIL T., RAMOS P. M., JANEIRO F. M., et al. PQ Monitoring System for Real-Time Detection and Classification of Disturbances in a Single-Phase Power System[J]. IEEE Transactions on Instrumentation and Measurement,2008,57(8):1725-1733.
    [27]赵青春,邹力,刘沛.基于短窗自相关算法和数学形态学的电能质量扰动信号检测和定位新方法[J].电网技术,2005,29(6):6-10.
    [28]李庚银,罗艳,周明,等.基于数学形态学和网格分形的电能质量扰动检测及定位[J].中国电机工程学报,2006,26(3):25-30.
    [29]魏磊,张伏生,耿中行,等.基于瞬时无功功率理论的电能质量扰动检测、定位与分类方法[J].电网技术,2004,28(6):53-58.
    [30]刘开培,张俊敏,陈艳慧.基于重采样的三相谐波检测瞬时无功功率法[J].电力系统自动化,2003,27(12):4547.
    [31]李杨,黄纯,石佳.基于顺序形态学-dq变换的动态电能质量扰动检测算法[J].电工电能新技术,2008,27(2):51-54.
    [32]刘应梅,白晓民,张红斌,等.基于动态测度的电能质量扰动检测[J].中国电机工程学报,2003,23(10):57-62.
    [33]李天云,赵妍,李楠,等.基于HHT的电能质量检测新方法[J].中国电机工程学报,2005,25(17):52-56.
    [34]SENROY N., SURYANARAYANAN S., RIBEIRO P. F. An Improved Hilbert-Huang Method for Analysis of Time-Varying Waveforms in Power Quality[J]. IEEE Transactions on Power Systems, 2007,22(4):1843-1850.
    [35]SENROY N., SURYANARAYANAN S. Two Techniques to Enhance Empirical Mode Decomposition for Power Quality Applications:Power Engineering Society General Meeting.IEEE,2007[C]. Power Engineering Society General Meeting,IEEE.
    [36]赵凤展,杨仁刚.基于短时傅里叶变换的电压暂降扰动检测[J].中国电机工程学报,2007,27(10):28-34,109.
    [37]GU Y. H., BOLLEN M. H. J. Time-frequency and time-scale domain analysis of voltage disturbances[J]. IEEE Transactions on Power Delivery,2000,15(4):1279-1284.
    [38]WRIGHT P. S. Short-time Fourier transforms and Wigner-Ville distributions applied to the calibration of power frequency harmonic analyzers[J]. IEEE Transactions on Instrumentation and Measurement, 1999,48(2):475-478.
    [39]刘守亮,肖先勇.Daubechies复小波的生成及其在短时电能质量扰动检测中的应用[J].电工技术学报,2005,20(11):106-110.
    [40]胡铭,陈珩.基于小波变换模极大值的电能质量扰动检测与定位[J].电网技术,2001,25(3):12-16.
    [41]沈申生,杨奕.小波包变换在电能质量扰动检测中的应用[J].高电压技术,2006,32(7):116-119.
    [42]王晶,束洪春,陈学允.动态电能质量的分形指数小波分析方法[J].中国电机工程学报,2004,24(5):4045.
    [43]陈祥训,刘兵,赵波.分析电能质量扰动的实小波域修正相子法[J].中国电机工程学报,2006,26(24):3742.
    [44]BHENDE C. N., MISHRA S., PANIGRAHI B. K. Detection and classification of power quality disturbances using S-transform and modular neural network[J]. Electric Power Systems Research, 2008,78(1):122-128.
    [45]MISHRA S., BHENDE C. N., PANIGRAHI B. K. Detection and Classification of Power Quality Disturbances Using S-Transform and Probabilistic Neural Network[J]. IEEE Transactions on Power Delivery,2008,23(1):280-287.
    [46]DASH P. K., CHILUKURI M. V. Hybrid S-transform and Kalman filtering approach for detection and measurement of short duration disturbances in power networks [J]. IEEE Transactions on Instrumentation and Measurement,2004,53(2):588-596.
    [47]DE LA ROSA JUAN JOSE GONZALEZ, MUNOZA ANTONIO MORENO, GALLEGOD ANTOLINO, et al. Higher-order characterization of power quality transients and their classification using competitive layers[J]. Measurement,2009,42(3):478-484.
    [48]RIBEIRO M. V., MARQUES C. A., DUQUE C. A., et al. Power quality disturbances detection using HOS: Power Engineering Society General Meeting, IEEE, Power Engineering Society General Meeting, IEEE,2006[C]. Power Engineering Society General Meeting, IEEE.
    [49]何正友,陈小勤.基于多尺度能量统计和小波能量熵测度的电力暂态信号识别方法[J].中国电机工程学报,2006,26(10):33-39.
    [50]李涛,夏浪,何怡刚.叠加暂态电能质量扰动的分形熵分析[J].计算机应用,2009,29(8):2288-
    [51]KATSAPRAKAKIS D. A., CHRISTAKIS D. G., ZERVOS A., et al. A Power-Quality Measure[J]. IEEE Transactions on Power Delivery,2008,23(2):553-561.
    [52]ABDEL-GALIL T. K., EL-SAADANY E. F., SALAMA M. M. A. Power quality event detection using Adaline[J]. Electric Power Systems Research,2003,64(2):137-144.
    [53]AI QIAN, ZHOU YUGUANG, XU WEIHUA. Adaline and its application in power quality disturbances detection and frequency tracking[J]. Electric Power Systems Research,2007,77(5-6):462-469.
    [54]蔡忠法,陈隆道.基于AR谱估计和Adaline神经元的间谐波分析[J].电力系统自动化,2007,31(17):78-82.
    [55]CHIA-HUNG LIN, CHIA-HAO WANG. Adaptive wavelet networks for power-quality detection and discrimination in a power system[J]. IEEE Transactions on Power Delivery,2006,21(3):1106-1113.
    [56]JURADO FRANCISCO, SAENZ JOS R. Comparison between discrete STFT and wavelets for the analysis of power quality events [J]. Electric Power Systems Research,2002,62(3):183-190.
    [57]刘应梅,高玉洁.基于Prony法的暂态扰动信号分析[J].电网技术,2006,30(4):26-30.
    [58]ABDULLAH A. R., SHA'AMERIA. Z., SAAD N. M. Power quality analysis using spectrogram and gabor transformation:Asia-Pacific Conference on Applied Electromagnetics.,2007[C].
    [59]杨洪耕,刘守亮,肖先勇,等.基于S变换的电压凹陷分类专家系统[J].中国电机工程学报,2007,27(1):98-104.
    [60]GEREK O. N., ECE D. G. Power-quality event analysis using higher order cumulants and quadratic classifiers[J]. IEEE Transactions on Power Delivery,2006,21(2):883-889.
    [61]MORENO A., PUNTONET C. G. A practical review on Higher-Order Statistics interpretation. Application to Electrical Transients Characterization: 5th International Symposium on Image and Signal Processing and Analysis, ISPA 2007.,2007[C].
    [62]HU GUO-SHENG, ZHU FENG-FENG, REN ZHEN. Power quality disturbance identification using wavelet packet energy entropy and weighted support vector machines [J]. Expert Systems with Applications, 2008,35(1-2):143-149.
    [63]于之虹,郭志忠.改进主成分分析法用于暂态稳定评估的输入特征选择[J].电力自动化设备,2003,23(8):17-21.
    [64]BAKAMIDIS S., DENDRINOS M., CARAYANNIS G. SVD analysis by synthesis of harmonic signals [J]. IEEE Transactions on Signal Processing,1991,39(2):472-477.
    [65]杨耿煌,温渤婴.基于量子行为粒子群优化-人工神经网络的电能质量扰动识别[J].中国电机工程学报,2008,28(10):123-129.
    [66]徐袭,石敏.一种基于粗糙集与小波变换的电能质量分类方法[J].电力自动化设备,2005,25(11):15-18.
    [67]高培生,谷湘文,吴为麟.基于求根多重信号分类和遗传算法的谐波间谐波频谱估计[J].电工技 术学报,2008,23(6):109-113.
    [68]BHENDE C. N., MISHRA S. An integrated approach of Wavelet-Rough Set technique for classification of power quality disturbances:13th International Conference on Harmonics and Quality of Power, ICHQP 2008., Wollongong, NSW,2008[C].
    [69]李天云,陈昌雷,周博,等.奇异值分解和最小二乘支持向量机在电能质量扰动识别中的应用[J].中国电机工程学报,2008,28(34):124-128.
    [70]P. JANIK, T. LOBOS. Automated classification of power-quality disturbances using SVM and RBF networks[J]. IEEE Transactions on Power Delivery,2006,21 (3):1663-1669.
    [71]BISWAL B., DASH P. K., PANIGRAHI B. K. Power Quality Disturbance Classification Using Fuzzy C-Means Algorithm and Adaptive Particle Swarm Optimization[J]. IEEE Transactions on Industrial Electronics,2009,56(1):212-220.
    [72]LIAO YUAN, LEE JONG-BEOM. A fuzzy-expert system for classifying power quality disturbances[J]. International Journal of Electrical Power & Energy Systems,2004,26(3):199-205.
    [73]CEROUEIRA AUGUSTO SANTIAGO, FERREIRA DANTON DIEGO, RIBEIRO MOISS VIDAL, et al. Power quality events recognition using a SVM-based method[J]. Electric Power Systems Research, 2008,78(9):1546-1552.
    [74]ERIST1 HSEYIN, DEMIR YAKUP. A new algorithm for automatic classification of power quality events based on wavelet transform and SVM[J]. Expert Systems with Applications,2010,37(6):4094-4102.
    [75]KAEWARSA SURIYA, ATTAKITMONGCOL KITTI, KULWORAWANICHPONG THANATCHAI. Recognition of power quality events by using multiwavelet-based neural networks[J]. International Journal of Electrical Power & Energy Systems,2008,30(4):254-260.
    [76]JAYASREE T., DEVARAJ D., SUKANESH R. Power quality disturbance classification using Hilbert transform and RBF networks[J]. Neurocomputing,2010,73(7-9):1451-1456.
    [77]UYAR MURAT, YILDIRIM SELCUK, GENCOGLU MUHSIN TUNAY. An expert system based on S-transform and neural network for automatic classification of power quality disturbances[J]. Expert Systems with Applications,2009,36(3, Part 2):5962-5975.
    [78]LIMA M. A. A., FERREIRA D. D., CEROUEIRA A. S., et al. Separation and recognition of multiple PQ disturbances using independent component analysis and neural networks:13th International Conference on Harmonics and Quality of Power, ICHQP 2008.,2008[C].
    [79]LEE I. W. C., DASH P. K. S-transform-based intelligent system for classification of power quality disturbance signals[J]. IEEE Transactions on Industrial Electronics,2003,50(4):800-805.
    [80]唐轶,刘昊,方永丽.基于时域特征分析的电能质量扰动分类[J].电力系统自动化,2008,32(17):50-54.
    [81]UYAR MURAT, YILDIRIM SELCUK, GENCOGLU MUHSIN TUNAY. An effective wavelet-based feature extraction method for classification of power quality disturbance signals[J]. Electric Power Systems Research,2008,78(10):1747-1755.
    [82]谷湘文,高培生,吴为麟.基于S变换和神经网络的电能质量多扰动分类识别[J].机电工程,2007,24(9):46-49.
    [83]LU YEN-LING, CHUANG CHENG-LONG, FAHN CHIN-SHYURNG, et al. Multiple disturbances classifier for electric signals using adaptive structuring neural networks[J]. MEASUREMENT SCIENCE AND TECHNOLOGY,2008,19(7):7-11.
    [84]WHEI-MIN LIN, CHIEN-HSIEN WU, CHIA-HUNG LIN, et al. Detection and Classification of Multiple Power-Quality Disturbances With Wavelet Multiclass SVM[J]. IEEE Transactions on Power Delivery, 2008,23(4):2575-2582.
    [85]MASOUM M. A. S., JAMALI S., GHAFFARZADEH N. Detection and classification of power quality disturbances using discrete wavelet transform and wavelet networks[J]. Science, Measurement & Technology, IET,2010,4(4):193-205.
    [86]SAIED M. M. On the analysis of capacitor switching transients: International Conference on Power System Technology.,2002[C].
    [87]SOCHULIAKOVA D., NIEBUR D., NWANKPA C. O., et al. Identification of capacitor position in a radial system[J]. IEEE Transactions on Power Delivery,1999,14(4):1368-1373.
    [88]SAIED M. M. Capacitor switching transients: analysis and proposed technique for identifying capacitor size and location[J]. IEEE Transactions on Power Delivery,2004,19(2):759-765.
    [89]KYEON HUR, SANTOSO S. Distance Estimation of Switched Capacitor Banks in Utility Distribution Feeders[J]. IEEE Transactions on Power Delivery,2007,22(4):2419-2427.
    [90]PARSONS A. C., GRADY W. M., POWERS E. J., et al. Rules for locating the sources of capacitor switching disturbances: Power Engineering Society Summer Meeting.IEEE,1999[C].
    [91]CHANG G. W., SHIH M. H., CHU S. Y., et al. An efficient approach for tracking transients generated by utility shunt capacitor switching[J]. IEEE Transactions on Power Delivery,2006,21(1):510-512.
    [92]SANTOSO S. On Determining the Relative Location of Switched Capacitor Banks[J]. IEEE Transactions on Power Delivery,2007,22(2):1108-1116.
    [93]CHANG G. W., JU-PENG CHAO, HUANG H. M., et al. On Tracking the Source Location of Voltage Sags and Utility Shunt Capacitor Switching Transients [J]. IEEE Transactions on Power Delivery, 2008,23(4):2124-2131.
    [94]PARSONS A. C., GRADY W. M., POWERS E. J., et al. A direction finder for power quality disturbances based upon disturbance power and energy[J]. IEEE Transactions on Power Delivery, 2000,15(3):1081-1086.
    [95]SANTOSO S., LAMOREE J. D., MCGRANAGHAN M. F. Signature analysis to track capacitor switching performance: Transmission and Distribution Conference and Exposition,2001 IEEE/PES,2001[C].
    [96]KYEON HUR, SANTOSO S. On Two Fundamental Signatures for Determining the Relative Location of Switched Capacitor Banks[J]. IEEE Transactions on Power Delivery,2008,23(2):1105-1112.
    [97]JISEONG KIM, GRADY W. M., ARAPOSTATHIS A., et al. A time-domain procedure for locating switched capacitors in power distribution systems [J]. IEEE Transactions on Power Delivery,2002,17(4):1044-1049.
    [98]ABU-ELANIEN A. E. B., SALAMA M. M. A. A Wavelet-ANN Technique for Locating Switched Capacitors in Distribution Systems[J]. IEEE Transactions on Power Delivery,2009,24(1):400-409.
    [99]YONG-JUNE SHIN, POWERS E. J., GRADY W. M., et al. Signal Processing-Based Direction Finder for Transient Capacitor Switching Disturbances[J]. IEEE Transactions on Power Delivery, 2008,23(4):2555-2562.
    [100]PRICE K. Practices for solving end-user power quality problems [J]. IEEE Transactions on Industry Applications,1993,29(6):1164-1169.
    [101]LIC., TAYJASANANT T., XU W., et al. Method for voltage-sag-source detection by investigating slope of the system trajectory[J]. Generation, Transmission and Distribution, IEE Proceedings-, 2003,150(3):367-372.
    [102]HAMZAH NORALIZA, MOHAMED AZAH, HUSSAIN AINI. A new approach to locate the voltage sag source using real current component[J]. Electric Power Systems Research,2004,72(2):113-123.
    [103]TAYJASANANT T., CHUN LI, XU W. A resistance sign-based method for voltage sag source detection[J]. IEEE Transactions on Power Delivery,2005,20(4):2544-2551.
    [104]张凯,关根志,张海龙.用小波变换和瞬时功率定位电能质量扰动源[J].高电压技术,2008,34(03):573-577.
    [105]贾清泉,郭倩,张绍林,等.基于扰动测度的电能质量扰动源定位方法[J].电力科学与技术学报,2010,25(1):49-53.
    [106]PRADHAN A. K., ROUTRAY A. Applying distance relay for voltage sag source detection[J]. IEEE Transactions on Power Delivery,2005,20(1):529-531.
    [107]INC. THE INSTITUTE OF ELECTRICAL. IEEE Recommended Practice for Monitoring Electric Power Quality[S].1995.
    [108]占勇,程浩忠,丁屹峰,等.基于S变换的电能质量扰动支持向量机分类识别[J].中国电机工程学报,2005,25(4):51-56.
    [109]YOUSSEF A. M., ABDEL-GALIL T. K., EL-SAADANY E. F., et al. Disturbance classification utilizing dynamic time warping classifier[J]. IEEE Transactions on Power Delivery,2004,19(1):272-278.
    [110]王丽霞,何正友,戴铭,等.一种电能质量扰动信号的分层识别新方法[J].电力系统自动化,2009,33(24):65-69.
    [111]唐常青等编著.数学形态学方法及其应用[M].北京:科学出版社,1990.
    [112]何正友,钱清泉.多分辨信息熵的计算及其在故障检测中的应用[J].电力自动化设备,2001,21(5):9-11.
    [113]赵春晖.数字形态滤波器理论及其算法研究[D].哈尔滨:哈尔滨工业大学电磁测量技术与仪器,1998.
    [114]HEIJMANS H. J. A. M., GOUTSIAS J. Nonlinear multiresolution signal decomposition schemes. Ⅱ. Morphological wavelets[J]. Image Processing, IEEE Transactions on,2000,9(11):1897-1913.
    [115]廖斌,许刚,王裕国.基于非抽样小波字典的低速率视频编码[J].软件学报,2004,15(2):221-228.
    [116]ZHANG J. F., SMITH J. S., Wu Q. H. Morphological undecimated wavelet decomposition for fault location on power transmission lines [J]. Circuits and Systems Ⅰ:Regular Papers, IEEE Transactions on, 2006,53(6):1395-1402.
    [117]章立军,阳建宏,徐金梧,等.形态非抽样小波及其在冲击信号特征提取中的应用[J].振动与冲击,2007,26(10):56-59,85.
    [118]ZHANG D. J., LI Q., ZHANG J. F., et al. Improving the accuracy of single-ended transient fault locators using mathematical morphology: Power System Technology,2002. Proceedings. PowerCon 2002. International Conference on,2002 [C].
    [119]邹力,赵青春,林湘宁,等.基于数学形态学的电力系统振荡中故障识别和改进的选相方法[J].中国电机工程学报,2006,26(13):37-42.
    [120]马静,王增平,徐岩,等.利用多分辨形态梯度实现单端暂态量保护新方案[J].华北电力大学学报,2005,32(5):7-10,21.
    [121]任获荣.数学形态学及其应用[D].西安:西安电子科技大学电路与系统,2004.
    [122]曾纪勇.基于数学形态学的电能质量检测方法及应用[D].武汉:华中科技大学电力系统及其自动化,2005.
    [123]吴军基,吴伊昂,贺济峰,等.数学形态学在行波滤波中的应用[J].继电器,2005,33(17):21-26.
    [124]曾纪勇,丁洪发,段献忠.基于数学形态学的谐波检测与电能质量扰动定位方法[J].中国电机工程学报,2005,25(21):57-62.
    [125]翁颖钧,朱仲英.基于动态时间弯曲的时序数据聚类算法的研究[J].计算机仿真,2004,21(3):37-40,144.
    [126]王振浩,杜凌艳,李国庆,等.动态时间规整算法诊断高压断路器故障[J].高电压技术2006,32(10):36-38.
    [127]徐波,唐海龙,李行善.基于DTW的涡扇发动机气路故障定量诊断方法[J].北京航空航天大学学报,2004,30(06):524-528.
    [128]徐波,于劲松,李行善.基于路径约束的动态时间规整方法研究[J].系统工程与电子技术,2004,26(1):103-105.
    [129]张贤达著.现代信号处理[M].北京市:清华大学出版社,2002.
    [130]JAYADEVA, KHEMCHANDANI R., CHANDRA S. Twin Support Vector Machines for Pattern Classification[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2007,29(5):905-910.
    [131]DUG HUN HONG, CHANGHA HWANG. Interval regression analysis using quadratic loss support vector machine[J]. IEEE Transactions on Fuzzy Systems,2005,13(2):229-237.
    [132]LEI XIA, JICHENG MENG, RUIMIN XU, et al. Modeling of 3-D Vertical Interconnect Using Support Vector Machine Regression[J]. Microwave and Wireless Components Letters, IEEE, 2006,16(12):639-641.
    [133]杜树新,吴铁军.模式识别中的支持向量机方法[J].浙江大学学报(工学版),2003,37(5):521-527.
    [134]邓乃扬,田英杰著.数据挖掘中的新方法支持向量机[M].北京市:科学出版社,2004.
    [135]BISHOP CHRISTOPHER M. Pattern recognition and machine learning[M].2006.
    [136]何正友,蔡玉梅,王志兵,等.电力暂态信号小波分析的后处理方法研究[J].电网技术,2005,29(21):46-51.
    [137]KAISER J. F. On a simple algorithm to calculate the'energy' of a signal: International Conference on Acoustics, Speech, and Signal Processing.,1990[C].
    [138]黄文清,戴瑜兴.基于Teager能量算子的电能质量扰动实时检测方法[J].电工技术学报,2007,22(6):154-158.
    [139]CHEN SHI-HUANG, WU HSIN-TE, CHANG YUKON, et al. Robust voice activity detection using perceptual wavelet-packet transform and Teager energy operator[J]. Pattern Recognition Letters, 2007,28(11):1327-1332.
    [140]SALZENSTEEIN F., BOUDRAA A. O. Multi-dimensional higher order differential operators derived from the Teager-Kaiser energy-tracking function[J]. Signal Processing,2009,89(4):623-640.
    [141]POTTS DANIEL, TASCHE MANFRED. Parameter estimation for exponential sums by approximate Prony method[J]. Signal Processing,2010,90(5):1631-1642.
    [142]PAN XINYI, LI CHENG, YING KUI, et al. Model-based PRFS thermometry using fat as the internal reference and the extended Prony algorithm for model fitting[J]. Magnetic Resonance Imaging, 2010,28(3):418-426.
    [143]SCHMERR JR. LESTER W., LOPEZ-SANCHEZ ANA L., SEDOV ALEXANDER. K-space Prony's method for generating the basis functions of multi-Gaussian beam models[J]. Ultrasonics,2010,50(6):600-605.
    [144]MARTIN NADINE, JAUSSAUD PIERRE, COMBET FRANOIS. Close shock detection using time-frequency Prony modeling[J]. Mechanical Systems and Signal Processing,2004,18(2):235-261.
    [145]RlBEIRO M. P., EWINS D. J., ROBB D. A. Non-Stationary Analysis and Noise Filtering Using a Technique Extended From the Original Prony Method[J]. Mechanical Systems and Signal Processing, 2003,17(3):533-549.
    [146]LOBOS T., REZMER J., JANIK P., et al. Application of wavelets and Prony method for disturbance detection in fixed speed wind farms[J]. International Journal of Electrical Power & Energy Systems, 2009,31(9):429-436.
    [147]WENLONG LIU, WENLONG HU, ZHIJIE CHEN. SVD-TLS extending Prony algorithm for extracting UWB radar target feature[J]. Journal of Systems Engineering and Electronics,2008,19(2):286-291.
    [148]EMMANUEL P. A., NEHRIR M. H., PIERRE D. A., et al. Evaluation of nonconventional HVDC converter controls in an AC/DC power system using Prony signal analysis[J]. Electric Power Systems Research, 1993,26(1):31-39.
    [149]贾勇,何正友,赵静.基于小波熵和概率神经网络的配电网电压暂降源识别方法[J].电网技术,2009,33(16):63-69.
    [150]SPECHT D. F., SHAPIRO P. D. Generalization accuracy of probabilistic neural networks compared with backpropagation networks: IJCNN-91-Seattle International Joint Conference on Neural Networks.,1991[C].
    [151]SPECHT D. F. Probabilistic neural networks and the polynomial Adaline as complementary techniques for classification[J]. IEEE Transactions on Neural Networks,1990,1(1):111-121.
    [152]MAO K. Z., TAN K. C., SER W. Probabilistic neural-network structure determination for pattern classification[J]. IEEE Transactions on Neural Networks,2000,11 (4):1009-1016.
    [153]ZWE-LEE GAING. Wavelet-based neural network for power disturbance recognition and classification[J]. IEEE Transactions on Power Delivery,2004,19(4):1560-1568.
    [154]http://bb.pscad.com/forum.php[EB/OL]. http://bb.pscad.com/forum.php.
    [155]韩祯祥主编.电力系统分析[M].杭州市:浙江大学出版社,1993.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700