用户名: 密码: 验证码:
泡桐在水中催化液化基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着有限的化石燃料日益枯竭及全球能源消耗的急剧增长,研究和利用可再生能源的意义十分重大。生物质资源作为一种可直接液化的可再生能源引起世人格外关注。以水为反应介质,进行泡桐催化液化基础研究具有重要的学术理论意义和工程应用价值。
     泡桐在水中直接液化时的产油率和液化率受多因素影响。本文以泡桐为原料以水为溶剂,在1L间歇式高压反应釜中进行直接液化实验,通过预试验设计对反应温度、停留时间和液料比进行了考察。预试验条件下,以得到最大重油率为目的时的泡桐直接液化的最优且最经济工艺条件为反应温度300-C、停留时间10mmin、液料比为6。这为泡桐在水中直接催化液化的实验条件的确定提供了参考依据。然后通过单因素实验法考察了反应温度、停留时间与铁粉或碳酸钠催化剂加入量对泡桐以水为溶剂直接液化的影响规律。实验发现生物质泡桐在水中直接液化时添加催化剂后可明显提高重油率和轻油率,降低固体残渣率。以均相的碳酸钠溶液为催化剂时泡桐在水中直接液化重油最大收率为31.92%,以非均相的还原铁粉为催化剂时泡桐在水中直接液化重油最大收率为36.34%,均显著大于不加催化剂时的重油最大收率27.01%;而以均相的碳酸钠溶液为催化剂时泡桐在水中直接液化最少的固体残渣率为7.23%,以非均相的还原铁粉为催化剂时泡桐在水中直接液化最少的固体残渣率为8.12%,均显著低于不加催化剂时的最少的固体残渣率为18.67%。
     使用气相色谱对泡桐直接液化后的气相产物组分进行定性和定量分析,发现生物质液化后的气体产物组成主要为体积分数大约为90%的C02,还含有大约体积分数9%的CO和体积分数1%的CH4。泡桐直接液化后的生物油中化合物种类繁多、成分复杂。通过使用傅里叶变换红外光谱仪对泡桐直接液化后的固体残渣和液相生物油产物的分析,研究了反应条件对生物质泡桐直接液化产物的基团结构影响,利用气质联用分析仪对泡桐液化后的生物油可挥发组分进行了定性和定量分析。研究发现泡桐液化后的轻油中主要组成为酚类、酮类、脂肪酸及芳香酸、呋喃衍生物、酯和醛;重油中主要组成为酚类衍生物、分子量较大的酮类、脂肪酸、芳香酸、酯、苯衍生物和醛。生物油的定性和定量分析结果为其在化工和能源方面的综合利用提供了基础资料。
     生物质液化工艺开发和设计都需要生物质转化过程中的热力学和动力学性质。本文对泡桐在水中直接液化过程的热力学和水解反应机理进行了计算和模拟,将泡桐液化后的轻油视为初始物A,将重油视为中间产物Q,将气体、水和固体残渣视为最终产物P,泡桐在水中直接液化过程可看作为一个单组分的连串反应。通过计算泡桐直接液化过程中第一步与第二步反应的反应速率,可知泡桐液化的机理为第一步生成重油Q是快反应,而第二步生成气体、水和固体残渣为慢反应,决定反应总速度的是第二步生成气体、水和固体残渣的反应。
With the increasing depletion of limited fossil fuels and the rapid growth of global energy consumption, it is of great significance to research and make use of biomass energy. Biomass energy attracts the worldwide attention as it is a renewable energy which can be liquefied directly. So, it is of great value on academic theory and engineering application to do the basic research on paulownia catalytic liquefaction with water as the reaction medium.
     The oil product rate and the rate of paulownia direct liquefaction in water are affected by many factors. Paulownia direct liquefaction is processed in a 1L batch autoclave with water as a solvent. And the reaction temperature, residence time and liquid ratio are investigated by the pre-experiment design. At the pre-experiment conditons, the best and most economical condition for the purpose to get the maximum heavy oil yield is that the reaction temperature is 300℃, residence time is 10 min and liquid ratio is 6.This provides a reference for the determination of experimental conditions of paulownia direct liquefaction in water. Then the affection law of reaction temperature, residence time and the amount of iron powder or soda catalyst is investigated through the single factor optimization. It is found that the heavy oil rate and light oil rate are significantly improved while the solid residuse rate reduced when catalyst is added. The maximum heavy oil rates of paulownia direct liquefaction are 31.92% and 36.34% with homogeneous sodium carbonate solution and non-homogeneous reduced iron powder catalysts, respectively. Both are significantly higher than 27.01% obtained without catalyst. While the minimum residue rate is 7.23% with homogeneous sodium carbonate solution catalyst and 8.12% with non-homogeneous reduced iron powder catalyst. Both are significantly lower than 18.67% obtained without catalyst. The gas products of paulownia direct liquefaction are analyzed qualitatively and quantitatively by gas chromatography, and it is found that the gas products are mainly composed of about 90% of the volume fraction of CO2, and also contain about 9% of CO and 1% of CH4. The bio-oil products are complex and have a wild range of compounds. The influence of the reaction conditions is researched on the group structures of the products when the solid residues and liquid bio-oil are analyzed by Fourier transform infrared spectroscopy. The volatile component of bio-oil are qualitative and quantitative analyzed using GC analyzer and it is found that the light oils are mainly composed of phenols, ketones, fatty acids and aromatic acids, furan derivatives, esters and aldehydes while the heavy oils mainly contain phenolic derivatives, high molecular weight ketones, fatty acids, aromatic acids, esters, benzene derivatives and aldehydes. The qualitative and quantitative analysis results of bio-oil provide the fundamental information for its comprehensive applications in the chemical and energy industry.
     Thermodynamic and kinetic properties in the process of biomass conversion are required for the development and design of biomass liquefaction technology. Thermodynamics and reaction mechanism of hydrolysis on the process of paulownia direct liquefaction in water are calculated and simulated. If we assume the light oil as the initial product A, the heavy oil as intermediate Q while the gas, water and residues as final product P, and then paulownia direct liquefaction process in water can be seen as a series of single component consecutive reactions. By calculating the first and the second step reaction rate of the process, we can know the mechanism of paulownia liquefaction is that the first step to produce heavy oil is fast reaction and the second step to produce gas, water and solid residues is slow reaction which determines the whole reaction rate.
引文
[1]严陆光,陈俊武.中国能源可持续发展若干重大问题研究[M].科学出版社,2007
    [2]中华人民共和国国务院新闻办公室.中国的能源状况与政策[R].北京,2007.12
    [3]Kamm B, Gruber P R, Kamm M. Biorefineries-Industrial Processes and Products:Status Quo and Future Directions. Volume 2, WILEY-VCH,2006
    [4]欧阳平凯主译.卡姆(Kamm B),格鲁勃(Gruber P R),卡姆(Kamm M)著.生物炼制-工业过程与产品.下卷,北京:化学工业出版社,2007
    [5]Campbell C J, Laherrere J H. The end of cheap oil[EB]. Scientific American, March 1998: 60~65; http://www.oilcrisis.com/archive/ScientificAmerican199803/EndOfCheapOil.htm
    [6]Attarian J. The coming end of cheap oil:Hubbert's peak and beyond [J]. The Social Contracts.2002,12,276~286
    [7]Campbell C J. Industry urged to watch for regular oil production peaks, depletion signals [J]. Oil&Gas Journal.2003,101:38~45
    [8]Klass D L. Biomass for Renewable Energy, Fuels, and Chemicals [M]. San Diego:Academic Press,1998:10~19
    [9]Hirsch R H, Bezdek R, Wendling R. Peaking of world oil production:Impacts, mitigation, and risk management [EB]. US National Energy Technology Laboratory Report, Feb.2005, 91pp.; http://www.oilcrisis.com/US/NETL/Oilpeaking.pdf
    [10]National Research Council, USA. Biobased Industrial Products:Priorities for Research and Commercialization [EB]. Natl. Acad. Press:Washington,2000; http://www.nap.edu/books/0309053927/hhml/
    [11]Biomass Research & N Development Technical Advisory Committee, Roadmap for Biomass Technologies in the US [EB]. Dec.2002; http://www.bioproducts-bioenergy.gov/pdfs/FinalBiomassRoadmap.pdf
    [12]Vision for bioenergy & biobased products in the US [EB], Oct.2002; http://www.bioproducts-bioenergy.gov/pdfs/Bio Vision_03_Web.pdf
    [13]Minowa T, Kondo T, Sudirjo S T. Thermochemical liquefaction of indonesian biomass residues [J]. Biomass and Bioenergy,1998,14(5-6):517~524
    [14]Centi G, van Santen R A. in Catalysis for Renewables:From Feedstock to Energy Production [M]. Weinheim:WILEY-VCH Verlag GmbH & Co. KGaA,2007
    [15]姜洪涛,李会泉,张懿.生物质高压液化制生物原油研究进展[J].化工进展,2006,25(1):8-15
    [16]王刚,梁小蕊,薛钦昭,等.生物质高压液化技术影响因素分析及展望[J].可再生能源,2008,26(4):31-34,40
    [17]日本能源学会编.史仲平,华兆哲译.生物质和生物能源手册[M].北京:化学工业出版社,2007
    [18]孙培勤,邓云彪,孙绍晖,陈俊武.泡桐水中直接液化制取生物油的实验研究[J].生物质化学工程.2008,42(5):21-24
    [19]孙绍晖,臧哲学,孙培勤,陈俊武.泡桐直接催化液化产物的红外光谱分析[J].河南化工2008,25(4):25-28
    [20]泡桐树http://www.paotong.cn/pts.html
    [21]泡桐分布http://www.paotong.cn/ptfb.html
    [22]朱清时,阎立峰,郭庆祥.生物质清洁能源[M].北京:化学工业出版社,2002
    [23]葛春涛.均相催化剂研究进展[J].化工技术经济.2005,3(23):28-34
    [24]王储备,吴正舜,刘雪莲,贾薇.制备生物柴油的催化剂研究进展[J].中国油脂,2007,4(32):47-50
    [25]Raveendran K, Ganesh A, Khilar K C. Pyrolysis characteristics of biomass and biomass components [J]. Fuel,1996,75 (8):987~998
    [26]张琦,常杰,王铁军,徐莹.生物质裂解油的性质及精制研究进展[J].石油化工,2006,35(5):493-498
    [27]张瑞芹.生物质衍生的燃料和化学性质[M].郑州:郑州大学出版社,2004
    [28]吴创之,马隆龙.生物质能现代利用技术[M].北京:化学工业出版社,2003
    [29]张建安,刘德华.生物质能源利用技术[M].北京:化学工业出版社,2009
    [30]SjOstrOm E. in Wood Chemistry, Fundamentals and Applications [M].2nd edn. San Diego: Academic Press,1993
    [31]Kamm B, Kamm M, Schmidt M, et al. in Biorefineries-Industrial Processes and Products[M] (Kamm B, Gruber P R, Kamm M. eds) vol. II, Weinheim:Wiley-VCH,2006
    [32]Brunow G. in Biorefineries-Industrial Processes and Products[M] (Kamm B, Gruber P R, Kamm M. eds) vol. Ⅱ, Weinheim:Wiley-VCH,2006
    [33]高洁,汤烈贵.纤维素科学[M].北京:科学出版社,1999
    [34]宋春财.农作物秸秆的热解及在水中液化研究[D].大连:大连理工大学,2002
    [35]崔心存.车用替代燃料与生物质能[M].北京:中国石化出版社,2007:490
    [36]小宫山宏,迫田章义,松村幸彦.日本生物质综合战略[M].北京:中国环境科学出版社,2005
    [37]阴秀丽,吴创之,徐冰燕,等.生物质气化对减少C02排放的作用[J].太阳能学报,2000,1(1):40-44
    [38]蒋剑春.生物质能源应用研究现状与发展前景[J].林产化学,2002,22(2):75-80
    [39]Erzengin M, Kucuk M M. Liquefaction of sunflower stalk by using supercritical extraction [J]. Energy Conversion and Management,1998,39(11):1203~1206
    [40]Demirbas A. Competitive liquid biofuels from biomass [J]. Applied Energy,2011,88 (1):17~28
    [41]Hustad J E, Skreiberg 0, SΦnju O K. Biomass combustion research and utilisation in IEA countries[J]. Biomass and Bioenergy,1995,9(1-5):235~255
    [42]Van den Broek R, Faaij A, van Wijk A. Biomass combustion for power generation [J]. Biomass and Bioenergy,1996,11(4):271~281
    [43]Demirbas A. Combustion characteristics of different biomass fuels [J]. Progress in Energy and Combustion Science,2004,30(2):219~230
    [44]林木森,蒋剑春.生物质快速热解技术现状[J].生物质化学工程,2006,40(1):21-26
    [45]Mckinley K R, Browne S H, Neill D R, et al.Hydrogen fuel from renewable resources[J].Energy Sources,1990,12:105~110
    [46]Demirbas A, Caglar A. Catalytic steam reforming of biomass and heavy oil residues to hydrogen [J]. Energy Science and Technology,1998,1:45~52
    [47]Caglar A, Ozmen H. Hydrogen:as an attractive fuel in future [J]. Energy Science and Technology,2000,6:1-18
    [48]郑昀,邵岩,李斌.生物质气化技术原理及应用分析[J].热电技术,2010,(2):7-9,14
    [49]Van de Velden M, Baeyens J, Boukis I. Modeling CFB biomass pyrolysis reactors [J]. Biomass and Bioenergy,2008,32(2):128~139
    [50]何芳,易维明,柏雪源.国外利用生物质热解生产生物油的装置[J].山东工程学院学报,1999,13(3):61-64
    [51]Luik H, Luik L, Tiikma L, et al. Parallels between slow pyrolysis of Estonian oil shale and forest biomass residues [J]. Journal of Analytical and Applied Pyrolysis,2007,79(1-2):205~ 209
    [52]Lomax J A, Commandeur J M, Arisz P W, et al.Characterisation of oligomers and sugar ring-cleavage products in the pyrolysate of cellulose[J]. Journal of Analytical and Applied Pyrolysis,1991,19:65~79
    [53]Garcia L, Salvador M L, Arauzo J, et al. Catalytic pyrolysis of biomass:influence of the catalyst pretreatment on gas yields [J]. Journal of Analytical and Applied Pyrolysis, 2001,58-59:491~501
    [54]Badger P C, Fransham P. Use of mobile fast pyrolysis plants to densify biomass and reduce biomass handling costs—A preliminary assessment [J]. Biomass and Bioenergy, 2006,30(4):321~325
    [55]Bridgwater A V. Principles and practice of biomass fast pyrolysis processes for liquids [J]. Journal of Analytical and Applied Pyrolysis,1999,51(1-2):3~22
    [56]Dupont C, Chen L, Cances J, et al. Biomass pyrolysis:Kinetic modelling and experimental validation under high temperature and flash heating rate conditions [J]. Journal of Analytical and Applied Pyrolysis,2009,85(1-2):260~267
    [57]Kunkes E L, Simonetti D A, West R M, et al. Catalytic Conversion of Biomass to Monofunctional Hydrocarbons and Targeted Liquid-Fuel Classes [J]. Science,2008, 322(5900):417-421
    [58]Chheda J N, Dumesic J A. An overview of dehydration, aldol-condensation and hydrogenation processes for production of liquid alkanes from biomass-derived carbohydrates [J]. Catalysis Today,2007,123:59~70
    [59]Roman-Leshkov Y, Chheda J N, Dumesic J A. Phase Modifiers Promote Efficient Production of Hydroxymethylfurfural from Fructose [J]. Science,2006,312(5782):1933~1937
    [60]Huber G W, Chheda J N, Christopher J, et al. Production of Liquid Alkanes by Aqueous-Phase Processing of Biomass-Derived Carbohydrates [J]. Science, 2005,308(5725):1446~1450
    [61]Carlini C, Giuttari M, Galletti A, et al. Selective saccharides dehydration to 5-hydroxymethyl-2-furaldehyde by heterogeneous niobium catalysts[J]. Applied Catalysis A: General,1999,183:295~302
    [62]West R M, Liu Z Y, Peter M, et al. Carbon-carbon bond formation for biomass-derived furfurals and ketones by aldol condensation in a biphasic system [J]. Journal of Molecular Catalysis A:Chemical,2008,296:18~27
    [63]姚向君,王革华,田宜水.国外生物质能的政策与实践[M].北京:化学工业出版社,2006
    [64]Gunaseelan V N. Anaerobic digestion of biomass for methane production:A review [J]. Biomass and Bioenergy,1997,13(1-2):83~114
    [65]Ward A J, Hobbs P J, Holliman P J, et al. Optimisation of the anaerobic digestion of agricultural resources [J]. Bioresource Technology,2008,99(17):7928~7940
    [66]Rao P V, Baral S S, Dey R, et al. Biogas generation potential by anaerobic digestion for sustainable energy development in India[J]. Renewable and Sustainable Energy Reviews, 2010,14(7):2086~2094
    [67]Sharma A, Unni B G, Singh H D. A novel fed-batch digestion system for biomethanation of plant biomasses [J]. Journal of Bioscience and Bioengineering,1999,87(5):678~682
    [68]Chynoweth D P, Owens J M, Legrand R. Renewable methane from anaerobic digestion of biomass [J]. Renewable Energy,2001,22(1-3):1~8
    [69]Demirel B, Scherer P. Production of methane from sugar beet silage without manure addition by a single-stage anaerobic digestion process [J]. Biomass and Bioenergy,2008,32(3):203~ 209
    [70]Ranjan R, Thust S, Gounaris C E, et al. Adsorption of fermentation inhibitors from lignocellulosic biomass hydrolyzates for improved ethanol yield and value-added product recovery [J]. Microporous and Mesoporous Materials,2009,122(1-3):143~148
    [71]Brethauer S, Wyman C E. Continuous hydrolysis and fermentation for cellulosic ethanol production [J]. Bioresource Technology,2010,101(13):4862~4874
    [72]Szczodrak J, Fiedurek J. Technology for conversion of lignocellulosic biomass to ethanol [J]. Biomass and Bioenergy,1996,10(5-6):367~375
    [73]Bai F W, Anderson W A, Moo-Young M. Ethanol fermentation technologies from sugar and starch feedstocks [J]. Biotechnology Advances,2008,26(1):89~105
    [74]Haagensen F, Skiadas IV, Gavala H N, et al. Pre-treatment and ethanol fermentation potential of olive pulp at different dry matter concentrations [J]. Biomass and Bioenergy, 2009,33(11):1643~1651
    [75]Shih C, Smith E A. Determination of glucose and ethanol after enzymatic hydrolysis and fermentation of biomass using Raman spectroscopy [J]. Analytica Chimica Acta, 2009,653(2):200~206
    [76]Minowa T, Zhen F, Ogi T, et al. Liquefaction of cellulose in hot compressed water using sodium carbonate:Products distribution at different reaction temperatures [J]. Journal of chemical engineering of Japan,1997,30(1):186~190
    [77]Minowa T, Zhen F, Ogi T, et al. Decomposition of cellulose and glucose in hot compressed water under catalyst free conditions [J]. Journal of Chemical Engineering of Japan,1998,31 (1):131~134
    [78]Dietrich M, Ronald A, Oskar F. Catalytic hydropyrolysis of lignin:Influence of reaction conditions on the formation and composition of liquid products [J]. Bioresource Technology, 1992,40(2):171~177
    [79]Gavan S, Cassidy E J, Jackson W R, et al. Studies related to the structure and reactivity of coals:11. The hydrogenation of lignin [J]. Fuel,1986,65(11):1524~1530
    [80]Karagoz S, Bhaskar T, Muto A, et al. Comparative studies of oil compositions produced from sawdust, rice husk, lignin and cellulose by hydrothermal treatment [J]. Fuel,2005, 84(7-8):875~884
    [81]Wang C, Pan J X, Li J H,et al. Comparative studies of products produced from four different biomass samples via deoxy-liquefaction[J]. Bioresource Technology,2008,99(8):2778-2786.
    [82]Demirbas A. Effect of lignin content on aqueous liquefaction products of biomass [J]. Energy Conversion& Management,2000,41:1601~1607
    [83]曹洪涛.生物质在超/亚临界水条件下液化研究[D].湖南:湖南大学,2008
    [84]Yamada T, Ono H, Ohara S, et al. Characterization of the products resulting from direct liquefaction of cellulose I. Identification of intermediates and the relevant mechanism in direct phenol liquefaction of cellulose in the presence of water [J].Mokuzai Gakkaishi, 1996,42 (11):1098~1104
    [85]Jakab E, Liu K, Meuzelaar H L C. Thermal Decomposition of Wood and Cellulose in the Presence of Solvent Vapors [J]. Industrial & Engineering Chemistry Research, 1997,36(6):2087~2095
    [86]Miller J E, Evans L, Littlewolf A, et al. Batch microreactor studies of lignin and lignin model compound depolymerization by bases in alcohol solvents [J]. Fuel,1999,78(11):1363~1366
    [87]高建永.催化生物质加氢液化的实验研究[D].广西:广西大学,2008
    [88]Xu C B, Etcheverry T. Hydro-liquefaction of woody biomass in sub-and super-critical ethanol with iron-based catalysts [J]. Fuel,2008,87(3):335~345
    [89]Xu C B, Lad N. Production of heavy oils with high caloric values by direct liquefaction of woody biomass in sub/near-critical water [J]. Energy & Fuels,2008,22(1):635~642
    [90]Tymchyshyn M, Xu C. Liquefaction of bio-mass in hot-compressed water for the production of phenolic compounds [J]. Bioresource Technology,2010,101(7):2483~2490
    [91]Kobayashi R, Asano M, Kajiyama M, et al. Effect of ozone treatment of wood on its liquefaction [J]. Journal of Wood Science,2005,51(4):348~356
    [92]Celeghini R M S, Lancas F M. Optimization of the direct liquefaction of lignin obtained . from sugar cane bagasse [J].Erergy Sources,2001,23(4)1:369~375
    [93]Akhtar J, Kuang S K, Amin N S. Liquefaction of empty palm fruit bunch (EPFB) in alkaline hot compressed water [J]. Renewable Energy,2010,35(6):1220~1227
    [94]Xu C, Lancaster J. Conversion of secondary pulp/paper sludge powder to liquid oil products for energy recovery by direct liquefaction in hot-compressed water [J]. Water Research, 2008,42(6-7):1571~1582
    [95]Dote Y, Inoue S, Ogi T, et al. Studies on the direct liquefaction of protein-contained biomass: The distribution of nitrogen in the products [J]. Biomass and Bioenergy,1996,11(6):491~ 498
    [96]Yin S, Dolan R, Harris M, et al. Subcritical hydrothermal liquefaction of cattle manure to bio-oil:Effects of conversion parameters on bio-oil yield and characterization of bio-oil [J]. Bioresource Technology,2010,101(10):3657~3664
    [97]Mazaheri H, Lee K T, Bhatia S, et al. Sub/supercritical liquefaction of oil palm fruit press fiber for the production of bio-oil:Effect of solvents [J]. Bioresource Technology,2010, 101(19):7641~7647
    [98]Zhong C, Wei X. A comparative experimental study on the liquefaction of wood [J]. Energy, 2004,29:1731~1741
    [99]Wang G, Li W, Li B, et al. Direct liquefaction of sawdust under syngas with and without catalyst [J]. Chemical Engineering and Processing,2007,46(3):187~192
    [100]Fang Z, Sato T, Smith Jr. R L, et al. Reaction chemistry and phase behavior of lignin in high-temperature and supercritical water[J]. Bioresource Technology,2008,99(9):3424~ 3430
    [101]Sinag A, Gulbay S, Uskan B, et al. Biomass decomposition in near critical water [J]. Energy Conversion and Management,2010,51(3):612~620
    [102]Yuan X Z, Li H, Zeng G M, et al. Sub-and supercritical liquefaction of rice straw in the presence of ethanol-water and 2-propanol-water mixture [J]. Energy,2007,32(11):2081~ 2088
    [103]Ogi T, Minowa T, Dote Y, et al. Characterization of oil produced by the direct liquefaction of Japanese oak in an aqueous 2-propanol solvent system[J]. Biomass and Bioenergy,1994,7(1-6):193~199
    [104]Hassan E M, Shukry N. Polyhydric alcohol liquefaction of some lignocellulosic agricultural residues [J]. Industrial Crops and Products,2008,27(1):33~38
    [105]张宏.固体超强酸催化液化生物质的研究[D].南昌:南昌大学,2007
    [106]Yip J, Chen M, Szeto Y S, et al. Comparative study of liquefaction process and liquefied products from bamboo using different organic solvents [J]. Bioresource Technology, 2009,100(24):6674-6678
    [107]Liu Z, Zhang F. Effects of various solvents on the liquefaction of biomass to produce fuels and chemical feedstocks [J]. Energy Conversion and Management,2008,49:3498~ 3504
    [108]Yilgin M, Pehlivan D. Poplar wood-water slurry liquefaction in the presence of formic acid catalyst [J]. Energy Conversion and Management,2004,45(17):2687~2696
    [109]Mun S P, Jang J P. Liquefaction of cellulose in the presence of phenol using p-toluene sulfonic acid as a catalyst [J]. Journal of Industrial and Engineering Chemistry, 2009,15(5):743~747
    [110]Watanabe M, Bayer F, Kruse A. Oil formation from glucose with formic acid and cobalt catalyst in hot-compressed water [J]. Carbohydrate Research,2006,341(18):2891~2900
    [111]Wang M, Leitch M, Xu C. Synthesis of phenolic resol resins using cornstalk-derived bio-oil produced by direct liquefaction in hot-compressed phenol-water[J]. Journal of Industrial and Engineering Chemistry,2009,15(6):870~875
    [112]Maldas D, Shiraishi N. Liquefaction of biomass in the presence of phenol and H2O using alkalies and salts as the catalyst [J]. Biomass and Bioenergy,1997,12(4):273~279
    [113]Yamada T, Ono H. Rapid liquefaction of lignocellulosic waste by using ethylene carbonate [J]. Bioresource Technology,1999,70(1):61~67
    [114]Demirbas A. Conversion of biomass using glycerin to liquid fuel for blending gasoline as alternative engine fuel [J]. Energy Conversion & Management,2000,41:1741~1748
    [115]Yao Y G, Yoshioka M, Shiraishi N. Soluble properties of liquefied biomass prepared in organic solvent. I. The soluble behavior of liquefied biomass in various diluents [J]. Mokuzai Gakkaishi,1994,40(2):176~184
    [116]Goudriaan F, Peferoen D G R. Liquid fuels from biomass via a hydrothermal process [J]. Chemical Engineering Science,1990,45(8):2729~2734
    [117]张秀梅,陈冠益,孟祥梅等.催化热解生物质制取富氢气体的研究[J].燃料化学学报,2004,32(4):446-449
    [118]Boocock D G B. Solvolysis and hydrotreatment of wood to provide fuel [J]. The Canadian Journal of Chemical Engineering,1980,58:466~469
    [119]Bestue-Labazuy C, Soyer N, Bruneau C, et al. Wood liquefaction with hydrogen or helium in the presence of iron additives[J]. The Canadian Journal of Chemical Engineering, 1985,63(4):634~638
    [120]颜涌捷,任铮伟.纤维素连续催化水解研究[J].太阳能学报,1999,20(1):55-58
    [121]谢文,袁兴中,曾光明等.催化剂对亚临界水中生物质液化行为的影响[J].资源科学,2008:129-133
    [122]Mok W S L, Antal M J Jr. Uncatalyzed solvolysis of whole biomass hemicellulose by hot compressed water [J]. Ind Eng Chem Res,1992,31:1157~1161
    [123]Allen S, Kam L C, Zemann A J, et al. Fractionation of sugar cane with hot compressed liquid water [J]. Ind Eng Chem Res,1996,35:2709~2715
    [124]Bobleter O, Concin R. Degradation of poplar lignin by hydrothermal treatment [J]. Cell Chem Technol,1979,13:583~593
    [125]Bobleter O. Hydrothermal degradation of polymers derived from plants [J]. Prog Polym Sci,1994,19(5):797~841
    [126]Antal M J Jr, Mok W S L, Richard G N. Four-carbon model compounds for the reactions of sugars in water at high temperature[J]. Carbohydr Res,1990,199(1):111~115
    [127]Xu X, Matsumura Y, Stenberg J, et al. Carboncatalyzed gasification of organic feedstocks in supercritical water [J]. Ind Eng Chem Res,1996,35,2522~2530
    [128]Antal M J Jr, Allen S, Schulman D, et al. Biomass gasification in supercritical water[J]. Ind Eng Chem Res,2000,39,4040~4053
    [129]Rustamov V R, Kerimov V K, Schachbazov S J, et al. Mechanism and main regularities of the alkaline pyrolysis of wood [J]. Energy Conversion and Management,2002,43(14): 1901~1910
    [130]钱学仁,李坚.兴安落叶松木材超临界乙醇萃取研究[J].东北林业大学学报,2000,28(4):21-24
    [131]Hashaikeh R, Fang Z, Butler I S, et al. Hydrothermal dissolution of willow in hot compressed water as a model for biomass conversion [J]. Fuel,2007,86(10-11):1614~1622
    [132]Colombo R, Lancas F M, Yariwake J H. Determination of flavonoids in cultivated sugarcane leaves, bagasse, juice and in transgenic sugarcane by liquid chromatography-UV detection[J]. Journal of Chromatography A,2006,1103(1):118~124
    [133]Zhong C, Peters C J, Arons J de S. Thermodynamic modeling of biomass conversion processes [J]. Fluid Phase Equilibria,2002,194-197:805~815
    [134]Feng W, van der Kooi H J, Arons J de S. Phase equilibria for biomass conversion processes in subcritical and supercritical water [J]. Chemical Engineering Journal,2004,98: 105-113
    [135]Feng W, van der Kooi H J, Arons J de S. Biomass conversions in subcritical and supercritical water driving force, phase equilibria, and thermodynamic analysis. Chemical Engineering Journal,2004,43:1459~1467
    [136]Wang M, Xu C, Leitch M. Liquefaction of cornstalk in hot-compressed phenol-water medium to phenolic feedstock for the synthesis of phenol-formaldehyde resin [J]. Bioresource Technology,2009,100(7):2305~2307
    [137]Wang M, Leitch M, Xu C. Synthesis of phenolic resol resins using cornstalk-derived bio-oil produced by direct liquefaction in hot-compressed phenol-water[J]. Journal of Industrial and Engineering Chemistry,2009,15(6):870~875
    [138]Maldas D, Shiraishi N. Liquefaction of biomass in the presence of phenol and H2O using alkalies and salts as the catalyst [J]. Biomass and Bioenergy,1997,12(4):273~279
    [139]Alma M H, Basturk M A. Liquefaction of grapevine cane (Vitis vinisera L.) waste and its application to phenol-formaldehyde type adhesive [J]. Industrial Crops and Products, 2006,24(2):171~176
    [140]中华人民共和国国家统计局.中国统计年鉴[M].北京:中国统计出版社,2006
    [141]Li J, Ma L. Background Paper:Chinese Renewables Status Report[R]. October 2009; www.ren21.net/news/news38.asp
    [142]有机元素分析仪;http://jiaowu.syuct.edu.cn/cszx/read.asp?q=1496
    [143]FLASH 2000 Series CHNS/O Analyzer; https://www.thermoscientific.com/wps/portal/ts/products/detail?navigationId=L11478&categ oryld=87466&productId= 11962068
    [144]臧哲学.木质生物质原料及其直接液化产物的分析[D].郑州大学,2008
    [145]柯以侃,董慧茹.有机化学手册第三分册:光谱分析(第2版)[M].北京:化学工业出版社,1998.940-1112
    [146]蒋挺大.木质素[M].北京:化学工业出版社,2001.42-47
    [147]陈培榕,邓勃.现代仪器分析实验与技术[M].北京:清华大学出版社,1999:257-276
    [148]佟婧怡.非生物质高压催化液化的基础研究[D].湖南大学,2009
    [149]Thallada B, Akira S, Akinori M, et al. Hydrothermal upgrading of wood biomass: Influence of the addition of K2CO3 and cellulose/lignin ratio [J]. Fuel,2008,87:2236~2242
    [150]波钦诺克X H.荆家海,丁钟荣译.植物生物化学分析方法[M].北京:科学出版社,1981
    [151]谢音,屈小英主编.食品分析[M].北京:科学技术文献出版社,2006
    [152]GB/T 2677.6-94.造纸原料有机溶剂抽出物含量的测定[S]
    [153]GB/T 2677.8-94.造纸原料酸不溶木素含量的测定[S]
    [154]GB/T 2677.3-93.造纸原料灰分的测定[S]
    [155]Qian Y, Zuo C, Tan J, et al. Structural analysis of bio-oils from sub-and supercritical water liquefaction of woody biomass [J]. Energy,2007,32(3):196~202
    [156]孔垂华,徐效华.有机物的分离和结构鉴定[M].北京:化学工业出版社,2003
    [157]Ozawa T. A new method of analyzing thermogravimatric data [J]. Bulletin of the Chemical Society of Japan,1965,38:1881~1886.
    [158]Doyle C D. Kinetic analysis of thermogravimetric data [J]. Journal of Applied Polymer Science,1961,5(15):285~292
    [159]Miura K. A new and simple method to estimate f (E) and ko (E) in the distributed activation energy model from three sets of experimental data. Energy&Fuels,1995,9 (2):302~307
    [160]Miura K, Maki T. A simple method for estimating f (E) and ko (E) in the Distributed Activation Energy Model. Energy&Fuels,1998,12(5):864~869
    [161]Friedman H L. Kinetics and Gaseous Products of Thermal Decomposition of Polymers [J]. Journal of Macromolecular Science, Part A,1967,1 (1):57~59
    [162]Kissinger H E. Variation of Peak temperature with heating rate in different rate in differential Thermal analysis [J]. Journal of Research of the National Bureau of Standards, 1956,57 (4):217~221
    [163]Kissinger H E. Reaction kinetic in differential thermal analysis [J]. Analytical Chemistry,1957,29 (11):1702~1706
    [164]胡荣祖,高胜利,赵凤起等.热分析动力学[M].北京:科学出版社,2008:138,151-155
    [165]Qu Y, Wei X, Zhong C. Experimental study on the direct liquefaction of Canninghamia lanceolata in water [J]. Energy,2003,28:597~606
    [166]Uddin M A, Tsuda H, Wu S, et al. Catalytic decomposition of biomass tars with iron oxide catalysts [J]. Fuel,2008,87:451~459
    [167]Polychronopoulou K, Bakandritsos A, Tzitzios V, et al. Absorption-enhanced reforming of phenol by steam over supported Fe catalysts [J]. Journal of catalysis,2006,241:132~148
    [168]Masuda T, Kondo Y, Miwa M, et al. Recovery of useful hydrocarbons from oil palm waste using ZrO2 supporting FeOOH catalyst [J]. Chemical Engineering Science,2001,56: 897~904
    [169]Polychronopoulou K, Costa C N, Efstathiou A M. The role of oxygen and hydroxyl support species on the mechanism of H2 production in the steam reforming of phenol over metal oxide-supported-Rh and-Fe catalysts [J]. Catalysis Today,2006,112:89~93
    [170]韦建国,刘大壮,孙培勤,等.对苯二甲酸二异辛酯合成的反应机理和动力学[J].高校化学工程学报,2006,20(4):665-668
    [171]郭汉贤.应用化工动力学[M].北京:化学工业出版社,2003:45-47
    [172]孙培勤,臧哲学,孙绍晖等.生物油的分离与分析研究进展[J].可再生能源,2008,26(5):35-40
    [173]Karagoz S, Bhaskar T, Muto A, et al. Low-temperature catalytic hydrothermal treatment of wood biomass:analysis of liquid products [J]. Chemical Engineering Journal, 2005,108(1-2):127~137
    [174]Karagoz S, Bhaskar T, Muto A, et al. Hydrothermal upgrading of biomass:Effect of K2CO3 concentration and biomass/water ratio on products distribution [J]. Bioresource Technology,2006,97(1):90~98
    [175]Mazaheri H, Lee K T, Bhatia S, et al. Subcritical water liquefaction of oil palm fruit press fiber for the production of bio-oil:Effect of catalysts [J]. Bioresource Technology,2010, 101(2):745~751
    [176]Amen-Chen C, Pakdel H, Roy C. Production of monomeric phenols by thermochemical conversion of biomass:a review [J]. Bioresource Technology 2001; 79:277~299
    [177]张芳西,金承基,周淑芬等.含酚废水的处理与利用[M].北京:化学工业出版社,1983
    [178]魏宏鸽,仲兆平,李睿等.固体催化剂下生物油模型化合物的催化加氢研究[J].可再生能源,2010,28(1):52-55,62
    [179]Smith J M, Van N H C, Abbott M M. Introduction to Chemical Engineering Thermodynamics [M]. New York:McGraw-Hill,1996
    [180]Barrow G M. Physical Chemistry [M], third ed., New York:McGraw-Hill,1973
    [181]Reid R C, Prausnitz J M, Poling B E. The Properties of Gases and Liquids [M]. New York McGraw-Hill,1987

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700