用户名: 密码: 验证码:
汽车线控转向系统双向控制及变传动比特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
汽车线控转向(Steer-by-Wire,简称SBW)系统的转向盘与转向车轮间没有机械连接,通过控制力感模拟电机和转向电机来实现转向盘力反馈和车辆转向,是一种具有力反馈的“遥操作”系统。线控转向以其模块化的结构和变传动比等优势为车辆性能的提升带来了广阔的空间。其模块间转角与转矩的准确、稳定耦合是其正常运行的基础,变传动比特性则直接影响车辆的操纵稳定性,它们均是线控转向系统控制方法的核心组成部分。
     本文结合国家自然科学基金项目“线控汽车底盘控制方法和关键技术研究”(编号:50775096)和国家自然科学基金青年基金项目“线控转向系统操纵杆及其双向控制方法研究”(编号:51105165),在调研国内外双向控制方法和线控转向系统变传动比特性的研究成果基础上,基于新型的SBW双向控制结构、车辆转向特性和转向盘力反馈特性,结合SBW车辆模型仿真和SBW实车实验,对SBW系统的双向控制方法和变传动比特性进行了深入的理论研究和实验验证。论文主要进行了以下几方面的工作:
     1. SBW系统验证平台开发
     建立了SBW车辆仿真验证平台和SBW实验验证平台。其中,仿真平台是基于Matlab/Simulink和CarSim软件搭建的。在一定的模型假设基础上,对CarSim转向系统进行接口处理,使之与SBW转向执行模块对接。该平台能够用于设计SBW的控制结构,分析角传动比和力传动比特性对SBW车辆操纵性能的影响。实验平台则是基于某品牌量产乘用车改装的,文中详细介绍了SBW系统的改装方案、硬件选型、电机驱动器和测控系统,分析了转向电机的选型依据及其外特性对于转向执行模块输出功率的影响。该实验车为验证SBW控制方法提供了最有力、可信的平台。另外,结合SBW系统模型,采用最小二乘法辨识了力感模拟和转向电机的电参数;采用闭环系统辨识方法辨识了转向盘模块和转向执行模块的机械参数。将辨识得到的参数用于SBW车辆仿真平台,不仅提高了模型仿真结果的可信度,也便于SBW双向控制方法的调试、分析与实车应用。
     2.新型SBW系统双向控制结构的研究
     在详细分析SBW系统对于转向盘和转向车轮间转角与转矩的耦合控制要求的基础上,创新性地提出了转矩驱动/位置反馈式双向控制结构。其摆脱了现有SBW控制结构中以转向盘为“主”,转向车轮为“从”的习惯性控制思想:转向盘模块采用位置闭环控制,作为“从”模块,驾驶员的力矩扰动可以通过传感器直接测量;转向执行模块采用转矩闭环控制,作为“主”模块。在简化控制结构的同时,还避免了对转向阻力矩进行测量或估计。文中对所提出的双向控制结构建立了必要的数学模型并对其“透明性”进行了分析,详细论述并通过SBW实验车验证了控制结构中转向盘模块位置控制器和转向执行模块转矩控制器的设计方法。其中,通过转角反馈、加速度前馈、摩擦补偿以及力矩扰动控制,大幅提高了转向盘模块的位置控制精度;通过转向执行模块的惯量补偿、阻尼补偿和摩擦补偿控制,实现了对SBW系统相应等效参数的调整。两模块中的摩擦补偿控制均考虑了动-静摩擦的过渡过程,改善了转向盘模块的位置控制精度和转向盘在开始转动或换向时驾驶员的摩擦感觉。针对SBW系统的双向遥操作性质,基于时域的无源稳定性理论,分析了机械转向系统和SBW系统的无源性,建立了系统无源观测器和控制器,实现了SBW双向控制结构的稳定性控制。另外,通过SBW实验车的场地实验,综合验证了双向控制结构及其稳定性控制的有效性。
     3.基于转向特性的角传动比特性研究
     在分析乘用车底盘性能的分类和角传动比对车辆操纵性能的影响后,从课题组已经完成的客观评价体系中,提取了静态角传动比特性主要影响的操纵性指标——稳态横摆角速度增益和转向灵敏度。结合国内外已有的研究成果和实验数据,总结了上述指标的合理变化范围,并论述了不同车速段和小齿轮转角变化时,角传动比应当具有的一般变化特征。据此,创新性地提出了具有变转向增益的SBW普通模式与运动模式下的角传动比特性设计方法。其中,高速段的角传动比以转向灵敏度为设计依据;中速段的角传动比综合考虑了一般驾驶工况的转向盘转角幅值和稳态横摆角速度增益;低速段角传动比大小的选择,则依靠驾驶员对SBW实验车进行主观评价的实验结果;车速恒定时,角传动比特性亦能“扩大”车辆运动响应的“线性区”范围。文中还对4种具有不同角传动比特性的SBW车辆模型进行了稳态回转、双移线和中心区的实验对比。实验结果表明:变转向增益的SBW普通模式角传动比特性具有中、低速转向灵活,高速转向灵敏度低,转向平稳的优点;运动模式角传动比特性则在此基础上加快了车辆中、高速时的响应速度,提高了避障行驶时的路径跟踪性能。
     4.基于转向盘力特性的力传动比特性研究
     根据乘用车转向盘力特性的分类,分析并提取了中心区转向盘力特性,保舵力特性和泊车工况转向盘力矩水平3方面的客观评价指标。明确了各评价指标所反映的转向盘力特性,以及转向盘力特性应当满足的一般要求。在分析了SBW系统转向阻力矩和路感强度与SBW力传动比的关系后,为了便于研究,文中结合所提出的双向控制结构,并参考动力转向系统,定义了SBW系统“当量助力”特性这一概念,并以对“当量助力”特性的研究来代替SBW力传动比特性的研究。在此基础上,详细分析了当量助力特性和摩擦补偿控制对转向盘力特性,特别是中心区力特性的影响。创新性地提出了变摩擦补偿控制方法和“助反力”式当量助力特性,用于改善SBW车辆线性区、中心区路感和中心区回正性能等。根据国内外相关研究成果和实验数据,总结了当量助力特性的设计依据,并提出了基于侧向加速度稳态增益的当量助力特性车速区间划分方法。针对对标车客观实验指标值以及参考文献中的理想转向盘力矩水平,结合前面所述的不同驾驶模式下的角传动比特性,以100km/h车速为例,论述了普通模式与运动模式下的当量助力特性的设计方法。与相应模式下的角传动比特性组合后,前者能够使SBW车辆模型具有与对标车相近的中心区转向盘力特性;后者能够获得更清晰的路感反馈强度,更高的转向力灵敏度和更小的车辆与转向系统滞后特性。
     本文的研究创新点主要体现在以下三个方面:
     1. SBW系统本质上是一种具有“力觉临场感”的双向遥操作控制系统,针对转向盘模块与转向执行模块间位置与转矩耦合控制时的透明性和稳定性问题,本文提出了全新的转矩驱动/位置反馈式双向控制结构和基于无源理论的稳定性控制方法。不仅简化了SBW控制结构,避免了转向盘力感模拟时对转向阻力矩进行的测量或观测,还实现了SBW系统模块间的稳定性控制。
     2.基于SBW静态角传动比对转向特性的影响分析,在国内外相关研究成果的基础上,提出了具有变转向增益的SBW普通模式与运动模式角传动比特性的设计方法。其中,高速段的角传动比以转向灵敏度为设计依据;中速段的角传动比综合考虑了一般驾驶工况的转向盘转角幅值和稳态横摆角速度增益;低速段角传动比大小的选择,则依靠驾驶员对SBW实验车进行主观评价的实验结果;车速恒定时,角传动比随小齿轮转角在一定范围内的增大而降低,“扩大”车辆运动响应的“线性区”范围。
     3.基于SBW力传动比对转向盘力特性的影响分析,定义了SBW系统的“当量助力”特性。为了改善路感清晰度,加强中心区路感强度和回正性能,提出了变摩擦补偿控制方法和“助反力”式当量助力特性。在国内外研究成果的基础上,总结了SBW当量助力特性的设计依据,提出了基于侧向加速度稳态增益的当量助力特性车速区间划分方法,有利于简化全车速下当量助力特性的标定工作。
Steering-By-Wire (SBW) system is a teleoperation system with force feedback, whichhas no mechanical linkage between the steering wheel and the front wheels. It is possible tocontrol the steering wheel actuator and the steering gear actuator getting an exact forcefeedback and steering independently. SBW system brings a broad space for the improvementof vehicle performance with the advantages of the modular structure and variable ratio. Theaccurate, stable coupling torque and position control between the blocks is the basis ofnormal operation and the variable ratio can directly affect the vehicle handing stability. Theyare the key technologies of the control method for SBW system.
     This dissertation is supported by the National Natural Science Foundation of Chinanamed “Research on Control Strategy and Key Technology for X-by-WireVehicle”(No.50775096) and the Young Foundation of the National Natural ScienceFoundation of China named “Research on Joystick and Bilateral Control Strategy forSteer-by-Wire Vehicle”(No.51105165). Based on the novel SBW bilateral control structure,the characteristics of vehicle steering and steering wheel force feedback, studying ondomestic and abroad research achievements, combined with simulation results andexperiment data of a SBW test vehicle, a bilateral control strategy and variable ratiocharacteristics of SBW system had been carried out in-depth research. The main researchwork is summarized as follows:
     1. Establishing simulation and experimental platforms for SBW system
     A simulation platform for SBW system was established with Matlab/Simulink andCarSim. Based on some assumptions in the model, the steering system interface of Carsimwas set to match up it with the SBW steering block. The platform could be used for the design of SBW control structure and analyzing the effects of variable ratio characteristics onthe stability of vehicle SBW system. Based on a mass production passenger car, thisdissertation introduced the refit program of SBW system, the hardware selection, the motors’driver and the measurement&control system in detail. And analyzed the basis of actuatorselection and its impact on steering execution block. The SBW test car provided the mostpowerful and trusted platform for verifying the SBW control strategies. The least squaremethod was adopted to identify the parameters of the two electric motors. At the same time,the closed-loop system identification method was adopted to identify the mechanicalparameters of the steering wheel block and the steering execution block. The parameters notonly helped to improve the reliability of simulation results, but also be convenient fordebugging, analysis and application of SBW bilateral control strategy.
     2. Research on a novel bilateral control structure of SBW system
     Based on the detailed analysis of the coupling control requirements of the force andposition between the steering wheel and front wheels, a new bilateral control structure wasput forward, in which the system was driven by steering motor torque and feedback bypinion angle. The steering wheel was controlled by position closed-loop. The torquedisturbance of driver could be measured by torsion bar sensor, and steering block wascontrolled by torque closed-loop. This idea simplified the control structure, meanwhileavoided the measurement or estimation of the steering resistance. This dissertationestablished a necessary bilateral control model and analyzed its transparency, and introducedthe position controller of the steering wheel block and the torque controller of the steeringexecution block of the SBW test vehicle. The precision of the position control of the steeringwheel block had been greatly improved by angle feedback, acceleration feedback, frictioncompensation and torque disturbance control. The equivalent parameters of the friction,damping and inertia of the SBW system could be adjusted by inertia compensation, dampingcompensation and friction compensation control. The friction compensation control in thetwo blocks considered the dynamic process of dynamic-static friction, which improved theprecision of the steering wheel position control. The dissertation analyzed the passivity ofmechanical steering system and SBW system combined the theory of passive stability, and established passive observer and controller according to the bilateral teleoperation properties.The effectiveness of the stability control of the bilateral control structure was verified usingthe SBW test vehicle.
     3. Research on variable angle ratio considering the steering characteristics
     After the analysis of classification of passenger car chassis performance and the effectson vehicle handling of the angle ratio, two objective evaluation indexes of the steady stateyaw rate gain and steering sensitivity were adopted. They are closely related to the staticangle ratio characteristics. Combined with the research results and test data both domesticand abroad, the reasonable range of the indexes was summarized and the general variationsof angle ratio versus speed or pinion angle were discussed. A new angle ratio design methodwith variable steering gain was put forward. The angle ratio at high speed was based on thesteering sensitivity. The ratio at medium speed considered the angle of the steer wheel andyaw rate gain in general condition. The ratio at low speed was based on the results ofsubjective evaluation of the drivers. When the speed was constant, the angle ratio can also“expand” the “linear zone” of vehicle response. Objective experiments were conducted tocompare the characteristics of the SBW vehicle model with different ratio. The experimentresults showed that the SBW vehicle in common mode can steer flexible at low and mediumspeed and steer steadily at high speed. Sport mode improved the path tracking response andthe performance of obstacle avoidance at medium and high speed.
     4. Research on torque ratio based on the steering wheel torque characteristics
     According to the classification of the steering wheel torque characteristics of passengercars, Objective evaluation indexes were picked to analyze the torque characteristics of thesteering wheel in3aspects including driving on-center, at different lateral acceleration andparking. After the analysis of the relationship between the resistance torque and road feelingintensity of SBW system and the torque ratio, combined with bilateral control structure andreferring to Electric Power Steering system, this paper defined the concept of “equivalentassist torque” instead of the torque ratio of SBW system. On this basis, the effect of thecharacteristics of the equivalent assist torque and friction compensation control on the torquecharacteristics, especially the on-center handling, was analyzed in detail. Variable friction compensation control and negative equivalent assist torque map were put forward to improvethe road feeling returnability. According to the academic achievements and experiment dataof domestic and abroad, a design method of equivalent assist torque was summarized, and amethod of speed interval division of the equivalent assist torque characteristics was putforward. According to the indexes’ values of a reference vehicle and the ideal steering wheeltorque, combined with the characteristics of angle ratio in different driving mode, the designmethod of equivalent assist torque characteristics in general mode and sport mode at thespeed of100km/h were discussed. Coordinated with the angle ratio in corresponding mode,the general mode had a similar steering wheel force characteristics with the reference vehicle,and the sport mode had a relatively clearer road feeling feedback, higher steering forcesensitivity and smaller steering lag.
     The innovative contributions of the dissertation are summarized as follows:
     1. SBW system is essentially a bilateral teleoperation control system with forcetelepresence. A novel torque driven/position feedback bilateral control structure and a newstability control method based on passivity theory were put forward to deal with theproblems of transparency and stability that came from the torque and position couplingcontrol between the steering wheel block and the steering execution block. This not onlysimplified the control structure of SBW system, avoided the observation or measurement ofthe steering resistance torque, also realized the stability control between the master and slaveblocks of SBW system.
     2. A unique design method of angle ratio with variable steering gain in general modeand sport mode was put forward based on the effects of the static angle ratio and the relatedresearch. The angle ratio of high speed was based on the steering sensitivity. The design ofangle ratio at medium speed considered the input amplitude of the steering wheel angle andthe steady yaw rate gain. The ratio at low speed came from the results of subjectiveevaluation experiments. When the speed was a constant, the ratio declined with a largerpinion angle, which could “expand” the “linearization zone” of vehicle motion response.
     3. Based on the analysis of the effects of the SBW torque ratio on the characteristics ofthe steering wheel torque, the dissertation defined the “equivalent assist torque” characteristics. In order to improve the definition of road feeling, enhance the indensity ofroad feeling and returnability on center, this dissertation put forward a variable frictioncompensation control method and negative equivalent assist torque characteristics.According to research results and test data domestic and abroad, this dissertationsummarized the design basis of the equivalent assist torque, and put forward a speed intervaldivision method of the equivalent assist torque map based on the static lateral accelerationgain, that simplified the calibration of equivalent power-assisted at the full range of speed.
引文
[1]陈家瑞.汽车构造[M].北京:机械工业出版社,2005.
    [2]余卓平,孟涛,陈慧,张立军.电动助力转向系统的技术发展趋势[J].汽车技术,2005,9:1-4.
    [3]宗长富,麦莉,郭学立.汽车前轮电子转向系统[J].中国机械工程,2004,15(11):1022-1026.
    [4]何仁,李强.汽车线控转向技术的现状与发展趋势[J].交通运输工程学报,2005,5(2):68-72.
    [5]于蕾艳,林逸,施国标.汽车线控转向技术概述[J].农业装备与车辆工程,2007,5:3-6.
    [6]贾和平.关于线控转向的关键技术探讨[J].汽车零部件,2008,8:31-32.
    [7]何磊.基于FlexRay总线的线控转向系统双电机控制方法研究[D].吉林大学博士学位论文,2011年6月.
    [8] Christopher D. Gadda, Shad M. Laws and J. Chritian Gerdes. Generating Diagnostic Residuals forSteer-by-Wire Vehicles[J]. IEEE Transactions on Control Systems Technology,2007,15(3):529-540.
    [9]田承伟.线控转向汽车容错控制方法研究[D].吉林大学博士学位论文,2010年12月.
    [10] S. Katsura, W. Iida, and K. Ohnishi. Medical mechatronics-an application to haptic forceps[R].Annual Reviews in Control,200529(2):237-245.
    [11] D. van Raaij. Application of bilateral control in Steer-by-Wire[D]. Master Thesis of EindhovenUniversity of Technology, January2008.
    [12] R. Goertz and R. Thompson. Electronically contrlled manipulator[J]. Nucleonics,1954,12(11):46-47.
    [13] http://mrl.buaa.edu.cn/introduce/guke.htm
    [14] Akhil J. Madhanir, Gunter Niemeyer and J. Kenneth Salisbury Jr. The Black Falcon: ATeleoperated Surgical Instrument for Minimally Invasive Surgery[C]. Proceedings of the1998IEEE/RSJ Intl. Conference on Intelligent Robots and Systems,1998:936-944.
    [15] Jacobson, S. C., Iversen, E. K., Davis, C. C., et.al. Design of a multiple degree-of-freedom,force-reflective hand master/slave with a high mobility wrist[C]. Proceedings of ANS/IEEE/SMC3rd Topical Meeting on Robotics and Remotr Systems,1989, March13-16.
    [16] Lumina R.. Using NASREM for real-time sensory interactive robot control[J]. Robotica,1994,12(2):127-135.
    [17] B. Brunner, G. Hirzinger, and etc. Multisensory Shared Autonomy and Tele-sensor-programming-Key Issues in the Space Robot Technology Experiment ROTEX[C]. Proceedings ofIEEWRSJ International Conference on Intelligent Robots and Systems.1993:2123~2129.
    [18]视频:再度进化机器人拥有触觉反馈[OL]. http://v.youku.com/v_show/id_XMzIwNDI5MjMy.html,2012.
    [19]丑武胜,孟偲,陈建新等.空间科学实验机器人辅助遥操作系统[J],中国空间科学技术,2003,6:7-13.
    [20] Song A. G., Zen Q. J., Huang W. Y., Operation modes and control schemes for telerobot with timedelay[C]. IEEE Inter. Conf. on Control and Automation,2002:1827-1831.
    [21]于振中.移动操作机器人及其共享控制的力反馈遥操作研究[D].哈尔滨工业大学博士学位论文,2010年11月.
    [22]景兴建,王越超,谈大龙.遥操作机器人系统时延控制方法综述[D].自动化学报,2004,30(2):214-223.
    [23]陈铁华.六自由度力反馈双向伺服控制策略研究[D].吉林大学博士学位论文,2010年6月.
    [24]高龙琴.力反馈数据手套与遥操作机器人系统研究[D].东南大学博士学位论文,2006年2月.
    [25]孙雷.机器人遥操作技术的研究[D].南开大学博士学位论文,2005年5月.
    [26]邓启文.空间机器人遥操作双边控制技术研究[D].国防科学技术大学博士学位论文,2006年10月.
    [27] D.Odenthal, T.Bünte, H.-D.Heitzer, and C.Eicker. How to make steer-by-wire feel like powersteering[C]. In Proc. of the15th IFAC World Congress. IFAC, July2002.
    [28] T.Bünte, D.Odenthal, B.A.Güven, and L.Güven. Robust vehicle steering control design basedon the disturbance observer[J]. Annual Reviews in Control,26(1):139-149,2002.
    [29] B.A.Güven and L.Güven. Robust steer-by-wire control based on the model regulator[C]. In Proc.of the2002IEEE Int. Conf. on Control Applications, pages435-440. IEEE, September2002.
    [30] N.Baj inca, R.Cortes o, and M.Hauschild. Robust control for steer-by-wire vehicles[J].Autonomous Robots,19(2):193-214, September2005.
    [31] N. Baj inca. Robust Control Methods with Applications to Steer-by-Wire Systems[D]. Ph. DThesis of Berlin University of Technology, January2006.
    [32] N.Baj inca, R.Cortes o, M.Hauschild, J.Bals, and G.Hirzinger. Haptic control for steer-by-wiresystems[C]. In Proc. of the2003IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, volume2,pages2004-2009. IEEE, October2003.
    [33] Jae-Sung Im, Fuminori Ozaki, Takayasu Matsushita, Nobutomo Matsunaga and Shigeyasu Kawaji.Experiment Study on Steer-by-Wire System with Bilateral Control[C]. Proceedings ofInternational Conference on Mechatronics,2007:1-6.
    [34] Nobutomo Matsunaga, Jaesung Im and Shigeyasu Kawaji. Control of Steering-by-Wire System ofElectric Vehicle using Bilateral Control Designed by Passivity Approach[J]. Journal of SystemDesign and Dynamics,2010,4(1):50-60.
    [35] Xiang Wang, Changfu Zong, Haitao Xing, Rufei Hu and Xujun Xie. Bilateral Control Method ofTorque Drive/Angle Feedback Used for Steer-by-Wire System[J]. SAE International Journal ofPassenger Cars-Electronic and Electrical Systems,2012,5(2):479-485.
    [36]胡茹飞.汽车线控转向系统双向控制方法研究[D].吉林大学硕士学位论文,2012年6月.
    [37] Liu Zhao, Peng WeiPing. A stability and tansparency analysis of steer-by-wire system based onthe bilateral control and dual-port network theory.2010International Conference on Electrical andControl Engineering, pages265-269. IEEE,2010.
    [38] Dale A. Lawrence. Stability and Transparency in Bilateral Teleoperation[J]. IEEE Transactions onRobotics and Automation,1993,9(5):624-637.
    [39] Yixin Yao. Vehicle Steer-by-Wire System Control[C]. SAE2006-01-1175.
    [40] Paul Yih. Steer-by-Wire: Implications for Vehicle Handling and Safety[D]. Ph. D Thesis ofStanford University, January2005.
    [41]田杰.汽车线控转向系统动力学分析与控制方法研究[D].江苏大学博士学位论文,2011年4月.
    [42] G.J.Raju, G.C.Verghese and T.B.Sheridan.Design issues in2-port network models of bilateralremote manipulation.In Proc.IEEE Int.Conf Rob.&Auto[C], pages1316-1321, Scottsdale, AZ,May1989.
    [43] Yasuyoshi Yokokohji and Tsuneo Yoshikawa. Bilateral Control of Master-Slave Manipulators forIdeal Kinest het ic Coupling[C]. Proceedings of the1992IEEE International Conference onRobotics and Automation,1992:849-858.
    [44]方涵先,陈启宏.遥操作系统的稳定性与透明性分析[J].数学的实践与认识,2006,36(2):164-172.
    [45]王望予.汽车设计[M].北京:机械工业出版社,2004.
    [46]蒋励,余卓平,高晓杰.宝马主动转向技术概述[J].汽车技术,2006,4:1-4.
    [47]余卓平,赵治国等.主动前轮转向对车辆操纵稳定性能的影响[J].中国机械工程,2005(4);
    [48]万钢,赵治国,余卓平等.融合主动转向功能的电动助力转向系统[P]. CN:200510030562.1.2005.10.14.
    [49]施国标,赵万忠,王成玲等.线控转向变传动比控制对车辆操纵稳定性的影响[J].北京理工大学学报,2008,28(3):207-210.
    [50]杨胜兵.线控转向系统控制策略研究[D].武汉理工大学博士学位论文,2008年5月.
    [51]郑宏宇.汽车线控转向路感模拟与主动转向控制策略研究[D].吉林大学博士学位论文,2009年10月.
    [52] Jae-Sung Im, Fuminori Ozaki, Nobutomo Matsunaga and Shigeyasu Kawaji. Bilateral Control forSteer-by-Wire Vehicles[C]. SICE-ICASE International Joint Conference,2006:528-533.
    [53] Shoji Asai, Hiroshi Kuroyanagi, Shinji Takeuchi, Toshihiro Takahashi and Shoji Ogawa.Development of a Steer-by-Wire System with Force Feedback Using a Disturbance Observer[C].SAE2004-01-1100.
    [54] Yasuyoshi Yokokohji, Tsuneo Yoshikawa. Bilateral Control of Master-Slave Manipulators forIdeal Kinesthetic Coupling-Formulation and Experiment[J]. IEEE Transactions on Robotics andAutomation,1994,10(5):605-620.
    [55] C. Jeffrey, R. Cutajar, A. Richardson, S.Prosser, M. Lickess and S. Riches. The Integration ofOn-Line Monitoring and Reconfiguration Functions into a Safety Critical Automotive ElectronicControl Unit[J]. Journal of Electronic Testing: Theory and Applications,2005,21:405-416.
    [56] Se-Wook Oh, Seok-Chan Yun, Ho-Chol Chae, Seok-Hwan Jang, Jae-Ho Jang and Chang-Soo Han.The Development of an Advanced Control Method for the Steer-by-Wire System to Improve theVehicle Maneuverability and Stability[C]. SAE2003-01-0578.
    [57] M. Kamel Salaani, Gary J. Heydinger and Paul A. Grygier. Experimental Steering Feel PerformanceMeasures[C]. SAE2004-01-1074.
    [58] Katsuhiro Sakai, Atsuhiko Yoneda, Yasuo Shimizu. Improvement in Control Performance ofDriver-Vehicle System with EPS using Cables to Connect the Steering Wheel and Gearbox.AVEC2002.
    [59]姚辉.基于线控转向的主动前轮转向技术研究[D].同济大学硕士学位论文,2007年3月.
    [60]中国长安汽车集团股份有限公司.长安汽车在线控转向技术领域取得新突破[EB/OL].
    [2012-02-24]. http://www.caam.org.cn/News/1/999.html,2012.
    [61] Xiang Wang, Changfu Zong, Haitao Xing et. al. Research and Application of a New BilateralControl Method for Steer-by-Wire System[C]. Proceedings of2012International Conference OnAdvanced Vehicle Technologies and Integration,2012, pp193-197
    [62]陈国迎.四轮独立线控电动汽车平台搭建与集成控制策略研究[D].吉林大学博士学位论文,2012年12月.
    [63] Samer S. Saab and Raed Abi Kaed-Bey. Parameter Identification of a DC Motor: An ExperimentalApproach[C]. The8th IEEE International Conference on Electronics, Circuits and Systems,2001,2:981-984.
    [64]孟涛.电动助力转向控制策略的研究[D].同济大学博士学位论文,2006年4月.
    [65] Seungkyu Oh, Hyoungsoo Kin and Jinhee Jang. Proposals for Improvement of AFS System UsingHIL&SIL Simulation[C]. ICROS-SICE International Joint Conference,2009:555-559.
    [66] R. Isemann. Fault-Diagnosis Systems[M]. Berlin, Springer,2006.
    [67] Akinobu Sugiyama, Masahiko Kurishige, Hanako Hamada and Takayuki Kifuku. An EPS ControlStrategy to Reduce Steering Vibration Associated with Disturbance from Road Wheels[C]. SAE2006-01-1178.
    [68]周金柱,段宝岩,黄进. LuGre摩擦模型对伺服系统的影响与补偿[J].控制理论与应用,2008,25(6):990-994.
    [69] R. Sebastian, T. Kaufmann, F. Bolourchi, and H. S. Tan. Design of an automated highway systemssteering actuator control system[C]. In Proceedings of the IEEE Conference on IntelligentTransportation Systems, pages254–259,1997.
    [70] Takayuki Kifuku and Shun’ichi Wada. An Electric Power-Steering System[R]. Mitsubishi ElectricADVANCE, March1997.
    [71]申荣卫,林逸,台晓红,施国标.电动助力转向系统建模与补偿控制策略[J].农业机械学报,2007:5-9.
    [72]贝尔恩德海森英,汉斯于尔根布兰德尔(编),石晓明,陈祯福(译).汽车行驶动力学性能的主观评价[M].北京:人民交通出版社,2010.
    [73]邢海涛.汽车线控转向系统补偿控制方法研究和验证[D].吉林大学硕士学位论文,2013年4月.
    [74] JASO C705-72.静态操舵力试验方法[S].(转载于:汽车技术手册——试验评价篇[M].长春汽车研究所,1999:153-154.)
    [75] R. J. Anderson and M. W. Spong. Asymptotic Stability for Force Reflecting Teleoperators withTime Delay[D]. Int. Journal of Robotics Research, vol.11, no.2, pp.135-149,1992.
    [76] G. Niemeyer and J. J. Slotine. Stable Adaptive Teleoperation[D]. IEEE Journal of OceanicEngineering, vol.16, pp.152-162,1991.
    [77] Hogan.N. Controlling Impedance at the Man/Machine[C]. Proceedings IEEE InternationalConference on Robotics and Automation, Scottsdale, AZ, Vol.10(1989), pp.1626-1631.
    [78] R. J. Adams and B. Hannaford. Stable Haptic Interaction with Virtual Environments[D]. IEEETrans. Robot. Automat.,vol.15, no.3, pp.465-474,1999.
    [79] Blake Hannaford and Jee-Hwan Ryu. Time Domain Passivity Control of Haptic Interfaces[J].IEEE Transactions on Robotics and Automation,2002,18(1):1-10.
    [80] Dongjun Lee and Perry Y. Li. Passive Bilateral Feedforward Control of Linear DynamicallySimilar Teleoperated Manipulators[J]. IEEE Transactions on Robotics and Automation,2003,19(3):443-456.
    [81] C. A. Desoer and M. Vidyasagar, Feedback Systems: Input-Output Properties, New York:Academic,1975.
    [82]那晓翔.乘用车操纵稳定性客观对标体系研究[D].吉林大学硕士学位论文,2009年5月.
    [83] M.米奇克(著);陈荫三(译).汽车动力学(A卷)[M].北京:人民交通出版社,1992:1-3.
    [84]阿达姆措莫托(著);黄锡朋,解春阳(译).汽车行驶性能[M].北京:科学普及出版社,1992:206.
    [85] Andrew Heathershaw. Optimizing Variable Ratio Steering for Improved On-Centre Sensitivityand Cornering Control. SAE Paper2000-01-0821,2000.
    [86]王长青.乘用车中心区操纵稳定性客观评价指标体系研究[D].吉林大学硕士学位论文,2012年6月.
    [87]余志生.汽车理论[M].北京:机械工业出版社,2000.
    [88] ISO4138:2004(E). Passenger Cars–Steady-state Circular Driving Behavior–Open-loopTest Methods [S]. Switzerland:ISO,2004.
    [89] GB6323.2—94.汽车操纵稳定性试验方法——转向瞬态响应试验(转向盘转角阶跃输入)[S].天津:全国汽车技术标准化委员会,1994.
    [90] Andrew Heathershaw. Developments in On-Centre Steering Evaluation and Testing[C]. SAE2006-01-0796.
    [91] Masato Abe, Yasuji Shibahata, Yasuo Shimizu. Analysis on Steering Gain and Vehicle HandlingPerformance with Variable Gear-ratio Steering System(VGS)[C]. FISITA paper F2000G349,2000.
    [92] A. Bertacchini, L. Tamagnini and P.Pavan. Force Feedback in Steer-by-Wire Systems:Architecture and Experimental Results[C]. IEEE ISIE,2006:3050-3055.
    [93] Millsap, S.A. Handling Enhancement Due to an Automotive Variable Ratio Electric PowerSteering System Using Model Reference Robust Tracking Control[C]. SAE Paper No.960931,1996.
    [94] Yasuo Shimizu, Toshitake Kawai and Junji Yuzuriha. Improvement in Driver-Vehicle SystemPerformance by Varying Steering Gain with Vehicle Speed and Steering Angle: VGS (VariableGear-Ratio Steering System)[C]. SAE Paper No.1999-01-0395.
    [95] Dipl.-Ing.(FH) Wolfgang Dick, Dipl.-Ing. Marnix Lannoije, Dr.-Ing. Jürgen Schuller, ipl.-Ing.Mirko Reuter. Dynamic Steering in the Audi Q5[J]. ATZextra worldwide, June2008, Volume13,Issue2, pp66-73.
    [96] Kenneth D. Norman. Objective Evaluation of On-Center Handling Performance. SAE840069.
    [97] ISO13674-1:2003(E).Road Vehicles–Test Method for the Quantification of On-center Handling–Part1: Weave Test[S]. Switzerland:ISO,2003.
    [98] Beckwith, T.G., and Buck, N. Lewis. Technical Measurements,2nd Edition, Reading,Massachusetts: Adison-Wesley,1973.
    [99]汪淼.如何正确使用方向盘[OL].[2012-03-15]. http://www.autohome.com.cn/use/201203/306279-2.html.
    [100] Gilles Reymond, Andras Kemeny, Jacques Droulez, Alain Berthoz. Role of Lateral Accelerationin Curve Driving: Driver Model and Experiments on a Real Vehicle and a Driving Simulator[J].Human Factors: The Journal of the Human Factors and Ergonomics Society, Fall2001vol.43no.3,pp483-495
    [101]《公路工程技术标准》JTG B01-2003.人民交通出版社.2004.
    [102] GB/T6323.5-94.汽车操纵稳定性试验方法——转向轻便性试验[S].天津:全国汽车技术标准化委员会,1994.
    [103] Taewook Hong and Kihong Park. A New Steering Wheel Returnability Control Strategy forOn-Center Handling Performance[C]. SAE2011-28-0079.
    [104] Man Hyung Lee, Seung Ki Ha, Ju Yong Choi et. al. Improvement of the Steering Feel of anElectric Power Steering System by Torque Map Modification[J]. Journal of Mechanical Seinceand Technology, Vol19, No.3, pp792-801,2005.
    [105] Gary P. Bertollini and Robert M. Hogan. Applying Driving Simulatior to Quantify Steering EffortPrefernce as a Function of Vehicle Speed [C]. SAE1999-01-0394.
    [106] Zong Changfu, Na Xiaoxiang, Hu Dan, Wang Deping, Yue Botao. Study on Steering EffortPreference of Drivers Based on Driving Simulator [C]. SAE2007-01-3575,2007.
    [107] Yu Wun Chai. A Study of Effect of Steering Gain and Steering Torque on Driver’s Feeling forSBW Vehicle[C]. FISITA World Automotive Congress,2004.
    [108] Thomas D. Gillespie(著),赵六奇,金达锋(译).车辆动力学基础[M].北京:清华大学出版社,2006.
    [109]施国标.电动助力转向助力特性仿真与控制策略研究[D].吉林大学博士学位论文,2002年12月.
    [110] Sumio Sugita, Masayoshi Tomizuka. Cancellation of Unnatural Reaction Torque inVariable-Gear-Ratio Steering System[J]. Journal of Dynamic Systems, Measurement and Control,Vol.134, Issue2,2012.
    [111]郭孔辉.汽车操纵动力学原理[M].南京:江苏科学技术出版社,2011.
    [112]宗长富,麦莉,王德平等.基于驾驶模拟器的驾驶员所偏好的转向盘力矩特性研究[J].中国机械工程, Vol.18, No.8,2007.
    [113] Toyota Motor Europe. The New RAV4[EB/OL].[2012-11-28]. http://media.toyota.eu/pressrelease/3056//new-rav4?searchresult.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700