用户名: 密码: 验证码:
车辆模拟器转向操纵系统若干关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
驾驶员与车辆形成的闭环控制系统,称为人-车闭环系统。目前对人-车闭环系统中转向操纵系统相关理论的研究以数值仿真为主,由于驾驶员的感觉、判断和动作还不能够完全用数学模型加以描述,采用驾驶员模型进行数值仿真对人的因素影响考虑得不够全面,研究效果有一定局限性,而直接使用实车试验存在着成本高、周期长、受场地天气限制、安全隐患、污染环境等缺点,在这种情况下通过车辆模拟器能方便地进行驾驶员在线试验,使其成为研究转向操纵系统相关理论的有效手段。结合本课题组承担的“车辆人机环”科研项目,在开发了具有高逼真度车辆模拟器的基础上,本文研究了与转向操纵系统密切相关的转向盘阻力矩模拟与变传动比控制方法等问题,并结合车辆模拟器进行了不同工况的试验研究,对试验结果进行了分析与评价。本文的研究亦可为实际转向操纵系统的设计提供一定指导意义。
     首先,阐述了具有6自由度运动平台半实物车辆模拟器的特性及关键技术,为后续仿真和试验提供了平台。分析了转向操纵系统的功能,设计了其组成结构与工作流程,在此基础上提出了关于转向操纵系统3个方面的研究内容,为后文研究作了铺垫。
     其次,建立了转向操纵系统的理论模型,根据其低频、堵转的工作特性作出了一定简化,用系统辨识试验得到了转向操纵系统的传递函数,并分析了其频率响应特性。采用该传递函数在Simulink中仿真输出扭矩与实际试验测试扭矩相比,两者非常接近,结果表明用该传递函数控制电机输出转向盘所需阻力矩是可行的,转向操纵系统达到了用于车辆模拟器试验的要求,为通过车辆模拟器试验提供了保证。
     然后,分析了转向盘阻力矩与车辆状态参数之间的关系,确定了转向盘阻力矩变化范围。给出了一种可用于车辆模拟器转向盘阻力矩模拟的控制方法,综合考虑了车辆行驶垂面状态、路面属性、车速、转向盘转角、侧向加速度等状态参数对转向盘阻力矩的影响,在Simulink中分别对状态参数控制器进行了仿真验证。将该控制方法应用于转向操纵系统结合车辆模拟器进行了试验,结果表明该方法模拟出的转向盘阻力矩能较好地反映出车辆状态的变化,使驾驶员对车辆状态的掌握更清晰全面。
     最后,基于转向操纵系统研究了一种变传动比控制方法。简要概述了变传动比系统的实现形式与其控制方式。进而提出了模糊控制的变传动比反馈方法,设计了变传动比模糊控制器与横摆角速度反馈系数模糊控制器,并分别进行了仿真,结果表明2种控制器的效果明显。将变传动比反馈方法应用于转向操纵系统,结合车辆模拟器进行了双移线试验、蛇形试验和转向瞬态响应试验,并比较了采用该方法与定传动比控制时的人—车综合性能指标,进一步讨论了用车辆稳定性与路径跟踪准确性2种不同方式确定权重时的试验结果。以上试验结果均表明,变传动比反馈方法能降低驾驶员操纵负担,同时优化车辆稳定性,显著改善了人—车综合性能指标,该方法是有效的,具有一定应用价值。
The system formed by driver and vehicle is a kind of closed loop control system, called human-vehicle closed loop system (HVCLS). At present, most theoretical research on steering operating system of HVCLS is done by numerical simulation, due to driver's feeling, judg-ment and action is difficult to describe completely by mathematical model, numerical simula-tion with driver model takes less consideration of human factors, so it is less effective and li-mited in some range. Directly using real vehicle experiment has some disadvantage on high cost, long cycle, limitation of ground and weather, safety problem, pollution of environment and so on. Therefore, driver's online experiment in vehicle simulator is an effective way to study steering opearting problems of HVCLS. Combined with research project of MME that our group undertake, on the basis of developing a high fidelity vehicle simulator, key points of this paper are focus on steering wheel torque simulation and changeable steering ratio control method about steering operating system, experimental study is carried on vehicle simulator in different working condition, some analysis and evaluation is made with experiment result. Research result of this paper can provide certain guidance of real vehicle steering operating system design.
     Firstly, the features and key technologies of semi-physical vehicle simulator with6de-grees freedom of motion platform is described, which can provide a platform for further simu-lation and experiment. The function of steering operating system is analyzed, hardware struc-ture and processing procedure is designed. Based on above content, three research aspects of steering operating system are proposed.
     Secondly, the theoretical model of steering operating system is established, some simpli-fication are made according to its working condition of low frequency and locked rotor, sys-tem identification test is set to get the transfer function of steering operating system, frequency response characteristic is analyzed. This transfer function is used in SIMULINK to get torque output, compared with actual test torque output, two outputs are very close, the result indicates that applying this transfer function to control motor to generate required torque is feasible, the designed steering operating system meets the requirement of vehicle simulator experiment.
     Then, the relation of steering wheel torque and vehicle state parameters is analyzed, the range of steering wheel torque is confirmed. A steering wheel torque simulation control me-thod for vehicle simulator is proposed. Vehicle vertical state, road contact property, speed, steering angle and lateral acceleration is all taken into consideration. Each state parameter controller is simulated in SIMULINK. This method is set to steering operating system and ve-hicle simulator experiment is made. The result indicates that torque generated by this method can well present vehicle state change and let driver know it more clearly and completely.
     At last, a changeable steering ratio control method based on steering operating system is studied. The realization form and control principle of changeable steering ratio system is simply introduced. A fuzzy control changeable steering ratio feedback method is described, fuzzy controller of changeable steering ratio and yaw rate feedback factor is designed, simula-tion result shows that effect of two controllers are obvious. This method is taken to steering operating system, double shift line, serpentine and steering transient response experiment is set in vehicle simulator. The human-vehicle comprehensive performance index (HVCPI) of this method and const steering ratio is compared. Further discussion of two different weight selec-tion including vehicle stability and trajectory tracking accuracy is made to evaluate experiment result. The above experiment result all indicates that this method can reduce the burden of driver and optimize vehicle stability at the same time, HVCPI is improved significantly, this method is feasible and worthy for application.
引文
[1]国家统计局.中华人民共和国2012年国民经济和社会发展统计公报[R].2012.
    [2]陈定方,尹念东,李勋祥.分布交互式汽车驾驶训练模拟系统[M].北京:科学出版社,2009.
    [3]尹念东.汽车驾驶模拟器研究现状与技术关键[J].湖北汽车工业学院学报.2002,16(4):7-10.
    [4]Baslamisli S C, Kose I E, Anlas G. Gain-scheduled integrated active steering and diffe-rential control for vehicle handling improvement[J]. Vehicle System Dynamics.2009,47(1): 99-119.
    [5]Ding N, Taheri S. An adaptive integrated algorithm for active front steering and direct yaw moment control based on direct Lyapunov method[J]. Vehicle System Dynamics.2010, 48(10):1193-1213.
    [6]Iida M, Nakashima H, Tomiyama H, et al. Small-radius turning performance of an arti-culated vehicle by direct yaw moment control[J]. Computers and Electronics in Agriculture. 2011,76(2):277-283.
    [7]Takahashi J, Yamakado M, Saito S, et al. A hybrid stability-control system:combining direct-yaw-moment control and G-Vectoring Control[J]. Vehicle System Dynamics.2012, 50(6SI):847-859.
    [8]李静,余春贤,朱冰,等.基于主动横摆力矩优化分配的车辆底盘集成控制[J].吉林大学学报(工学版).2011,41(S2):36-40.
    [9]赵又群,管欣,郭孔辉.开发型驾驶模拟器[J].公路交通科技.1995,12(03):64-66.[10]郭孔辉,丁海涛,宗长富,等.人—车闭环操纵性评价与优化的研究进展[J].机械工程学报.2003,39(10):27-35.
    [11]Hirata T, Yai T, Takagawa T. Development of the Driving Simulation System MOV-IC-T4 and Its Validation Using Field Driving Data[J]. Tsinghua Science and Technology. 2007,12(2):141-150.
    [12]陈定方,李勋祥,李文锋,等.基于分布式虚拟现实技术的汽车驾驶模拟器的研究[J].系统仿真学报.2005,17(2):347-350.
    [13]吴耀武,潘伍朝,王精业,等.MUL_QJM汽车驾驶模拟器系统[J].系统仿真学报.1995(增刊):19-24.
    [14]丁浩杰,徐福培,徐斌,等.主动式三维汽车驾驶训练模拟器的设计与实现[J].系统仿真学报.2000,12(3):287-290.
    [15]易涛.基于虚拟现实技术的高速公路交通流微观仿真研究[D].昆明理工大学,2003.
    [16]高晶.基于VISSIM的驾驶模拟系统交通流仿真研究[D].昆明理工大学,2007.
    [17]熊坚,曾纪国,丁立,等.面向道路交通的汽车驾驶模拟器的研究及应用[J].中国公路学报.2002,15(2):120-122.
    [18]高嵩.基于OGRE和ODE的驾驶模拟系统的设计与实现[D].武汉理工大学,2006.
    [19]Yang Y, Hu J, Chen D. Research on driving knowledge expert system of distributed ve-hicle driving simulator[Z].2007.
    [20]上海标普实验室设备有限公司.http://www.shlaboratory.com/tongfang/cp_view.asp?id=274[Z].2012.
    [21]Drosdol J, Kading W, F P. The Daimler-Benz Driving Simulator[J]. International Jour-nal of Vehicle Mechanics and Mobility.1985,1-3(14):86-90.
    [22]Drosdol J, F P. The Daimler-Benz Driving Simulator a Tool for Vehicle Development[J]. SAE Technical Paper 850334.1985.
    [23]http://www.emercedesbenz.com/tag/driving-simulator/[Z].
    [24]Fischer M, Sehammar H, Aust M L, et al. Advanced Driving Simulators as a tool in Early Development Phases of New Active Safety Functions [C]. Indianapolis, USA:2011.
    [25]National Advanced Driving Simulator Overview.2010.
    [26]Freeman J S, Watson G, Papelis Y E, et al. The IOWA Driving Simulator:An Inplement and Application Overview[J]. SAE Paper 950174.1995.
    [27]Heydinger G J, Salaani M K, Garrott W R, et al. Vehicle dynamics modelling for the National Advanced Driving Simulator[J]. Proceedings of the Institution of Mechanical Engi-neers, Part D:Journal of Automobile Engineering.2002,216(D4):307-318.
    [28]Colombet F, Dagdelen M, Reymond G, et al. Motion Cueing What is the Impact on the Driver's Behavior[C].2008.
    [29]Dagdelen M, Reymond G, Kemeny A, et al. Model-based predictive motion cueing strategy for vehicle driving simulators[J]. Control Engineering Practice.2009,17(9): 995-1003.
    [30]Shiiba T, Suda Y. Evaluation of driver's behavior with multibody-based driving simula-tor[J]. Multibody System Dynamics.2007,17(2-3):195-208.
    [31]汽车仿真与控制国家重点实验室.http://www.ascl.jlu.edu.cn/[Z].2012.
    [32]Konghui G, Hsin G, Changfu Z. Development and Applications of JUT-ADSL Driving Simulator[Z].1999.
    [33]詹军,管欣,杨得军,等.ADSL驾驶模拟器动力学模型的改进与验证[J].江苏大学学报(自然科学版).2010,31(3):283-287.
    [34]米克奇.汽车动力学C卷(第二版)[M].北京:人民交通出版社,1997.
    [35]郭孔辉.汽车操纵动力学[M].长春:吉林科学技术出版社,1991:232-245.
    [36]余志生.汽车理论[M].第四版.北京:机械工业出版社,2007.
    [37]Huang A R W, Chen C. A Low-Cost Driving Simulator for Full Vehicle Dynamics Si-mulation[J]. IEEE Transactions on Vehicular Technology.2003,52(1):162-172.
    [38]Bertacchini A, Tamagnini L, Pavan P. Force feedback in steer-by-wire systems:Archi-tecture and experimental results[J].2006 IEEE International Symposium on Industrial Elec-tronics, Vols 1-7.2006:3050-3055.
    [39]Coudon J, Canudas-De-Wit C, Claeys X. A new reference model for Steer-by-Wire ap-plications with embedded vehicle dynamics [J].2006 American Control Conference, Vols 1-12. 2006,1-12:3990-3995.
    [40]Switkes J P, Rossetter E J, Coe I A, et al. Handwheel force feedback for lanekeeping assistance:Combined dynamics and stability [J]. Journal of Dynamic Systems Measurement and Control-Transactions of the ASME.2006,128(3):532-542.
    [41]Amberkar S, Bolourchi F, Demerly J, et al. A Control System Methodology for Steer by Wire Systems[C]. Detroit, Michigan:2004.
    [42]罗石.线控转向系统主动安全预测控制策略的研究[D].江苏大学,2010.
    [43]罗石,商高高,苏清祖.线控转向系统转向盘力回馈控制模型的研究[J].汽车工程.2006,28(10):914-917.
    [44]李涛涛.线控转向系统操纵性改善策略与转向盘回正力矩研究[D].吉林大学,2007.
    [45]朱亮.基于FlexRay总线的线控转向系统及其路感模拟研究[D].北京工业大学,2009.
    [46]邱绪云,唐绍丰,曹亢子.线控转向系统路感PID控制仿真研究[J].山东交通学院学报.2008,16(2):5-9.
    [47]王俊,杨胜兵,过学迅,等.线控转向系统路感模糊控制仿真分析[J].汽车工程师.2011(5):39-42.
    [48]于蕾艳.线控转向系统的转向盘力反馈控制策略研究[J].计算机仿真.2009,26(01):264-266.
    [49]于蕾艳,林逸,施国标.线控转向系统路感控制策略的研究[J].计算机仿真.2008,25(6):248-250.
    [50]Mohellebi H, Kheddar A, Espie S. Adaptive Haptic Feedback Steering Wheel for Driv-ing Simulators[J]. IEEE Transactions on Vehicular Technology.2009,58(4):1654-1666.
    [51]Toffin D, Reymond G, Kemeny A, et al. Role of steering wheel feedback on driver per-formance:driving simulator and modeling analysis[J]. Vehicle System Dynamics.2007,45(4): 375-388.
    [52]Katzourakis D I, Abbink D A, Happee R, et al. Steering Force Feedback for Hu-man-Machine-Interface Automotive Experiments [J]. IEEE Transactions on Instrumentation and Measurement.2011,60(1):32-43.
    [53]Shiiba T, Murata W. Experimental validation of steering torque feedback simulator through vehicle running test[J]. Journal of Mechanical Science and Technology.2009,23(4): 954-959.
    [54]宗长富,麦莉,王德平,等.基于驾驶模拟器的驾驶员所偏好的转向盘力矩特性研究[J].中国机械工程.2007,18(8):1001-1005.
    [55]余卓平,高晓杰.车辆行驶过程中的状态估计问题综述[J].机械工程学报.2009,45(5):20-33.
    [56]高振海,郑南宁,程洪.基于车辆动力学和Kalman滤波的汽车状态软测量[J].系统仿真学报.2004,16(1):22-24.
    [57]尹念东.汽车—驾驶员—环境闭环系统操纵稳定性虚拟试验技术的研究[D].北京:中国农业大学,2001.
    [58]Wenzel T A, Burnham K J, Blundell M V, et al. Dual extended Kalman filter for vehicle state and parameter estimation[J]. Vehicle System Dynamics.2006,44(2):153-171.
    [59]Venhovens P J T, Naab K. Vehicle Dynamics Estimation Using Kalman Filters[J]. Ve-hicle System Dynamics.1999(32):171-184.
    [60]岳伯陶.电动助力转向系统助力特性和控制算法研究[D].长春:吉林大学,2005.
    [61]邢如飞.乘用车操纵稳定性主观评价方法研究[D].长春:吉林大学,2010.
    [62]郭孔辉,潘峰,马凤军.预瞄优化神经网络驾驶员模型[J].机械工程学报.2003,39(1):26-28.
    [63]Macadam C C. Understanding and modeling the human driver[J]. Vehicle System Dy-namics.2003,40(1-3):101-134.
    [64]Lin Y, Tang P, Zhang W J, et al. Artificial neural network modelling of driver handling behaviour in a driver-vehicle-environment system[J]. International Journal of Vehicle Design. 2005,37(1):24-45.
    [65]宗长富,郑宏宇,田承伟,等.基于直接横摆力矩控制的汽车稳定性控制策略[J].吉林大学学报(工学版).2008,38(5):1010~1014.
    [66]Kimura S, M S, T K, et al. Research on Steering Wheel Control Strategy as a Man Mae-hine Interface for Steer-by-Wire System[J]. Koyo Engineering Journal English Edition. 2005(166):29-33.
    [67]Chai Y W. A Study of Effect of Steering Gain and Steering Torque on Driver's Feeling for SBW Vehicle[C]. Kanagawa:2004.
    [68]商高高,洪泽,张红党,等.基于稳态增益的主动转向系统可变传动比模型[J].江苏大学学报(自然科学版).2010,31(3):278-282.
    [69]施国标,赵万忠,王成玲,等.线控转向变传动比控制对车辆操纵稳定性的影响[J].北京理工大学学报.2008,28(3):207-210.
    [70]王俊,杨胜兵.变传动比在线控转向系统中的应用[J].汽车工程师.2011(8):49-51.
    [71]Zheng B, Anwar S. Yaw stability control of a steer-by-wire equipped vehicle via active front wheel steering[J]. Mechatronics.2009,19(6):799-804.
    [72]Zhang J Y, Kim J W, Lee K B, et al. Development of an Active Front Steering (AFS) System With QFT Control[J]. International Journal of Automotive Technology.2008,9(6): 695-702.
    [73]Hsu Y J, Gerdes J C. Stabilization of a Steer-by-Wire Vehicle at the Limits of Handling Using Feedback Linearization[J].2005 ASME International Mechanical Engineering Con-gress and Exposition.2005:1-10.
    [74]郭孔辉,轧浩,宗昌富.横摆角速度反馈汽车转向控制的理论研究[J].中国机械工程.2000,11(1-2):70-73.
    [75]宗长富,郑宏宇,田承伟,等.线控转向稳态增益与动态反馈校正控制算法[J].汽车工程.2007,29(8):686-691.
    [76]郑宏宇,宗长富,田承伟,等.基于理想转向传动比的汽车线控转向控制算法[J].吉林大学学报(工学版).2007,37(6):1229-1235.
    [77]于蕾艳,林逸,施国标.线控转向系统的主动转向控制策略[J].农业机械学报.2008,39(1):4-6.
    [78]于蕾艳,林逸,施国标.线控转向系统全状态反馈控制策略的研究[J].计算机仿真.2008,25(3):259-261.
    [79]刘奋,张建武,屈求真,基于定量反馈理论的汽车转向控制系统设计[J].上海交通大学学报.2002,36(8):1191-1195.
    [80]张红党,商高高.基于主动前轮转向横摆角速度反馈控制的研究[J].机械设计与制造.2009(4):203-205.
    [81]陈德玲.主动前轮转向系统的控制研究[D].上海交通大学,2008.
    [82]周一鸣,毛恩荣.车辆人机工程学[M].北京:北京理工大学出版社,1999.
    [83]陈俊.车辆驾驶模拟器视景仿真技术研究[D].杭州:浙江大学,2012.
    [84]黄茫茫.车辆驾驶模拟器转向模拟系统的研究和开发[D].杭州:浙江大学,2012.
    [85]魏春雨,周晓军,魏燕定,等.基于Vortex的6自由度平台洗出运动仿真[J].浙江大学学报(工学版).2012(8):1390-1396.
    [86]张微微.驾驶模拟器方向盘实时力感模拟的研究[D].杭州:浙江大学,2012.
    [87]罗竹辉,魏燕定,周晓军,等.六自由度平台车辆运动模拟器变输入洗出算法[J].浙江大学学报(工学版).2013,47(2):238-243.
    [88]Tang F, Wei Y, Zhou X, et al. Research on vehicle dynamics simulation for driving si-mulator[J]. Advanced Materials Research.2011,308-310:1946-1950.
    [89]罗竹辉,魏燕定,周晓军,等.随机激励三维路面空间域模型建模与仿真[J].振动与冲击.2012,31(21):68-72.
    [90]杨小波,宗昌富,胡子正.开发型驾驶模拟器体感模拟算法及其评价[J].汽车工程.1994,16(6):321-328.
    [91]宗昌富,胡子正,杨小波.开发型车辆驾驶模拟器体感模拟技术研究[J].自然科学进展.1997,7(5):606-611.
    [92]You K S, Lee M C, Kang E, et al. Development of a Washout Algorithm for a Vehicle Driving Simulator Using New Tilt Coordination and Return Mode[J]. Journal of Mechamcal Sctence and Technology.2005,19(1):272-282.
    [93]Grant P R, Reid L D. Motion Washout Filter Tuning Rules and Requirements[J]. Journal of Aircraft.1997,34(2):30-35.
    [94]Cmlabs. http://www.vxsim.com/en/software/index.php[Z].
    [95]Get集团.虚拟仿真系统平台——Vortex[Z]. http://www.get-technologys.com.2012.
    [96]Cmlabs. VORTEX V4.1.1 Documentation[DB/CD].2009.
    [97]Pacejka H B. Shear Force Development by Pneumatic Tyres in Steady State Conditions: A Review of Modelling Aspects[J]. Vehicle system dynamics.1991,20(3-4):121-175.
    [98]张立民.飞行模拟器视景仿真系统设计与关键技术研究[D].天津:天津大学,2004.
    [99]李露楠,熊华钢,史永辉,等.基于HLA的半实物仿真时间管理策略的研究和实现[J].遥测遥控.2006,27(2):58-62.
    [100]PRTI. pRTI1516 user guide[Z].2010.
    [101]余小勇,魏燕定,黄茫茫,等.基于HLA的车辆半实物仿真中精确定时方法[J].浙江大学学报(工学版).2012,46(7):1195-1200.
    [102]方水良.现代控制理论及其MATLAB实践[M].杭州:浙江大学出版社,2005:8-9.
    [103]吴今培.系统辨识[M].北京:中国铁道出版社,1994.
    [104]飞思科技产品研发中心.Matlab6.5辅助优化计算与设计[M].北京:电子工业出版社,2003.
    [105]曾光奇,胡均安,王东,等.模糊控制理论与工程应用[M].武汉:华中科技大学出版社,2006:277.
    [106]Harter W, Pfeiffer W, Dominke P, et al. Future electrical steering systems:realizations with safety requirements[Z]. Detroit:2000.
    [107]杨胜兵.线控转向系统控制策略研究[D].武汉理工大学,2008.
    [108]郭孔辉.用于汽车全工况动力学分析的非稳态轮胎六分力模型[P].
    [109]Bertollini G P, Hogan R M. Applying Driving Simulation to Quantify Steering Effort Preference as a Function of Vehicle Speed[J]. SAE Technical Paper.1999(1999-01-0394).
    [110]Pastorino R, Naya M A, Perez J A, et al. Geared PM coreless motor modelling for driv-er's force feedback in steer-by-wire systems[J]. Mechatronics.2011,21(6):1043-1054.
    [111]Hayama R, Kawahara S, Nakano S, et al. Resistance torque control for steer-by-wire system to improve human-machine interface[J]. Vehicle System Dynamics.2010,48(9): 1065-1075.
    [112]李士勇.模糊控制、神经控制和智能控制论[M].哈尔滨:哈尔滨工业大学出版社,1998.
    [113]汤兵勇,路林吉,王文杰.模糊控制理论与应用技术[M].北京:清华大学出版社,2002.
    [114]全国汽车标准化技术委员会.汽车操纵稳定性试验方法GB-T6323-1994[S].北京,国家技术监督局,1994.
    [115]郑宏宇.汽车线控转向路感模拟与主动转向控制策略研究[D].吉林大学,2009.
    [116]Reinelt W, Klier W, Reimann G, et al. Active front steering(part 2) safety and func-tionality [J]. SAE 2004-01-1101.2004.
    [117]Gao Z H, Wang J, Wang D P. Dynamic Modeling and Steering Performance Analysis of Active Front Steering System[J]. CEIS 2011.2011,15.
    [118]Klier W, Reimann G, Reinelt W. Concept and functionality of the active front steering system[J]. SAE 2004-21-0073.2004.
    [119]魏建伟,魏民祥,赵万忠.基于入-车-路闭环系统的变传动比控制规律[J].江苏大 学学报(自然科学版).2011,32(06):652-657.
    [120]黄建兴,赵又群.人—车闭环操纵稳定性综合评价及其虚拟样机实现[J].机械工程学报.2010,46(10):102-108.
    [121]宗长富,郭孔辉.汽车操纵稳定性的客观定量评价指标[J].吉林工业大学自然科学学报.2000,30(1):1-6.
    [122]Derrick J B, Bevly D M. Adaptive Steering Control of a Farm Tractor with Varying Yaw Rate Properties[J]. Journal of Field Robotics.2009,26(6-7):519-536.
    [123]Canale M, Fagiano L. Comparing rear wheel steering and rear active differential ap-proaches to vehicle yaw control[J]. Vehicle System Dynamics.2010,48(5):529-546.
    [124]An S J, Yi K, Jung G, et al. Desired yaw rate and steering control method during cor-nering for a six-wheeled vehicle[J]. International Journal of Automotive Technology.2008, 9(2):173-181.
    [125]全国汽车标准化技术委员会.汽车稳定性试验方法蛇形试验GB-T 6323.1-1994[S].北京,国家技术监督局,1994.
    [126]郭亚军.综合评价理论、方法及应用[M].北京:科学出版社,2007.
    [127]王和毅,谷正气.汽车轮胎模型研究现状及其发展分析[J].橡胶工业.2005,52:58-63.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700