用户名: 密码: 验证码:
冻融作用对吉林西部典型土壤碳氮酶的影响机制及温室气体排放研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在全球变化研究中,诸多学者一直重视陆地生态系统碳循环及其他温室气体的变化研究,取得了大量的研究成果。但是,已有的研究成果多注重植物生长期土壤有机碳的动态变化,较少考虑冻融作用下的土壤有机碳变化;已有的冻融研究成果其研究区也多限于三江平原湿地、松嫩平原黑土、西北地区不同覆盖条件下的耕地,以及高原山区冻土带,北方盐碱土区土壤有机碳的研究鲜见报道;研究方法多以室内模拟实验为主,界定冻融温度和冻融循环次数有所限制,且冻融期土壤有机碳的影响机理研究方面涉及较少,只有将冻融期土壤有机碳储量纳入到全年土壤有机碳储量研究中,其结果才能更全面、更准确。
     本研究主要以遥感技术、环境模拟、空间分析、实验室测试和数据分析为主要技术支持,选择吉林西部典型的水田、旱田、草地和盐碱地,开展了冻融模拟实验,系统分析了冻融期土壤有机碳、全氮、土壤酶活性的动态变化规律,探讨土壤有机碳、全氮对土壤酶活性的响应机制,为我国北方地区冻融期土壤有机碳循环和全氮的研究提供了技术参考。
     本文研究了-5~5℃FTC(冻融循环作用,Freezing-thawing-cycles)、-25~5℃FTC、-5~5℃FT(长期冻融作用,Freezing-thawing)和-25~5℃FT不同冻融作用下土壤有机碳、全氮的动态变化。无论是在FTC还是FT过程中,各地类有机碳、全氮含量均随土壤深度的增加而降低,且二者之间具有较强的相关性;冻融作用影响了土壤有机碳和全氮含量,但其影响程度不一致。一般情况下,表层土壤(0~10cm、10~20cm和20~30cm)理化性质变化趋势一致,而30~40cm、40~50cm的变化趋势相同。除在-25~5℃FTC下,盐碱地土壤有机碳呈现出下降趋势外,土壤有机碳含量均在10次FTC结束后呈现出不同程度的增加。方差分析表明,FTC下,冻融次数是引起土壤有机碳变化的主要影响因素,而冻结温度则为次要因素。但在FT中,土壤有机碳的波动幅度较小,受冻结温度和冻结次数影响较少。在FTC作用下,水田和旱田土壤全氮量在冻融循环结束后,均呈现出增加的趋势,而草地和盐碱地土壤全氮量趋势相反;FT过程中,土壤全氮量均呈现出不同程度的降低。方差分析表明,FTC作用下,冻结温度和冻结次数均为土壤全氮量变化的主要影响因素,而在FT中,冻结温度对土壤全氮量的影响不显著。
     对冻融期土壤酶活性进行监测得到,冻融结束后,除草地脱氢酶活性有所降低外,其余地类土壤脱氢酶活性均呈现出不同程度的升高趋势;土壤多酚氧化酶均呈现出降低的趋势;各地类土壤过氧化氢酶活性均有小幅度波动,但变化不显著;土壤脲酶均呈现出增加的趋势。季节性冻融作用对土壤酶活性具有显著的影响,且不同的土壤酶类以及不同土壤层次的土壤酶对季节性冻融的影响也有着一定的差异。
     利用SPSS法对土壤酶活性与土壤有机碳、全氮含量进行相关性分析得到,二者之间的相关性较强;除盐碱地土壤有机碳、全氮与不同酶之间均呈正相关且回归系数相差不大外,其余土壤酶活性对土壤有机碳、全氮的影响作用大小均为土壤脲酶最大,而土壤过氧化氢酶最小,该结果与利用SIMCA-P软件得到的多元回归结果相似。土壤酶对土壤系统中有机物质的分解起到重要作用,催化土壤微生物活性,稳定土壤结构,分解有机物残体,参与营养元素循环。土壤酶经历不断的合成、积累、抑制或分解过程,对农业土壤营养物质循环具有重要作用。在冻融作用下,随着土壤温度以及土壤中自由水形态的变化,土壤酶经历了多次好氧和厌氧过程的反复,酶活性随之改变,从而影响土壤有机质和全氮。
     虽然,冻融期绝大部分土壤有机碳和全氮量呈现出不同程度的升高趋势,但从冻融期不同地类土壤碳密度计算结果可以看出,在冻融期土壤碳密度变化幅度较小,计算得到冻融作用下不同地类之间土壤有机碳储量增加,储量大小为水田<盐碱地<草地<旱田。
     利用DNDC模型的模拟结果,结合遥感解译得到的大安市水田、旱田、草地和盐碱地的面积,得到大安市地类2009年的温室气体排放情况,并利用IPCC净变暖潜势模型,估算不同冻融作用下大安市不同地类变暖潜势值,判断冻融期土壤碳截存过程,旱田土壤均表现为碳汇;而水田在-5~5℃FTC和-25~5℃FTC中,表现为碳源,而在-5~5℃FT和-25~5℃FT中为弱碳汇;草地土壤在-25~5℃FTC下表现为碳汇,其余作用下为碳源;盐碱地分别在-5~5℃FTC和-25~5℃FT作用下,表现为碳汇;进而推广到研究区,得到大安市冻融期增温潜势呈现出西北地区较低,而中部较高的分布特点。
     以往土壤有机碳研究的重点多放在植物生长季,本研究利用实验模拟技术
     探讨冻融作用对吉林西部水田、旱田、草地和盐碱地不同地类土壤有机碳、全氮和土壤酶活性的波动和影响机制,可弥补研究区内尚未开展冻融期盐碱地、草地、耕地(旱田和水田)有机碳的系统研究的空白,为东北盐碱土分布区冻融期碳循环研究提供范例。
Among global climate change studies, carbon cycle of terrestrial ecosystem and the changesof other greenhouse gases are continuously import to scholars all around the world. However,most existing results focus on the trend of soil organic carbon (SOC) during the plant growingseason, without consideration of SOC change during freezing-thawing period. In addition, theexisting studies in freezing-thawing period are mostly limited in Sanjiang plain, Songnen plain,arable land under different mulch in northwestern of China, as well as the tundra of plateau. TheSOC research of saline-alkali soil paddy field in northern areais rarely reported. Researchmethods mainly adopt indoor simulation experiments withthe limits of freezing-thawingtemperature and cycling time. And impact mechanism of SOC is little during freezing-thawingperiod. It will get more comprehensive and accurate results if the SOC storage offreezing-thawing period is added into the annualstudy.
     Several technical methods are chosen to finish this study, such asremote sensing,environmental modeling, spatial analysis, laboratory testing and data analysis. Typical paddyfields, dry fields, meadows and saline-alkali soil are selected to study the dynamic change of soilorganic carbon, total nitrogen, soil enzyme activity during freezing-thawing period. The resultscan provide technical reference for the freezing-thawing study in northern area of our country.
     The temperature of-25℃,-5℃,5℃is chosen to carry out the experiments. Fourmechanisms are designed as following:-5~5℃FTC (12h-Freezing-12h-thawing-cycles),-25~5℃FTC,-5~5℃FT(120h-Freezing-120h-thawing) and-25~5℃FT. SOC and TN decreased as thesoil depth increased in all soil types and the correlation of the both indexes are high. But the twoindexes changes are different during the freezing and thawing period. Generally speaking, SOCchange trend is similar in surface soil (0-10cm,10-20cm and20-30cm) while the one in the flatis the same. The SOC is certain increasing duiring-25~5℃FTC except the SOC of saline-alkalisoil. The times of freezing-thawing is the main impact factor compares the temperature. The TNof paddy and dry fields is increased at the end of freezing-thawing-cycles and the situation isopposite in the grassland and saline-alkali soil. The temperature and times of freezing-thawingare also the main factors to impact TN changes. But the temperature unaffected TN at FT.
     The soil dehydrogenase increased after freezing-thawing except the one in grassland. Thepolyphenol oxidase decreased by the affect of freezing-thawing. The change of catalase is little in four typical soils. The urease has the increasing trend. The freezing-thawing effect obviouslyaffect the soil enzymes and certain difference exist in various soil.
     It is easy to get the high correlation between SOC, TN and soil enzymes by SPSS. Thecorelation indexes between the three ones of saline-alkali soil are similar. The correlation ofurease is the highest while the one of catalase is the lowest. The result is similar to the calculatinthrough SIMCA-P. The enzyme play an important role in decomposing SOC, catalyticingmicromass activity, stabilizing soil structure, affecting elements cycles. The soil enzymes is veryimportant to soil elements cycles by synthesizing、accumulating、restraining and decomposing.The soil environment is alternately change between anaerobic and aerobic circumstance as thechange of soil temperature and water. Soil enzyme changes and affect SOC and TN.
     Althugh SOC and TN increased under freezing-thawing effect, the change of SOCD (soilorganic carbon density) and TND (total nitrogen density) is little. The SOC storage increased infour soil and the storage sequence is paddy fields     On the basis of the establishment of the underlying database of soil, vegetation and climatein western Jilin Province the annual greenhouse gas emissions (CO2, CH4, and N2O) aresimulated to assess the global warming potential of four land use types by using DNDC model.The GWP of IPCC is also selected to evaluate the GWP of four typical soils under differentfreezing-thawing to judge soil organic carbon sequestration. The dry fileds is carbon source. Thepaddy fields (-5~5℃FTC and-25~5℃FTC) is carbon source and the one (-5~5℃FT and-25~5℃FT) is carbon sink. The meadows(-25~5℃FTC) is carbon sink and the one in other conditionis carbon source. The saline-alkali soil (-5~5℃FTC and-25~5℃FT) is carbon sink. The GWP islow in northwest and high in the center of the studying area.
     The previous study of soil organic carbon is focus on the plant growing season. In this study,the experimental simulation techniques is used to study the mechanisms of soil organic carbon/total nitrogen/soil enzyme of different land use types under freezing-thawing effect in westernJilin Province. The results can be provides an example for studying soil organic carbon storage infreezing-thawing period.
引文
[1].郭东信.中国冻土[M].兰州:甘肃教育出版社,1990.
    [2].王家澄.中国冻土分布及其地带性规律的初步探讨[A].第二届全国冻土学术会议论文选集[C].兰州:甘肃人民出版社,1983.1~12.
    [3]. Franzmeier D P, Lemme G D and Miles R J. Organic carbon in soil of North central UnitedStates[J]. Soil Sci Soc. Am. J,1985,49:702~708.
    [4]. Batjes N H. Total caroon and nitrogen in the soils of the worlds[J]. European Journal of SoilScience,1996,47:151~163.
    [5]. Post W M, Emanuel W R, Zinke P J. et al. Soil carbon pools and life zones[J]. Nature,298:156~159.
    [6]. Parton W J, Cole C M, Stewart J W B. et al. Simulating regional patterns of soil C,N and Pdynamics in US central grassland region: Cholm M and Bergstrom L[J], Ecology of arablelands Kluw a Academic Publ. Dordrecht, the Netherlands,1989,99~108.
    [7]. Parton W J, Schimel D S, Cole C M, Ojima D S. Analysis of factors controlling soil organicmatter levels in the great plains grasslands soil[J]. Soil Sci Soc. Am.1987,51:1173~1179.
    [8].解宪丽,孙波,周慧珍等.中国土壤有机碳密度和储量的估算与空间分布分析[J].土壤学报.2004,41(1):35~43.
    [9].王绍强,周成虎,李克让等.中国土壤有机碳库及空间分布特征分析[J].地理学报.2000,55(5):533~544.
    [10].于东升,史学正,孙维侠等.基于1:100万土壤数据库的中国土壤有机碳密度及储量研究[J].应用生态学报.2005,16(12):2279~2283.
    [11].王绍强,周成虎.中国陆地土壤有机碳库的估算[J].地理研究.1999,18(4):349~356.
    [12].方华军,杨学明,张晓平.东北黑土有机碳储量及其对大气CO2的贡献[J].水土保持学报.2003,17(3):9~12.
    [13].王立刚,邱建军.华北平原高产粮区土壤碳储量与平衡的模拟研究[J].中国农业科技导报.2004,6(5):27~32.
    [14].Shibayama M, Akiyama Y. Estimating grain yieldof maturing rice canopies using highspectral resolution reflectance measurements[J]. Remote Sens. of Environ,1991,36:45~53.
    [15].Idso SB, Jackson RD, Pinter PJ, et al. Normalizing the stress-degree-day parameter forenvironmental variability[J]. Agric. Meteorol,1981,24:45~55.
    [16].陈利军,刘高焕,励惠国.中国植被第一性生产力遥感动态监测[J].遥感学报2002,6(2):129~135.
    [17].于德永,潘耀忠,姜萍等.东亚地区植被第一性生产力对气候变化的时空响应[J].北京林业大学学报,2005,27(2):96~101.
    [18].王艳艳,杨明川,潘耀忠等.中国陆地植被生态系统生产有机物质价值遥感估算[J].生态环境.2005,14(4):455-459.
    [19].陈斌,王绍强,刘荣高等.中国陆地生态系统NPP模拟及空间格局分析[J].资源科学.2007,29(6):45~53.
    [20].钱峻屏,李岩,廖其芳等.利用遥感植被指数分析中国东部样带农业生态系统的生产力格局[J].生态学杂志.2001,20(6):46~49.
    [21].张娜,于贵瑞,赵士洞等.基于遥感和地面数据的景观尺度生态系统生产力的模拟[J].应用生态学报2003,14(5):643~652.
    [22].覃志豪,徐斌,李文娟等.我国北方草原产草量遥感测算模型[C].中国草业可持续发展论文集:473~483.
    [23].张杰,张强,郭铌等.荒漠草原牧草生产力的遥感估算及其可行性研究[J].西北植物学报,2006,26(11):2324~2330.
    [24].陈良富,高彦华,李丽等.基于MODIS晴空数据的森林日第一性生产力估算[J].中国科学D辑:地球科学.200737(11):1515~1521.
    [25].Bonan GB. Land-atmosphere interactions for climate system models: coupling biophysical,biogeochemical, and ecosystem dynamical processes[J]. Remote Sens. Environ,1995,51:57~73.
    [26].Unganai LS. Drought monitoring and corn yield estimation in southern Africa form AVHRRdata[J]. Remote Sens. Environ,1998,63:219~232.
    [27].Hontoria C, guez-Murillo J C, Saa A. Relationships between soil organic carbon and sitecharacteristics in Peninsular Spain[J]. Soil Science Society of America Journal,1999,63(3):614~621.
    [28].Houghton R.A., Effects of land use change, surface temperature, and CO2concentrationterrestrial stores of carbon[M]. In:GM Woodwell, Mack enzie FT, eds. Biotic Feedbacks inthe Global Climatic System: Will the warming Feed the Warming New York: Oxford UnivPress,1995,333~350.
    [29].Hendrix P F, Franzluebbers A J, McCracken D V. Management effects on C accumulationand loss in soils of the southern Appalachian Piedmont of Georgia[J]. Soil and TillageResearch,1998,47(3-4):245~251.
    [30].Guo J H, Piao H C, Zhang X S,et al. Effects of ecosystem alternation on soilcarbohydrate[J]. Acta Ecologica Sinica,2002,8:1367~1370.
    [31].Ding G, Novak J M, Amarasiriwardena D,et al. Soil Organic Matter Characteristics asAffected by Tillage Management[J]. Soil Science Society of AmericaJournal,2002,66:421~429.
    [32].高志强,刘纪远,曹明奎等.土地利用和气候变化对农牧过渡区生态系统生产力和碳循环的影响[J].中国科学D辑地球科学,2006,34(10):946~957.
    [33].何勇,秦大河,任贾文等.兰州不同时期黄土有机质碳同位素与气候的关系[J].气候与环境研究.2004,9(2):369~377.
    [34].许中旗,王立军,刘文忠等.森林植被影响气候变化的机制[J].河北林果研究.2005,20(1):7~13.
    [35].Houghton R A, Hackler J L. Continential Scale Estimates of the Biotic Carbon Flux fromLand Cover Change:1850~1980[J]. ORNL/CDIAC-79, NDP-050, Oak Ridge NationalLaboratory, Oak Ridge, Tennessee, USA,1995,144.
    [36].Arrouys D, Mariotti J, Girardin C. Modelling organic carbon turnover in cleared temperateforest soils converted to maize cropping by using13C natural abundance measurements[J].Plant and Soil,1995,173:191~196
    [37].Eswaran H, Van den Berg E, Reich P. Organic C in soils of the world[J]. Soil Sci Soc Am J,1993,57:192~194.
    [38].刘守龙,童成立,张文菊等.湖南省稻田表层土壤固碳潜力模拟研究[J].自然资源学报.2006,21(1):118~126.
    [39].Ben Jong An economic analysis of the Potential of carbon sequestration by forests:Evidence from southern Mexico[J]. Ecological Economics,2000,33:27~35.
    [40].Richard G. Newell. Climate Change and Forest Sinks: Factors A effcting the Cost of CarbonSequestration[J]. Journal of Environmental Economics and Management,2000,40:211~235.
    [41].赵荣钦,黄爱民,秦明周等.中国农田生态系统碳增汇/减排技术研究进展[J],河南大学学报(自然科学版),2004.34(4):60~65.
    [42].李忠佩,吴大付.红壤水稻土有机碳库的平衡值确定及固碳潜力分析[J].土壤学报.2006,43(1):46~52.
    [43].韩冰,王效科,欧阳志云.中国农田生态系统土壤碳库的饱和水平及其固碳潜力[J].农村生态环境.2005,21(4):6~11.
    [44].Franzmeier D P, Lemme G D and Miles R J. Organic carbon in soil of North central UnitedStates[J]. Soil Sci Soc. Am. J,1985,49:702~708.
    [45].Batjes N H. Total carbon and nitrogen in the soils of the worlds[J]. European Journal of SoilScience,1996,47:151~163.
    [46].Post W M, Emanuel W R, Zinke P J. et al. Soil carbon pools and life zones[J]. Nature,298:156~159.
    [47].Parton W J, Schimel D S, Cole C M, Ojima D S. Analysis of factors controlling soil organicmatter levels in the great plains grasslands soil[J]. Soil Sci Soc. Am.1987,51:1173~1179.
    [48].解宪丽,孙波,周慧珍等.中国土壤有机碳密度和储量的估算与空间分布分析[J].土壤学报.2004,41(1):35~43.
    [49].王绍强,周成虎,李克让等.中国土壤有机碳库及空间分布特征分析[J].地理学报.2000,55(5):533~544.
    [50].方华军,杨学明,张晓平.东北黑土有机碳储量及其对大气CO2的贡献[J].水土保持学报.2003,17(3):9~12.
    [51].Idso SB, Jackson RD, Pinter PJ, et al. Normalizing the stress-degree-day parameter forenvironmental variability[J]. Agric. Meteorol,1981,24:45~55.
    [52].Unganai LS. Drought monitoring and corn yield estimation in southern Africa form AVHRRdata[J]. Remote Sens. Environ,1998,63:219~232.
    [53].汤洁,毛子龙,王晨野等.基于碳平衡的区域土地利用结构优化[J].资源科学,2009,31(1):130-135.
    [54].朴河春,袁芷云,刘广深等.非生物应力对土壤性质的影响[J].土壤肥料,1998(3):17-21.
    [55].EDWARDS L M.The effect of alternate freezing and thawing on aggregate stability andaggregate size distribution of some Prince Edward Island soil[J]. Journal of Soil Science,1991,42:193-204.
    [56].LEHRSCH G A.Freeze-thaw cycles increase near-surface aggregate stability[J].Journal ofSoil Science,1998,163:63-70.
    [57].RADKE JK, BERRYEC.Soilwaterand solutemovementand bulk density changes inrepacked soil columns as a resultof freezing and thawing under field conditions[J]. SoilScience,1998,163(8):611-624.
    [58].GONG JD,QIX S, XIE Z K, et a.l Effect of seasonal freezing on soil moisture and itssignificance foragri culture [J]. Journal of Glaciology and Geocryology,1997,19(4):328-333.
    [59].BURTOND L, BEAUCHAMPEG. Profile nitrous oxide and carbon dioxide concentrationsin a soil subject to freezing[J].Soil Science Society of America Journa,1994,58(1):115-122.
    [60].刘亚红.冻融作用对土壤含水率、pH值、电导率的影响[J].山西科技,2010,25(2):77~78;
    [61].郑秀清,樊贵盛,邢述彦.水分在季节性非饱和冻融土壤中运动[M].北京:地质出版社,2002;
    [62].李瑞平.冻融土壤水热盐运移规律及其SHAW模型模拟研究[J],内蒙古农业大学博士论文,2007;
    [63].姜世成,周道玮,靳英华.松嫩平原盐碱化草地消融期土壤水盐运移特征[J],东北师大学报(自然科学版),2006(4):124~128;
    [64].罗金明,邓伟,张晓平等.苏打盐渍土的微域特征以及水分的迁移规律探讨[J].土壤通报,2009.03:482~486;
    [65].A.M.G. de Bruijn, K. Butterbach-Bah, S. Blagodatsky, R. Grote Model evaluation ofdifferent mechanisms driving freeze–thaw N2O emissions[J]. Agriculture. Ecosystems andEnvironment,2009,133:196~207
    [66].李忠佩,张桃林.可溶性有机碳含量动态及其与土壤有机碳矿化的关系[J].土壤学报,2004,41(4):544~552.
    [67].Andrzej Dudziak, Stanislaw Halas, Influence of freezing and thawing on the carbon isotopecomposition in soil CO2[J], Geoderma,1996,69:209~216.
    [68].宋长春,王毅勇,王跃思等.季节性冻融期沼泽湿地CO2、CH4和N2O排放动态[J],环境科学,2005,26(4):7~12.
    [69].周旺明,王金达,刘景双等.冻融对湿地土壤可溶性碳、氮和氮矿化的影响[J].生态与农村环境学报,2008,24(3):1~6.
    [70].王忠伟,杨金艳.冻融对土壤碳影响的分析[J].中国科技信息,2009(4):24~27.
    [71].谢艳兵,梁文举,王跃思等.下辽河平原稻田非生长季碳排放观测研究[J].生态学杂志,2004,23(2):11~14.
    [72].刘淑霞,王宇,赵兰坡等.冻融作用下黑土有机碳数量变化的研究[J].农业环境科学学报,2008,27(3):984~990.
    [73].赵满兴,周建斌,陈竹君等.有机肥中可溶性有机碳、氮含量及其特征[J].生态学报,2007,27(1):397~403.
    [74].SCHMEL J.P., CLEN J.Y. Microbial Response to Freeze-Thaw Cycles in Tundra and TaigaSoils[J]. Soil Biology&Biochemistry,1996,28(8):1061~1066.
    [75].WANG F.L, BETTANY R. Influence of Freeze-Thaw and Flooding on the Loss of SolubleOrganic Carbon and Carbon Dioxide From Soils[J]. Journal of Environmental Quality,1993,22(4):709~714.
    [76].LEHRSCH G A, SOJKA R E, CARTER D L, et al. Freezing Effects on Aggregate StabilityAffected by Texture, Mineralogy, and Organic Matter[J]. Soil Science Society of AmerciaJournal,1991,55(5):1401~1406.
    [77].Brooks P D, Williams M W, Schmidt S K. Inorganic nitrogen and microbial biomassdynamics before and during spring snowmelt [J]. Biogeochemistry,1998,43:1~15.
    [78].Muller C, Martin M, Stevens R J, et al. Processes leading to N2O emissions in grasslandsoil during freezing and thawing[J].Soil Biology and Biochemistry,2002,34:1325~1331.
    [79].Schimel J P, Clein J S. Microbial response to freeze-thaw cycles in turndra and taiga soils
    [J]. Soil Biology and Biochemistry,1996,28:1061~1066.
    [80].Grogan P, Jonasson S. Controls on annual nitrogen cycling in the understorey of asub-arctic birch forest [J]. Ecology,2003,84:202~218.
    [81].Teepe R,Brumme R,Beese F. Nitrous oxide emissions from frozen soils under agricultural,allowand forest land [J]. Soil Biologyand Biochemistry,2000,32(11-12):1807-1810;
    [82].Herrmann A, Witter E. Sources of C and N contributing to the flush in mineralization uponfreeze-thaw cycles in soils[J]. Soil Biology and Biochemistry,2002,34:10,1495-1505.
    [83].宋长春,王毅勇,阎百兴等.沼泽湿地垦殖前后土壤水热条件变化与碳氮动态[J].环境科学,2004,25(3):168~172.
    [84].Lipson D A, Schmidt, S K, Monson R K. Links between microbial population dynamicsand nitrogen availability in an alpine ecosystem[J]. Ecology,1999,80:1623~1631.
    [85].Grogan P, Jonasson S. Controls on annual nitrogen cycling the under storey of a sub2arcticbirch forest [J]. Ecology,2003,84:202~218.
    [86].Grogan P, Michelsen A, Ambus P, et al. Freeze-thaw regime effects on carbon andnitrogen dynamics in sub-arctic heath tundra mesocosms[J]. Soil Biology and Biochemistry,2004,36:641~654.
    [87].曹美秋,庄亚辉.生物质燃烧释放N2O的测定及其分布[J].环境化学,1994,13(5):395~400.
    [88].PartonW J,MosierA R,Ojima D S. Generalized model for N2and N2O p roduction fromnitrification and denitrification [J]. Global Biologeochemistry Cycles,1996,10:401-412.
    [89].DELUCA T H, KEENEY D R, MCCARTY G W. Effect of Freeze-Thaw Events onMineralization of Soil Nitrogen[J]. Biology and Fertility of Soils,1992,14(2):116-120.
    [90].HERRMANN A, WITTER E. Sources of C and N Contributing to the Flush inMineralization Upon Freeze-Thaw Cycles in Soils[J]. Soi Biology Biochemistry,2002,34(10):1495-1505.
    [91].FREPPAZM, WILLIAMS B L, EDWARDS A C,et al. Simulating Soil Freeze/Thaw CyclesTypical of WinterAlpine Conditions:Implications for N and P Availability[J]. Applied SoilEcology,2006,35(1):247-255.
    [92].陆梅,田昆,张仕艳等.不同干扰程度下高原湿地纳帕海土壤酶活性与微生物特征研究[J].生态环境学报,2010,19(12):2783~2788;
    [93].许光辉,郑洪元.土壤微生物分析方法手册[M].北京:农业出版社,1986.249~251;
    [94].戴伟,陈晓东.北京低山地区土壤酶活性与土壤理化性质的关系[J].河北林学院学报,1995.10(1):13~17;
    [95].周礼恺.土壤酶学[M].北京:科学出版社,1987.266~270;
    [96].何念祖.浙江省集中水稻土的酶活性及其与土壤肥力的关系[J].浙江农业大学学报.1986,12(1):43~47;
    [97].周广胜,王玉辉,许振柱等.中国东北样带碳循环研究进展[J].自然科学进展,2003,13(9):917~922;
    [98].周广胜,王玉辉,蒋延玲.全球变化与中国东北样带(NECT)[J].地学前缘,2002,9(1):198~216;
    [99].IGBP Secret ariat. IGBP transects [J]. Global Change Newsletter,1993,16:4;
    [100].王淑平,周广胜,高素华等.中国东北样带土壤活性有机碳的分布及其对气候变化的响应[J].植物生态学报,2003,27(6):780~785;
    [101].丁德文等.冻土改造和利用的研究现状及展望[A].第四届全国冻土学术会议论文集(冻土学).北京:科学出版社,1990;
    [102]. Gavrilova M. K. Climate and permafrost[J]. Permafrost and Periglacial Process,1993,4(2):99~112;
    [103].李述训,南卓铜,赵林.冻融作用对系统与环境间能量交换的影响[J].冰川冻土,2002,24(2):109~115;
    [104].郭东信.中国冻土[M].兰州:甘肃教育出版社,1990;
    [105].王家澄.中国冻土分布及其地带性规律的初步探讨[A].第二届全国冻土学术会议论文选集[C].兰州:甘肃人民出版社,1983.1~12;
    [106].地球科学数据共享平台,http://www.geodata.cn/Portal/?isCookieChecked=true
    [107].汤洁,卞建民,李昭阳等.基于数字技术的吉林西部水土环境综合研究[M].北京:科学技术出版社,2010;
    [108].韩维峥.吉林西部退化草地修复与碳固存的耦合分析[D].长春,吉林大学,2011.
    [109].吉林统计年鉴编辑部.2011吉林统计年鉴[M].北京:中国统计出版社.2009.
    [110].张殿发,郑琦宏,董志颖.冻融条件下土壤中水盐运移机理探讨[J].水土保持通报,2005,25(6):14~18;
    [111].杨金凤,郑秀清,邢述彦.地表覆盖条件下冻融土壤水热动态变化规律研究[J].太原理工大学学报,2008,39(3):303~306;
    [112]. Dianfa Zhang, Wang Shijie. Mechanism of freeze-thaw action in the process of soilsalinization in northeast China[J]. Environmental Geology.2001,41(1~2):96~100;
    [113].王遵亲,祝寿全,俞仁培等.中国盐渍土[M].北京:科学出版社,1993.
    [114].方汝林.土壤冻结、消融期水盐冻土初步研究[J].土壤学报,1982,19(2):164~172;
    [115].郑冬梅,许林书,罗金明等.松嫩平原盐沼湿地冻融水盐动态研究[J].湿地科学,2005,3(1):48~53;
    [116].郭占荣,荆恩春,聂振龙等.冻结期和冻融期土壤水分运移特征分析[J].水科学进展,2002,13(3):298~302;
    [117]. Christensen, S.&Tiedje, J.M. Brief and vigorous N2O production by soil at springthaw[J]. Journal of Soil Science,1990,41:1~4;
    [118]. Dorsch, P., Palojarvi, A.&Mommertz, S. Overwinter greenhouse gas fluxes in twocontrasting agricultural habitats[J]. Nutrient Cycling in Agroecosystems.2004,70:117~133;
    [119]. Flessa, H., Dorsch, P.&Beese, F. Seasonal variation of N2O and CH4fluxes indifferently managed arable soils in southern Germany[J]. Journal of Geophysical Research,1995,100:23115~23124;
    [120]. Muller, C., Martin, M., Stevens, R. J., et al. Processes leading to N2O emission ingrassland soil during freezing and thawing[J]. Soil Biology&Biochemistry,2002,34:1325~1331;
    [121]. Nyborg, M., Laidlaw, J.W., Solberg, E.D., et al. Denitrification and nitrous oxideemissions from a black chernozemic soil during spring thaw in Alberta[J]. Canadian Journalof Soil Science,1997,77:153~160;
    [122]. Regina, K., Syvasalo, E., Hannukkala, A., et al. Fluxes of N2O from farmed peat soilsin Finland[J]. European Journal of Soil Science.2004,55:591~600;
    [123]. Syvasalo, E., Regina, K., Pihlatie, M., et al. Emissions of nitrous oxide from borealagricultural clay and loamy sand soils[J]. Nutrient Cycling in Agroecosystems.2004,69:155~165;
    [124]. Koponen, H.T., Martikainen, P.J. Soil water content and freezing temperature affectfreeze-thaw related N2O production in organic soil[J]. Nutrient Cycling in Agroecosystems.2004,69:213~219;
    [125]. Kurganova, I.N., Tipe, P. The effects of freezing-thawing processes on soil respirationactivity[J]. Eurasian Soil Science.2003,36:976~985;
    [126]. Ludwig, B., Wolf, I., Teepe, R. Contribution of nitrification and denitrification toemission of N2O in a freeze-thaw event in an agricultural soil[J]. Journal of Plant Nutritionand Soil Science.2004,167:678~684;
    [127]. Muller, C., Kammann, C., Ottow, J.C.G., et al. Nitrous oxide emission from frozengrassland soil and during thawing periods[J]. Journal of Plant Nutrition and Soil Science.2003,166:46~53;
    [128]. Prieme, A., Christensen. S. Natural perturbations, drying-wetting and freezing-thawingcycles, and the emission of nitrous oxide, carbon dioxide and methane from farmed organicsoils[J]. Soil Biology&Biochemistry.2001,33:2083~2091;
    [129]. Feng, X., Nielsen, L.L., Simpson, J. Response of soil organic matter andmicroorganisms to freeze-thaw cycles[J]. Soil Biology&Biochemistry.2007,39:2027~2037;
    [130]. Herrmann, A., Witter, E. Sources of C and N contributing to the flush in mineralizationupon freeze-thaw cycles in soils[J]. Soil Biology&Biochemistry.2002,34:1495~1505;
    [131]. Kurganova, I.N., Teepe, R., Lopes de Gerenyu, et al. The dynamics of N2O emissionsfrom arable and forest soils under alternating freeze-thaw conditions[J]. Eurasian SoilScience,2004,37:1219~1228;
    [132]. Neilsen, C.B., Groffman, P.M., Hamburg S.P., et al. Freezing effects on carbon andnitrogen cycling in northern hardwood forest soils[J]. Soil Science Society of AmericaJournal.2001,65:1723~1730;
    [133]. Brooks, P.D., Williams, M. W., Schmidt, S.K. Inorganic nitrogen and microbialbiomass dynamics before and during spring snowmelt[J]. Biogeochemistry,1998,43:1~15;
    [134]. Grogan, P., Michelsen, A., Ambus, P., et al. Freeze-thaw regime effects on carbon andnitrogen dynamics in sub-arctic heath tundra mesocosms[J]. Soil Biology&Biochemistry,2004,36:641~654;
    [135]. Boutin, R., Robitaille, G. Increased soil nitrate losses under mature suger maple treesaffected by experimentally induced deep frost[J]. Banadian Journal of Forest Research,1995,25:588~602;
    [136]. Callesen. I., Borken. W., Kalbitz, K., et al. Long-term development of nitrogen fluxesin a coniferous ecosystem: does soil frost trigger nitrate leaching? Journal of Plant Nutritionand Soil Science,2007,170:189~196;
    [137]. Goodroad, L.L., Keeney, D. R. Nitrous oxide emission from soils during thawing[J].Canadian Journal of Soil Science.1984,64:187~194;
    [138]. Fitzhugh, R.D., Driscoll, C.T., Groffman, P.M., et al. Effects of soil freezingdisturbance on soil solution nitrogen, phosphorus, and carbon chemistry in a northernhardwood ecosystem[J]. Biogeochemisty,2001,56:215~238;
    [139]. Fitzhugh, R.D., Driscoll, C.T., Groffman, P.M., et al. Soil freezing and the acid-basechemistry of soil solutions in a northern hardwood forest[J]. Soil Science Society ofAmercia Jouranl.2003,67:1897~1908;
    [140]. Mitchell, M.J., Driscoll, C.T., Kahl, J.S., et al. Climatic control of nitrate loss fromforested watersheds in the northeast United States[J]. Environmental Science&Technology.1996,30:2609~2612;
    [141]. Papen, H., Butterbach-Bahl, K. A3-year continuous record of nitrogen trace gas fluxesfrom untreated and limed soil of a N-saturated spruce and beech forest ecosystem inGermany, Ⅰ. N2O emission[J]. Journal of Geophysical Research.1999,104:18487~18503;
    [142]. Goldberg, S., Muhr, J., Borken, W., et al. Fluxes of climate-relevant trace gasesbetween a Norway spruce, forest soil and the atmosphere during freezing-thawing cycles inmesocosms [J]. Journal of Plant Nutrition and Soil Science,2008;
    [143]. Hentschel, K., Borken, W., Matzner, E. Leaching losses of nitrogen and dissolvedorganic matter following repeated frost-thaw events in a forest soil[J]. Journal of PlantNutrition and Soil Science.2008.
    [144]. McLaren AD. Soil as a system of humus and clay immobilized enzymes[J]. ChemScripta.1975,8:97~99.
    [145].郭基联,张恒喜,刘晓东.飞机机体研制费用的偏最小二乘回归分析[J],数量经济技术经济研究.2001(4):121~124.
    [146].郭进,刘洪霖,黄铁生等.计算机辅助材料设计的偏最小二成法——人工神经网络研究[J],计算机与应用化学,1996.13(4):253~256.
    [147].王帅,范春彦,辛永平.基于偏最小二乘回归的研制费用估算模型[J].陕西师范大学学报(自然科学版),2007.35:29~32.
    [148].蒋红卫,夏结来.偏最小二乘回归及其应用[J].第四军医大学学报,2003.24(3):280~283.
    [149].许凤华,李述山.基于改进的偏最小二乘回归的酸雨pH值预测[J].山东科技大学学报(自然科学版).2006,25(3):110~112.
    [150].李洪,代进,蒋金泉.偏最小二乘回归的神经网络模型在巷道围岩位移预测中的应用[J],煤炭学报,2004,29(3):274~278.
    [151].陈南祥,黄强,曹连海.基于偏最小二乘回归与神经网络耦合的岩液泉预报模型[J],水利学报,2004(9):68~72.
    [152]. DELUCA T H, KEENEY D R, MCCARTY G W. Effect of Freeze-Thaw Events onMineralization of Soil Nitrogen[J]. Biology and Fertility of Soils,1992,14(2):116~120.
    [153]. Burns R.G. Microbes in their natural environment[M]. Cambridge University Press,London,1983:249~298.
    [154]. Sinsabaugh RL, Antibus RK, Linkins AE. An enzymic approach to the analysis ofmicrobial cellulose complex[J]. Agri Ecosyst Environ,1991,34:43~54.
    [155]. Dick RP, Sandor JA,|Eash NS. Soil enzyme activities after1500years of terraceagriculture in the Colca Valley, Peru[J]. Agric Ecosyst Environ,1994,50:123~131.
    [156]. Tabatabai MA. Methods of soil analysis, part2. Microbiological and biochemicalproperties[M]. SSSA book series No.5. Soil Science Society Amercia, Madison, WI.1994:775~833.
    [157].雷能忠,黄大鹏,王心源等.基于ArcGIS的土壤有机碳密度及储量计算[J].合肥工业大学学报(自然科学版),2008,31(11):1740~1743.
    [158]. Guohan Song, Lianqing Li, Genxing Pan, et al. Topsoil organic carbon storage ofChina and its loss by cultivation[J]. Biogeochemistry,2005,74:47~62.
    [159].徐小明.吉林西部水田土壤碳库时空模拟及水稻生产的碳足迹研究[D].长春:吉林大学博士论文,2011.
    [160].张国明.农田土壤温室气体排放通量与区域模拟研究[J].太原:山西农业大学硕士毕业论文,2003;
    [161].黄国宏,陈冠雄,吴洁.东北典型农田N2O和CH4的排放[J].应用生态学报,1995,6(4):383~386;
    [162]. Hansen S., Enhlum J., Bakken IR. N2O and CH4fluxes in soil influenced byfertilization and tractor traffic[J]. Soil Biology Biochemistry,1993,25:621~630;
    [163]. NIELSEN C B, GROFEMAN P M, HAMBURG S P, et al. Freezing Effects on Carbonand Nitrogen Cycling in Northern Hardwood Forest Soils[J]. Soil Science Society ofAmercia Journal,2001,65(6):1723~1730;
    [164]. MULLER C, MARTN M, STEVENS R J, et al. Processes Leading to N2O Emissionsin Grassland Soil During Freezing and Thawing[J]. Soil Biology&Biochemistry,2002,34(9):1325~1331;

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700