用户名: 密码: 验证码:
变极性等离子弧焊电源的研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
首先,本文介绍了逆变技术在焊接领域的发展史、现状以及未来的发展前景。
    其次,阐述了变极性等离子焊接的特点、目前国内外的研究现状以及微机技术和逆
    变技术相结合在焊接领域中的深远影响。接着根据铝合金焊接的要求和逆变电源的
    发展趋势,本文提出了变极性等离子弧焊电源主电路、控制系统和控制软件的设计
    方案。
    本文主要介绍了所研制的变极性等离子弧焊电源的组成结构和控制原理,系统
    阐述了电源主电路、控制电路、保护电路、显示及按键电路和控制软件,并对试验
    结果进行了详细的分析。
    电源主电路是单电源供电,采用输出功率较大的全桥双逆变结构,比较地选取
    绝缘栅双极型晶体管IGBT作为主控开关功率转换器件。主电路系统由输入整流滤
    波电路、前级逆变电路、高频变压器、整流滤波电路、后级逆变电路和输出电抗器
    组成。文中详细讨论了上述电路的设计要点和参数的确定,着重探讨了后级逆变的
    实现和控制。
    控制电路采用高性能的16位单片机80c196KC作为其核心,整个系统采用闭环
    负反馈控制。系统实时地对输出电流进行采样,将采样结果送入单片机进行A/D转
    换,并完成PI算法后,相应的输出量去控制脉宽调制芯片SG3525的输出脉宽,进
    而调整输出电流,由此控制焊机的输出外特性。
    逆变电路由前级逆变电路和后级逆变电路组成。前级逆变采用脉宽调制型调节
    (PWM)方式控制输出电流的大小,单片机输出的控制量经由MAX530组成的D/A转换
    电路后送到SG3525,调制出两路互不重叠的触发脉冲,再经IGBT专用驱动模块
    M57959进行功率放大后触发前级功率开关管,以获得脉动直流输出。后级逆变是通
    过软件编程来控制80c196KC的高速输出口(HSO)输出两路脉冲,经功率放大后驱动
    后级功率开关管的开通与关断,实现电流波形的转换,得到满足焊接工艺要求的交
    流方波。
    此外,为方便焊机操作,本文设计了以HD7279键盘,显示接口芯片组成四键
    盘输入和七段LED显示控制电路。针对焊接过程中可能出现的过流、过热、过/欠
    压等故障,本文进行了相应的保护电路设计。
    在焊机的主电路和控制电路部分都进行了可靠性与抗干扰设计,系统分析了可
    能影响焊机正常工作的各种干扰及其产生机理,并在原理图设计、PCB制作以及程
    序编制的过程中采取了相应的软硬件抗干扰措施。
    通过联机调试,对该电源的实施方案、组成部分以及调试中的一些问题进行了
    试验分析,得到了较为满意的结果,并记录了试验过程中的数据和相关波形。同时,
    
    
    兰州理工大学硕士论文
    摘要
    在试验过程,还对一些事先没有预见的问题做了分析,及时加以改进。试验表明,
    该电源获得了电流频率、电流幅值、正负半波导通比均可以独立调节的不对称方波,
    控制系统运行稳定好,可靠性高。
Firstly, the history, actuality and future of inverter technique in welding field are introduced in this paper. Secondly, the characteristics of VPPAW (variable polarity plasma arc welding) and its research actuality, as well as the far-reaching effect of micro-chip technique combined with inverter technique on the development of welding machine are set forth. Then the VPPAW power source is introduced according to the technological demands of welding aluminum alloy and the trend of inverter power source. Its design scheme includes main circuit, control system and control software.
    The build-up configuration and control principle of the VPPAW source are introduced in this paper. Main circuit, control circuit, safeguard circuit, wire feeding circuit and control software are expounded respectively. At the same time, test results are analyzed in detail.
    Full-bridge dual inverter configuration is adopted by main circuit which is supplied by single power source. IGBT (insulated gate bipolar transistor) is comparatively chosen as switch component to perform energy transfer and power conversion. The main circuit is made up of input rectifier & filter circuit, first inverter circuit, high-frequency transformer, second inverter circuit, rectifier & filter circuit and output reactor. The design kernel and parameters are discussed at length in this paper where the realization and control of second inverter are given emphasis to.
    High performance 16-bit micro-processor 80cl96KC is chosen as the core of control system who adopts closed-loop and minus-feedback control. The control variable is output by micro-processor system after real-time sampling current parameters are converted into digital signal. Adopting PI algorithm, constant current output characteristics is obtained after the variable is used to control the pulse width of PWM (pulse width modulation) chip SG3525 in order to adjust output current.
    The inverter circuit is composed of first and second inverter circuit. The PWM mode is accepted by first inverter circuit to control output current. The digital signal out of micro-processor is firstly converted into analog signal through MAX530, and then is modulated by SG3525 into two pulses not overlapped each other. At last, the pulses are used to trigger former IGBTs after they are magnified by M57959L, which can achieve pulsed DC output. Software programming is utilized by second inverter circuit to attain PWM pulse signal. Similarly, two pulses from HSO of 80cl96KC are used to trigger latter IGBTs after they are magnified by M57959L, which can achieve AC square wave
    
    
    
    to meet requirements of welding technics. Made up of HD7279 and LED, the display and keystroke circuit is designed to facilitate welding operation. In addition, the safeguard circuit is consisted of over-current, over-heat, over- voltage and low-voltage circuit.
    Reliability and anti-jamming design are also involved in both main circuit and control circuit of the welding machine. Various noises probably appearing in the whole system, as well as their mechanism, are analyzed systematically. Subsequently, in order to reduce their bad infections to great extent, some hardware and software measures are adopted while designing schematic chart, PCB board and compiling program code.
    Through online debugging, test data and results are attained and analyzed. Moreover, some unexpected problems are probed into and made corresponding improvement during test. The experiment results show that the VPPAW power source gains asymmetrical square-wave whose current frequency, amplitude, DCEN/DCEP ratio can be adjusted separately and VPPAW power source runs stably and reliably.
引文
[1] 郑宜庭,黄石生.弧焊电源[M].北京:机械工业出版社,1999.
    [2] 赵家瑞.逆变焊接与切割电源[M].北京:机械工业出版社,1996:200-231.
    [3] 陈丙森.计算机辅助焊接技术[M].北京:机械工业出版社,1999.
    [4] 薛家祥,黄石生.弧焊逆变器研制中的关键技术[J].Welding Technology,No.4 Aug.1998.
    [5] 株式会社神户制钢所焊接事业部.日本焊接技术的动向[A].大连市中日焊接技 术交流会论文集[C],1997.
    [6] 王振民,黄石生.弧焊逆变技术的研究现状与展望[J].电焊机,2000(8) .
    [7] 余文松,薛家样,黄石生等.软开关弧焊逆变器的研制[J].南昌航空工学院学 报,1999(12) ,Vol.13,No.4.
    [8] 倪倩,齐铂金.软开关全桥PWM逆变焊机主电路拓扑结构发展现状[J].焊接技 术,Vol.31,No.1,2001(2) .
    [9] 侯迈.国内外逆变弧焊机的现状及发展趋向[A].成都:全国电焊机行业情报网 论文集[C],1997:89-95.
    [10] 黄石生.新型弧焊电源及其智能控制[M].北京:机械工业出版社,2000.
    [11] 仝红军,上山智之.交流脉冲MIG焊接机器人系统的工艺特点[J].焊 接,2002,No.1:20-22
    [12] 殷树言,崔波,杭争翔等.AC PMIG焊接设备及工艺研究[A].2003熔焊技术及应 用年会论文集[C].无锡:中国焊接学会,2003:129-133.
    [13] 张广军,殷树言等.250A变极性电源的研制[J].电焊机,1997,(2) :18-22.
    [14] P. M. MUNAFO, A. P. BIDDLE, and W. A. WILSON. Variable Polarity Plasma Arc Welding on the Space Shuttle External Tank[J]. Welding Journal: 27-35.
    [15] E. CRAIG. The Plasma Arc Processv-A Review[J]. Welding Journal: 19-25.
    [16] A. C. Nune, JR., E. O. BAYLESS, et al. Variable Polarity Plasma Arc Welding on the Space Shuttle External Tank[J]. Welding Journal, 1984, (9) : 27-35.
    [17] 王振民等.弧焊逆变技术的研究现状与展望[J].电焊机,2000,(7) :3-8.
    [18] 赵家瑞.高频脉冲等离子焊接电弧行为及其工艺的研究[J].焊接学 报,1989,(4) :209-213
    [19] 陈克选.等离子弧焊维弧行为研究[J].甘肃工业大学学 报,1999,25(4) :11-13.
    [20] S. Barhorst. The cathodic etching technique for automated aluminum tube welding[J]. welding journal, 1985.
    [21] M. TOMSIC. Keyhole plasma arc welding of aluminum with variable polarity power[J]. welding journal, 1984, (2) .
    [22] 张立,赵永健.现代电力电子技术-器件、电路及应用[M].北京:科学出版 社,1992.
    [23] 黄石生,余文松等.大功率逆变电源PWM控制技术的研究[J].电焊机,2000 (3) .
    [24] 盛祖全,张立.IGBT模块驱动及保护技术[J].电焊机,2000(11) :6-13.
    
    
    [25] Mitsubishi IGBT dataBook[M]. 1996:63-66.
    [26] 苏开才,毛宗源.现代功率电子技术[M].北京:国防工业出版社,1995(9) .
    [27] 俞阿龙.IGBT在大功率DC-DC变换器中的驱动与保护技术[J].电工技术杂 志,2000(9) .
    [28] 黄石生编著.逆变理论与弧焊逆变器[M].北京:机械工业出版社,1995.
    [29] 王军波,孙振国等.半桥式IGBT逆变焊接电源输出容量计算及变压器参数设计 [J].电焊机,2002(12) ,Vol.30:16-19.
    [30] 路甬祥.机械科学技术与我国经济发展和社会进步[J].机械工程学 报,1993,29(5) :12-19.
    [31] 武自芳.微机控制系统及其应用[M].西安:西安交通大学出版社,1998.
    [32] 孙涵芳,徐爱卿.MS-51/96系列单片机原理及应用[M].北京:北京航空航天大 学出版社,1999.
    [33] 孙涵芳.Intel 16位单片机[M].北京:北京航空航天大学出版社,1995.
    [34] 李春旭.微机控制的逆变TIG焊电源的研制[J].电焊机,2001(5) :8-10.
    [35] 李伯成,候伯亨等.微型计算机原理及应用[M].西安:西安电子科技大学出版 社,1998. 5.
    [36] MAXIM技术书册.微系统监控电路.
    [37] 皮佑国,麦山等.:IGBT弧焊逆变电源外特性研究[J].焊接技术,1998(4) .
    [38] 康劲松,郎玉峰等.IGBT集成驱动模块的应用研究[J].电工技术杂 志,2000(5) .
    [39] Mitsubishi Electric.
    [40] 黄俊.半导体变流技术[M].北京:机械工业出版社,1986.
    [41] 王福瑞等编著.单片机测控系统设计大全[M].北京:北京航空航天大学出版 社,1998.
    [42] 汪建等.MCS-96系列单片机原理及应用技术[M].武汉:华中理工大学出版 社,1998.
    [43] 熊腊森,刘长友.IGBT驱动保护电路EXB841与M57959L的研究[J].电焊 机,Vol.30,2000(11) :29-31.
    [44] 刘勇,姚舜.逆变焊机的多重保护设计[J].焊接技术,Vol.29,2000(4) .
    [45] 骆德阳,宋彬,方培泉.开关型送丝电源的研制[J].电焊机,1997(2) :9-11.
    [46] 刘连义.微机测量控制系统常用抗干扰技术[J].橡胶技术与装 备.1995,Vol.21:36-42.
    [47] 王幸之,王雷等.单片机应用系统抗干扰技术[M].北京:北京航空航天大学出 版社,2002.
    [48] 杨春山等.带微机的机械电气控制装置的抗干扰[J].机械研究与应 用,1994(2) :15-19.
    [49] 杨朝,冉文丽.弧焊焊具微机测试装置中单片微机系统的抗干扰设计[J].电焊 机,1996(2) :26-28.
    [50] 王昊,那文鹏,姚丽萍等.对接触器干扰单片机系统的抑制[J].辽宁工学院学 报,2001(6) ,Vol.23,No.3.
    
    
    [51] 谢剑英,贾青.微型计算机控制技术[M].北京:国防工业出版社,2001.
    [52] 马跃洲,魏继昆,李鹤岐.WSM-400DN微机控制脉冲TIG焊机的研制[C].第九次 全国焊接会议论文集,2-263~266.
    [53] 马跃洲等.微机控制的IGBT逆变CO2电源[J].甘肃工业大学学 报,1999,25(1) :6-10.
    [54] 刘嘉,卢振洋等.电焊机的数字化[J].焊接学报,Vol.23,No.l,2002(1) .
    [55] 谢晓晖,崔长利.“看门狗”技术在单片机系统抗干扰设计中的应用[J].电测 与仪表,1996(7) .
    [56] 宋其新,舒丹.单片机软件抗干扰技术[J].矿业研究与开发,Vol.16,1996(3) .
    [57] 于海生,潘松峰等,微型计算机控制技术,北京:清华大学出版社,1999。
    [58] 邓涛.逆变弧焊机控制电路设计与调试[J].电焊机,1998(3) :26-28.
    [59] 姚峻,马松辉.simulink建模与仿真[M].西安:西安电子科技大学出版 社,2002.
    [60] 殷树言,陈树君.转变思想,设计新型逆变式焊接电源[C].中国逆变焊机全面 应用推广会论文集,2001.
    [61] 赵家瑞.弧焊逆变电源主电路拓扑的发展现状[C].中国逆变焊机全面应用推 广会论文集,2001.
    [62] 李春旭,韦鲲等.电感量对IGBT逆变焊机可靠性的影响[C].第九次全国焊接会 议论文集:2-299~302.
    [63] 公茂法等.单片机人机接口实例集[M].北京:北京航空航天大学出版社,1998.
    [64] 王福瑞等编著.单片机测控系统设计大全[M].北京:北京航空航天大学出版 社,1998.
    [65] 华伟.逆变焊机的5种PWM恒流反馈控制模式研究[J].电焊机,2001,(3) .
    [66] 伊海,李思海等.IGBT驱动电路性能分析[J].电力电子技术,1998,32(3) .
    [67] 王创社,乐开端等.开关电源两种控制模式的分析与比较[J].电力电子技 术,1998,32(3) .
    [68] 朱敖正.逆变弧焊机的可靠性与IGBT保护若干问题探讨[J].电焊机,2000, (2) .
    [69] 丁京柱,殷树言,刘嘉.基于80C196KC的CO2焊逆变电源数字波控系统[J].机械 工程学报,Vol.38,No.2,2002(2) .
    [70] 张广军,耿正等.250A变极性电源的研制[J].电焊机,1997(2) :18-22.
    [71] 吕耀辉,殷树言等.变极性穿孔等离子弧焊接系统的研制[J].电焊机,2003(5) , Vol.33. No.5.
    [72] 韦鲲.微机控制的IGBT逆变电源的研究[J].甘肃工业大学研究生毕业论文.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700