用户名: 密码: 验证码:
大同矿区冲击地压防治机理及技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
冲击地压是煤矿中的动压现象,主要表现为大量煤岩突然抛向巷道,瞬间摧毁几十米甚至上百米的巷道或采煤工作面,造成支架折损,顶板下沉,底板臌起等,是由聚积在矿井巷道和采场周围煤岩体中的弹性能突然释放引起的。由于其形成机理复杂,影响因素众多,显现形式多样,造成后果严重,长期以来一直受到国内外岩石力学理论与工程领域学者的广泛重视,也是煤矿井工开采领域研究的热点、难点问题之一。大同矿区是我国主要产煤区之一,受地质条件、围岩性质、采掘顺序、支护方式等因素的影响,大同矿区工作面和巷道存在着不同程度的冲击地压现象,成为制约大同矿区安全、高效生产的瓶颈。为此,以大同矿区冲击地压为工程背景,开展冲击地压发生机理及防治技术的研究,对于解决大同矿区所面临的冲击地压问题、提高对冲击地压发生机理的认识以及发展冲击地压防治理论和技术等均具有非常重大的意义。
     本文在总结已有研究成果的基础上,结合大同矿区的开采条件及冲击地压发生的实际情况,就大同矿区冲击地压机理和防治问题,综合运用实例分析、现场实测、室内实验、理论分析、数值模拟与现场试验等方法,从大同矿区冲击地压发生的原因与特点、发生的机理、监测预报方法和防治措施等几方面作了探索性研究。主要研究内容和成果如下:
     1、详细研究了大同矿区四个矿井的井田地质条件、开采方法、支护方式及冲击地压发生状况,分析了冲击地压发生的原因,总结了大同矿区冲击地压的基本特点。
     2、应用室内实验方法得到了大同矿区煤岩层的基本物理力学参数,根据煤样的全程应力应变曲线和煤样的破裂断口分析了煤样的破裂过程和破裂方式;现场实测了大同矿区的原岩应力,获得了大同矿区原岩应力的分布规律,应用理论研究的方法得到了煤层中的应力分布规律。
     3、根据煤岩裂隙发生扩展规律,提出了煤层冲击“椭柱体”震源机理模型,并应用此模型分析了煤层粉碎性冲击的发生过程;根据粘滑理论和煤层赋存结构,建立了煤层整体冲击的力学模型,根据此力学模型建立了煤层整体冲击的动力学方程并进行了求解,获得了煤层整体冲击的位移、速度和加速度的解析解;根据底板结构和受力特点建立了底板冲击的梁式破断模型和挠曲失稳模型,通过对模型的求解得到了底板冲击的条件。研究所得煤层及底板冲击的机理为冲击地压的防治提供了理论基础。
     4、根据现场冲击地压发生经验,提出了预测冲击危险性的新指标——“采空比”,采空比定义为一个采区的采空面积占采区总面积的百分比。利用大同冲击地压统计结果对此指标的可行性进行了验证并对此指标的内在机制进行了理论上的分析。利用“采空比”指标预测方法结合传统监测预报方法提出了适用大同矿区的冲击地压监测预报方案,并设计了预测软件进行监测数据的辅助处理。运用研究成果对试验工作面的冲击地压进行了成功预测。
     5、运用数值模拟和理论分析的方法深入系统地研究了卸压钻孔参数(孔位、孔径、及孔的组合方式等)与卸压效应的关系,在此基础上给出了钻孔卸压基本参数的确定方法,通过钻孔卸压现场应用证明了研究成果的可行性,为大同矿区冲击地压的有效控制提供了理论与技术支撑。
     6、研究了大同矿区冲击地压的区域防治措施,主要包括根据冲击地压发生机理提出了大同矿区有冲击倾向性煤层的若干开采设计原则,运用理论分析和数值模拟的方法研究了留设小煤柱防治冲击地压的可行性,运用数值模拟的方法研究了整体锚固支护方式,结果证明这种支护方式具有很好的防冲性能。对提出的区域防治措施进行了实际应用,取得了良好的效果。
Rockburst is dynamic phenomenon of coal mine, caused by sudden release of the accumulated elastic energy in the surrounding coal and rock of tunnel and workface.Due to complicated formation mechanism, multiple influencing factors, diverse forms and serious consequence, rock burst has received considerable concern from scholars in rock mechanics theory and engineering field both at home and abroad. It is also a hotspot and difficult point in underground mining. Affected by factors such as geological conditions, property of surrounding rocks, mining order and support method, there is rock burst phenomenon at face and roadway of Datong Mining Area to different degrees, which is a bottleneck bothering safe and efficient production in the mining area. Therefore, research on occurrence mechanism and countermeasures of rock burst against engineering background of rock burst in this area, is of great significance to solution of the problem confronted by Datong Mining Area, strengthening knowledge to its occurrence mechanism and development of prevention and control theory and technology.
     Based on summary of existent research results, according to actual situation in Datong Mining Area, this article carried out exploratory research to cause and characteristics, occurrence mechanism, monitoring and forecast methods, control measures of rock burst in the area, by comprehensively applying approaches like case study, field measurement, laboratory experiment, theoretical analysis, numerical simulation and field test, concerning mechanism and control of rock burst. The main research contents and results are illustrated as below:
     1. Studied geological conditions, mining method, support method as well as occurrence of rock burst in four mines of Datong Mining Area in detail, analyzed the cause and summarized basic characteristics of rock burst in this area.
     2. Obtained basic physical and mechanical property of coal seam in Datong Mining Area with laboratory experiment, and analyzed rupture process and pattern of coal sample, according to its complete stress-strain curve and rupture fracture; field measurement was given to rock stress to obtain its distribution law in this area. Stress distribution in coal seam was obtained with method of theoretical research.
     3. Built a source mechanism model of coal seam impact "cylinder" according to occurrence and propagation law of coal fracture, and with this model, analyzed occurrence process of friable impact in coal seam; built a mechanical model of overall impact based on stick-slip theory and occurrence structure of coal seam, besides, according to this model, established kinetic equation of the overall impact and carry out solving, received analytical solution of displacement, velocity and acceleration of overall impact. According to bottom board structure and stress characteristics, built fractographic pattern and damage-instability model of bottom board impact, and received conditions of bottom board impact through solving the models. Research on mechanism of coal seam and bottom board impact provided theoretical basis for control of rock burst.
     4. Proposed a new index forecasting rock burst hazard, "gob ratio", according to occurrence history of rock burst in the field. The "gob ratio" is defined as percentage of gob in total mining area. Statistical result of rock burst in Datong Mining Area was applied to verify feasibility of this index and analyze its internal mechanism in theory. Rock burst monitoring and forecast procedure suitable for Datong Mining Area was proposed by combining "gob ratio" index with traditional monitoring and forecast method, and forecast software was designed to carry out auxiliary process to monitoring data. The research result was successfully applied to predict rock burst at test face.
     5. The relation between pressure relief and drilling parameters (hole position, hole diameter aperture, and combination mode of holes, etc.) and pressure-relief effect was studied in depth with methods of numerical simulation and theoretical analysis, and on this basis, proposed method of determining drilling and pressure relief basic parameters; research result was proved to be feasible by field application of drilling and pressure relief, which provided theoretical and technical support for effective control of rock burst in Datong Mining Area.
     6. Region control measures of rock burst in Datong Mining Area were studied:multiple exploitation and design principles of coal seams with burst tendency in this area were put forward according to occurrence mechanism of rock burst; feasibility of preventing rock burst by setting small pillar was studied with methods of theoretical analysis and numerical simulation; anti-scour support method with bolt-anchor cable-anchor net overall support mode was studied with numerical simulation. The comprehensive control measure was applied on the spot, and favorable effect was received.
引文
[1]钱鸣高,石平武.矿山压力与岩层控制[M].徐州:中国矿业大学出版社,2003.
    [2]赵本钧,滕学军.冲击地压及其防治[M].北京:煤炭工业出版社,1995.
    [3]佩图霍夫.煤矿冲击地压,王佑安译[M].北京:煤炭工业出版社,1980.
    [4]布霍依诺.矿山压力和冲击地压[M].李玉生译.北京:煤炭工业出版社,1985.
    [5]阿维尔申.冲击地压[M],朱敏,汪伯煌译.北京: 煤炭工业出版社,1980.
    [6]潘一山.冲击地压发生和破坏过程研究[D].北京:清华大学,1999.
    [7]窦林名,杨思先.煤矿开采冲击矿压灾害防治[M].徐州:中国矿业大学出版社2006.
    [8]Bieniawski A T, Denkhaus H G, vogler U W. Failure of Fracture Rock[J]. Int. J.Rock Mech.Min.Sci.1969,6:323-41.
    [9]Bieniawski Z T, Denkhaus H G, Vogler U W.Failure of Fracture Rock. Int. J. Rock Mech. Min. Sci.,1969,6:323341.
    [10]Bieniawski Z T.Mechanism of brittle fracture of rocks. Parts Ⅰ, Ⅱ and Ⅲ. Int. J. Rock Mech.Min.Sci.,1967,6:395430
    [11]王淑坤,张力斌,赵国栋.用点载荷方法测定煤的动态破坏时间[J].煤炭开采,1993(3):48-51.
    [12]王元汉,李卧东,李启.光等岩爆预测的模糊数学综合评判方法[J].岩石力学与工程学报,1998(5):493-501.
    [13]金立平,鲜学福.煤层冲击倾向性研究及模糊综合评判[J].重庆大学学报,1993(6):114-119.
    [14]工淑坤,齐庆新,曾永志.我国煤岩冲击倾向研究的进展[J].煤矿开采,1998(3):30-32.
    [15]Cook N G W. A note on rock bursts considered as a problem of stability. J.South Afr. Int. Min. and Metallurgy,1965,65:437-446
    [16]Wawersik W K, Fairhurst C A. A study of brittle rock fracture in laboratory compression experiments. Int. J. Rock Mech. Min. Sci.&Geomech. Abstr.,1970,7: 561-575
    [17]Hudson J A, Croush S L, Fairhurst C. Soft, stiff and servo—controlled testing machines:a review with reference to rock failure. Eng. Geo.,1972, 6:155-189
    [18]Petukhov I M, Linkov A M. The theory of post-failure deformations and the problem of stability in rock mechanics. Int. J. Rock Mech. Min. Sci.& Geomech. Abstr,1979,16:5776
    [19]Petukhov I M, Linkov A M. The theory of rock burst and outbursts Nedra,Moscow,1983 (in Russian)
    [20]Petukhov I M, Linkov A M. Theoretical principles and fundamentals of rock burst prediction and control. Proc.5" Congress Int. Soc. Rock Mech. Melbourne. Rotterdam:A.A.Balkema,1983.2:D113-D120
    [21]Cook N G W, Hoek E, Pretorius J P G, etal. Rock Mechanics applied to thestudy of rock bursts. J. S. Afr. Inst. Min. Metall,1965,66:435-528
    [22]章梦涛.冲击地压失稳理论及数值计算[J].岩石力学与工程学报,1987(3):197-204.
    [23]章梦涛,徐曾和,潘一山.冲击地压和突出的统一失稳理论[J].煤炭学报,1991(4):48-53.
    [24]潘一山,章梦涛.冲击地压失稳理论的解析分析[J],岩石力学与工程学报,1996,15(增刊):504-510
    [25]尹光志,李贺,鲜学福等.煤岩体失稳的突变理论模型[J],重庆大学学报1994(1):23-28.
    [26]潘一山,章梦涛用突变理论分析冲击发生的物理过程[J],阜新矿业学院学报1992(1):12-18.
    [27]徐曾和,徐小荷,唐春安.坚硬顶板条件下煤柱岩爆的尖点突变理论分析[J].煤炭学报,1995(5):485-491.
    [28]潘岳,张勇等.非对称开采矿柱失稳的突变理论分析[J].岩石力学与工程学报,2006(增2):3694-3702
    [29]高明什,窦林名等.煤(矿)柱失稳冲击破坏的突变模型及其应用[J].中国矿业大学学报,2005(7):433-437.
    [30]张小涛,窦林名,李志华.煤岩体蠕变突变模型[J].中国煤炭,2005(1):37-40
    [31]Xie H and Pariseau W G. Fractal Character and Mechanism of Rock Burst. Int. J, Rock Mech. Min, Sci.&Geomech. Abstr,1993,30 (4):343-350
    [32]李廷芥,王耀辉,张梅英等.岩石裂纹的分形特性及岩爆机理研究[J].岩石力学与工程学报,2000(1):6-10.
    [33]李玉,黄梅等.冲击地压防治中的分数维[J].岩土力学,1994(4):3438.
    [34]李玉,黄梅等.冲击地压发生前微震活动时空变化的分形特征[J],北京科技大学学报,1995(1):10-13.
    [35]朱令人等.地震分形[M].北京:地震出版社,2000.
    [36]梅世蓉.地震前兆场物理模式与前兆时空分布机制研究[J].地震学报,1996,18(2):170-178.
    [37]Slawomir Jerzy Gibowicz,Andzeikijko,修济刚等译.矿山地震学引论[M].北京:地震出版社,1998.
    [38]张晓春,缪协兴等.冲击矿压的层裂板模型及实验研究[J].岩石力学与工程学报1999(5):497-502.
    [39]黄庆享,高召宁.巷道冲击地压的损伤断裂力学模型[J].煤炭学报,2001(2):156-159.
    [40]Brace W.F.,Byerlee J.D. Stick-slip as a mechanism for earthquakes [J]. Science, 1966,153(3739):990-992.
    [41]卢振业,加藤尚之等.横向断层对主断层粘滑扩展过程阻止和滞后作用的实验研究[J].地震学报,1990,12(4):1 5-426.
    [42]环文林,张晓东,宋昭仪.中国大陆内部走滑型发震构造粘滑运动的结构特征[J].地震学报,1997,19(3):225-234.
    [43]邓志辉,马胜利,马瑾等.粘滑失稳及其物理场时空分布的实验研究[J].地震地质,1997,17(4):306-310.
    [44]Galvanetto U, Bishop S R, Briseghella L. Mechanical stick-slip vibrations. Int. J. Bifurcation and chaos,1995,5(3):637-651
    [45]Rice J R, Ruina A L.Stability of steady frictional slipping. J. Appl. Mech., 1983,50:343-349.
    [46]Salamon M D G南非为减轻岩爆灾害的对策.见:国外岩爆研究译文选编.1988,内部资料,水利电力部科学技术司,25-40.
    [47]齐庆新,史元伟,刘天泉.冲击地压粘滑失稳机理的的实验研究[J].煤炭学报,1997,22(2):144-148.
    [48]齐庆新,刘人泉,史元伟.冲击地压的摩擦滑动失稳机理[J].矿山压力与顶板管理,1995(3,4):174-177.
    [49]章梦涛.矿震的粘滑失稳理论[D].阜新:阜新矿业学院,1993.
    [50]梁冰,章梦涛.矿震发生的粘滑失稳机理及其数值模拟[J].阜新矿业学院学报(自然种学版),1995,16(5):521-524.
    [51]黄滚,尹光志.冲击地压粘滑失稳的混沌特性[J].重庆大学学报,2009,32(6):633-637.
    [52]徐世杰.矿震诱发机制的探讨[J].地震,1 987(5):44-49.
    [53]唐春安.岩石破裂过程中的灾变[M].北京:科学出版社,1993
    [54]潘一山,徐秉业,王明洋.岩石塑性应变梯度与Ⅱ类岩石变形行为研究[J].岩土工程学报,1999,21(4):471-474.
    [55]Vardoulakis I, Aifantis E C. Gradient dependent dilatancy and its implications in shear banding and liquefaction. Ingenieur-Archiy,1989,59:197} 208
    [56]Zbib H M, Aifantis E C. On the gradient-dependent theory of plasticity and shear banding. Acta Mechanica,1992,92:209-225.
    [57]DeBorst R, Muhlhaus HB. Gradient-dependent plasticity:formulation and algorithmic aspects. International Journal for Numerical Methods Engineering in Engineering.35:521-539.
    [58]Muhlhaus H B, Aifantis E C. A Variational principle for gradient plasticity. Int. J. solids structures,1991,28:845-857.
    [59]Vardoulakis I, Aifantis E C. A gradient flow theory of plasticity for granular materials. Acta mechanica,1991,87:197-217.
    [60]Muhihaus H B,Vardoulakis I. The thickness of shear bands in granular materials.Geotechnique,1987,37:271-283.
    [61]Vardoulakis I. Shear-banding and liquefaction in granular material on the basis of a Cosserat continuum theory. Ingenieur,1989,59:106-113.
    [62]Vardoulakis I, Muhlhaus H B. Local rock surface instabilities. Int. J. Rock Mech. Min.Sci.&Geomech.Abstr.1991,28(5):379-383.
    [63]Aifantis E C.On the micro structure alorgin of certain elastic models.J.Eng.Mat.Techu.1984,106:326-330.
    [64]Aifantis E C.The physics of plastic deformation.Int.J. plasticity,1987,3:211-247.
    [65]Fleck N A, Muller G M, Ashby M Fetal. Strain gradient plasticity:theory and experiment. Acta metall. mater.,1994,42:475-487.
    [66]Fleck N A, Hutchinson J W. A Phenomenological Theory for Strain Gradient Effects in Plasticity. J. Mech. Solids,1994,41(12):1825-1857.
    [67]黄克智,姜汉卿.应变梯度理论与断裂[C].1998清华大学工程力学热物理学术会议论文集,北京:清华大学出版社,1998.
    [68]Valanis K C. A gradient theory of internal varibles. ActaMechanica 1996,116:114-124.
    [69]Zhu H T, Zbib H M, Aifantis E C. On the role of strain gradients in adiabatic shear banding. Acta Mechanica,1995,111:111-124
    [70]Zhu H T, Zbib H M, Aifantis E C. Strain gradients and continuum modeling of size effect in metal matrix composites. Acta Mechanica,1997,121:165-176
    [71]潘一山,杨小彬,马少鹏等.岩土材料变形局部化的实验研究[J].煤炭学报,2002(3):282-284.
    [72]潘一山,宋义敏,贾晓波.岩石单轴压缩作用下变形局部化的梯度塑性解[J].力学学报,2002(5):821-826.
    [73]谢文兵,郑白生.变形局部化对引发冲击矿压的分析[J].采矿与安全工程,2008(4):469-471.
    [74]张我华.煤/瓦斯突出过程中煤介质局部化破坏的损伤机理[J].岩土工程学报,1999(6):731-736.
    [75]唐春安,王述红,傅宇方.岩石破裂过程数值试验[M].北京:科学出版社,2003.
    [76]逢焕东,张兴民,姜福兴.岩石类材料声发射事件的波谱分析[J].煤炭学报,2004,29(5):540-544.
    [77]潘长良,祝方才,曹平等.单轴压力下岩爆倾向岩石的声发射特征[J].中南大学学报(自然科学版),2001,32(4):336-339.
    [78]CAI M, MORIOKA H, KAISER P K et al. Back-analysis of rock mass strength parameters using AE monitoring data[J]. InternationaJournal of Rock Mechanics and Mining Sciences,2007,44(4):538-549
    [79]朱波,蔡珣,王成国等.声发射特性与材料性研究[J].物理学报,2003,52(8):1960-1964.
    [80]苗金丽,何满潮,李德建等.花岗岩应变岩爆声发射特征及微观断裂机制[J].岩石力学与土程学报,2009(8):1594-1603.
    [81]Unander T E.The Effect of Attenuation on B-values in Acoustic Emission Measurements:-A Theoretical Investigation[J].Int. J. Rock Mech.Min.Sci. G EOMECH. Abstr.,1994,31(1):947-950
    [82]Katsuhiko Sugawara,etai[M]. Prediction of Coal Outburst:1251-1254
    [83]Tan Jiong Kie Rockburst. Case Records. Theory and Control[J]. In Proceeding of the international symposium on engineering in complex rock formation,1986:33-47
    [84]窦林名,何学秋,王恩元等.由煤岩变形冲击破坏所产生的电磁辐射[J].清华大学学报(自然科学版),2001,41(12):86-88.
    [85]毛桐恩,钱书清,刘小伟.震前电磁波观测与实验研究文集[M].北京:地震出版社,1989.
    [86]陈智勇,杜晓泉,陶如谦等.电磁辐射与地震[M].北京:地震出版社,1998
    [87]王恩元,何学秋,刘贞堂.煤岩变形及破裂电磁辐射信号的R/S统计规律[J].中国矿业大学学报,1998,27(4):349-351.
    [88]Frid V. Electromagnetic radiation method for rock and gas out-burst forecast. Journal of Applied Geophysics,1997,3B(2):97-104
    [89]Nitsan U.Electromagnetic emission accompanying fracture of quartz-bearing rocks. Geophysical R esearch Letters,1977,4 (8):333-336
    [90]钱书清,郝锦绮,邓明德等.混凝土样品受压破裂过程中的电磁信号[J].岩石力学与工程学报,2001,20(6):797-800.
    [91]徐为民,童芜生,昊培雅.岩石破裂过程中电磁辐射的实验研究[J].地球物理学报,1985,28(2):181-189.
    [92]何学秋,刘明举.含瓦斯煤岩电磁动力学[M].徐州:中国矿业大学出版社,1995.
    [93]Frid V. Rockburst hazard forecast by electromagnetic radiation excited by rock fracture. Rock Mechanics and Rock Engineering,1997,30(4):229-236
    [94]郭自强,周大庄,施行觉等.岩石破裂中的光声效应[J].地理物理学报,1988,31(1):37-41.
    [95]He X Q, Wang E Y, Liu G T. The general characteristics of e-lectromagnetic radiation during coal fracture and its application in outburst prediction. In:Jerry C Tien. Proceedings of 8th U S Mine Ventilation Symposium. Rolla,1999. Rolla: University of Missouri-Rolla Press,1999,81-84.
    [96]王恩元,何学秋,刘贞堂等.受载岩石电磁辐射特性及其应用研究[J].岩石力学与工程学报,2002,21(10):1473-1477.
    [97]Li S C, Jing G X, Qian X M. Pro- gress in Safety Science and Technology. Beijing,2000. Beijing:Chemical Industry Press.2000,223-228.
    [98]王恩元,何学秋.煤岩变形破裂电磁辐射的实验研究[J].地球物理学报,2000,3(1):131-137.
    [99]王恩元,何学秋,刘贞堂等.受载煤体电磁辐射的频谱特征[J].中国矿业大学学报,2003,32(5):487-490.
    [100]何学秋,王恩元,聂百胜等.煤岩流变电磁动力学[M].北京:科学出版社,2003.
    [101]白春华,何学秋,吴宗之等.21世纪安全科学与技术的发展趋势[M].北京:科学出版社,2000.
    [102]王恩元,何学秋,窦林名等.煤矿采掘过程中煤岩体电磁辐射特征及应用[J].地球物理学报,2005,48(1):216-221.
    [103]钱书清,任克新,吕智等.伴随岩石破裂的VLF, MF, HF和VHF电磁辐射特性的实验研究.地震学报,1996,18(3):346-351.
    [104]耿乃光,崔承禹,邓明德等.岩石破裂实验中的遥感观测与遥感岩石力学的开端[J].地震学报,1992(增刊):645-652.
    [105]郭自强,刘斌.岩石破裂电磁辐射的频率特性[J].地球物理学报,1995(38):221-226.
    [106]Liu Z T, He X Q, Wang E Y. Kaiser effect EME during deformation and fractrue of coal and rock.Journal of ChinaUniversity of Mining&Technology. 2000,10(2):135-138.
    [107]郭自强,尤峻汉,李高等.破裂岩石的电子发射与原子压缩模型[J].地球物理学报,1989(2):173-177.
    [108]朱元清,罗祥麟,郭自强等.岩石破裂时电磁辐射的机理研究[J].地球物理学报,1991,34(5):594-601.
    [109]潘立友,张立俊,刘先贵.冲击地压预测与防治实用技术[M].徐州:中国矿业大学出版社,2006.
    [110]Ortlepp W D Stacey T R. Rockburst Mechanisms in Tunnels and Shafts[J], Tunnelling and Underground Space Technology,1994,9(1):59-65.
    [111]K.Y哈雷门等.徐瑞龙译.煤矿突出的控制[J].煤炭科技,1990(4):11-16.
    [112]WawersikW and Fairhurst C. A study of brittle rock fracture laboratory compression experiments[J]. Int. J. Rock.Mech. Min. Sci.,1970(7):561-575.
    [113]陈炎光,陆士良.中国煤矿巷道围岩控制[M].徐州:中国矿业大学出版社,1994.
    [114]李先炜.岩块力学性质[M].北京:煤炭工业出版社,1983.
    [115]Tang,C.A.. Numerical simulation of rock failure and associated seismicity[J]. Int. J. Rock Mech.Sci.1997,34(20):249-262.
    [116]潘一山,杨小彬,马少鹏.岩土材料变形局部化的实验研究[J].煤炭学报,2002,27(3):281-284.
    [117]王文龙.钻眼爆破[M].北京:煤炭工业出版社,1984.
    [118]梁冰,张梦涛.采区冲击地压的数值预测矿山压力与顶班管理,1995(2):12-15.
    [119]窦林名.煤矿开采冲击矿压灾害防治[M].徐州:中国矿业大学,2005.
    [120]龙固煤矿西翼采区冲击矿压防治研究鉴定材料[M].徐州:中国矿业大学,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700