用户名: 密码: 验证码:
儿童急性白血病的实验、临床及循证医学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:由于原代白血病细胞与体内白血病细胞的生物学性状相似,且遗传性状稳定,但原代细胞的培养存在培养条件要求高、细胞存活率低等缺点。为此,本文就儿童原代白血病细胞的分离及最优化的培养方法进行研究,为儿童急性白血病(AL)的体外研究提供细胞模型。
     方法:选取2008年8月-2009年9月本院儿科收治的25例初诊AL患儿作为研究对象。于治疗前抽取肝素抗凝的骨髓液或外周血2-3 ml于无菌离心管中,利用人淋巴细胞分离液即可分离出白血病细胞。在倒置光学显微镜下观察不同时间点的原代白血病细胞的形态变化,以及利用CCK-8法检测不同细胞密度、不同成分的培养液对原代白血病细胞增殖活性的影响。
     结果:细胞形态学观察及细胞增殖活力测定提示:原代白血病细胞在72 h以内存活率较高;高密度细胞[(4-10)×106/ml]培养低于密度细胞[(1-2)×106/ml];胎牛血清较患儿自身的血清更有利于原代白血病细胞生长。
     结论:利用人淋巴细胞分离液可以成功地分离出原代白血病细胞,而对于原代白血病细胞的体外培养,选择(4-6)×106/ml细胞密度接种于含10%胎牛血清的培养基中生长效果最理想。
     目的:探讨小檗碱诱导儿童原代白血病细胞增殖、凋亡的作用。
     方法:取初诊的22例白血病患儿的骨髓或外周血2-3 ml,用人淋巴细胞分离液分离出原代白血病细胞。将其分为:(1)对照组;(2)25 uM小檗碱;(3)50uM小檗碱;(4)100uM小檗碱。于24、48、72h时,利用CCK-8法检测小檗碱对每组原代白血病细胞的生长抑制率;同时24 h采用流式细胞术PI染色法及倒置显微镜观察不同浓度小檗碱诱导原代白血病细胞凋亡的影响。
     结果:不同浓度(25、50、100 uM)的小檗碱作用于原代白血病细胞24、48、72h后,CCK-8法检测的每组细胞生长抑制率有明显差异(F=125.86,12.67 P均<0.01)。利用光学显微镜观察:细胞作用24 h已发生典型的凋亡变化。流式细胞术PI染色结果提示25、50、100 uM小檗碱作用原代细胞24 h后,其凋亡率分别为28.51%、31.98%、48.60%。
     结论:小檗碱具有诱导儿童原代白血病细胞凋亡并抑制细胞增殖的作用,且呈剂量、时间依赖性。
     目的:探讨儿童急性白血病细胞MDM2、P53基因表达及其与小檗碱对白血病原代细胞生长抑制的关系。
     方法:选取本院儿科收治的40例初诊AL患儿作为研究对象,利用人淋巴细胞分离液分离出原代白血病细胞,并用CCK-8法检测不同浓度小檗碱作用原代白血病细胞24 h的细胞生长抑制率。RT-PCR法和免疫组织化学法检测MDM2、P53在白血病细胞中的表达,并比较MDM2、P53mRNA的表达与小檗碱对原代白血病细胞生长抑制的关系。
     结果:儿童白血病中存在MDM2、P53的表达,其中MDM2、P53蛋白阳性率分别为66.67%、22.78%,而MDM2、P53mRNA的表达率分别为60.71%、28.56%。不同浓度的小檗碱对MDM2mRNA表达阳性细胞的生长抑制率明显高于MDM2mRNA表达阴性细胞(P<0.05),而在P53mRNA阳性表达的细胞中未发现类似结果。
     结论:小檗碱对白血病细胞的生长抑制与MDM2mRNA的表达有关,而与P53mRNA的表达无关。
     目的:由于儿童白血病细胞的抗原表达与正常造血细胞不同,常会丢失正常应有的抗原,或表达正常不应有的抗原,甚至表达其他抗原,目前尚未发现其特异性抗原。为此,本研究对本院2000年1月-2009年4月收治的195例急性白血病(AL)患儿免疫分型的资料进行分析,并与其临床特征进行比较。
     方法:取肝素抗凝的骨髓或静脉血2-3 ml,利用流式细胞仪进行免疫分型检测。AL患儿首次诱导缓解采用的治疗方案:急性淋巴细胞白血病(ALL)采用VDLP[长春新碱(V)、柔红霉素(D)、左旋门冬酰氨酶(L)、强的松(P)]方案;而急性髓性细胞白血病(AML)采用DA[柔红霉素(D)、阿糖胞苷(A)]或DAE[依托泊苷(E)]或ARTA(全反式维甲酸)+DA方案。
     结果:
     1.195例AL中ALL 139例(71.28%),AML42例(21.54%),急性混合细胞型白血病(AMLL)14例(7.18%)。139例ALL中B-ALL103例(74.1%),T-ALL24例(17.27%),T/B双表型12例(8.63%)。42例AML中M 12例(4.76%),M 217例(40.78%),M 312例(28.57%),M 44例(9.52%),M 57例(16.67%)。本研究免疫分型与FAB分型的符合率为92.82%。
     2. B-ALL主要表达的抗原有CD19(90.29%)、CD10(83.50%)、CD20(27.18%)。T-ALL主要表达的抗原有CD3(79.17%)、CD7(66.67%)、CD5(33.33%)。B/T-ALL主要表达的T系抗原有CD7(50%)、CD5(41.67%);B系抗原有CD19(50%)、CD10(33.33%)。139例ALL中32例有髓系抗原表达,主要表达的抗原有CD13、CD33、CD14、MPO等,而CD15未见表达。139例ALL中31例表达CD34;而My+ALL中CD34阳性表达(15.62%)明显低于My-ALL (24.30%)。139例ALL中82例表达HLA-DR。
     3.42例AML主要表达的抗原有CD13(64.29%)、CD33(59.52%)、MPO(42.86%)、CD15(33.33%)。其中M1主要表达的抗原有CD13、CD117、CD15; M2主要表达的抗原有CD13、CD33、MPO。M3主要表达的抗原有CD13、CD33、MPO。M4主要表达的抗原有CD13、CD33、CD15。M5主要表达的抗原有CD14。13例AML主要表达的淋系抗原有CD19、CD7、CD3。42例AML中15例表达CD34,最常见于M1、M2;而Ly+AML中CD34阳性表达率与Ly-AML比较无差异(p>0.05)。42例AML中25例表达HLA-DR,最常见于M1、M2、M4、M5。
     4.14例AMLL主要表达的B系抗原有CD19、CD10、CD22;主要表达的T系抗原有CD7、CD3、CD5;主要表达的髓系抗原表达有CD13、CD14、CD33、CD15。14例AMLL中9例接受化疗,首次化疗后6例达到完全缓解(CR),其CR率为66.67%,低于ALL、AML。14例AML中2例表达CD34;7例表达HLA-DR。
     5. My+ALL组性别、出血情况与My-ALL组比较均有显著差异(χ2=4.20,20.03P均<0.05),而其余指标均无差异(P>0.05);而My+ALL组CR率(56.25%)与My ALL组(57.94%)比较无差异(χ2=0.03 P>0.05)。Ly+-AML组肝大例数与Ly-AML比较有差异(χ2=6.48 P<0.05),而其余指标均无差异(P>0.05)而Ly+AML组CR率(38.46%)与Ly-ALL组(31.03%)比较差异无差异(χ2=3.84 P>0.05)。
     结论:
     1.免疫分型可正确区分儿童白血病细胞的来源,且能弥补形态学分型的部分不足。
     2.由于CD13、CD33、MPO可表达于ALL中,而CD15仅表达于AML,因此CD15髓系抗原的特异性优于CD13、CD33、MPO,可作为鉴别儿童ALL与AML的重要标记。
     3. My+ALL主要表达的抗原有CD13、CD33、CD14。Ly+AML主要表达的抗原有CD19、CD3、CD7。ALL伴髓系抗原表达、AML伴淋系抗原表达分别与ALL、AML的预后无关。
     4. AMLL是一种具有髓系和淋系共同表达独特的AL,与Ly+AML和My+ALL不同,且预后较ALL、AML差。
     目的:综合评价亚甲基四氢叶酸还原酶(MTHFR)基因多态性与儿童急性白血病(AL)的关系。
     方法:以AL组和对照组MTHFR基因677、1298位点的基因型例数为统计量,全面检索、筛选相关文献,提取研究数据结果和选择基因位点,首先进行异质性检验;对存在异质性者,按照AL类型和来源人群进行亚组分析;应用RevMan 4.2对各研究结果进行数据合并,计算OR值及其95%CI,并进行统计学处理;同时利用漏斗图进行发表偏倚分析;利用改变样本量对各研究结果进行敏感性分析。
     结果:
     共检索有效文献17篇,除MTHFR基因677位点TT型的各研究间不存在异质性外(P>0.05),其他基因型的各研究间均存在异质性。MTHFR基因677位点TT在AL的分布频率显著高于对照组外,其OR及95%CI为0.81(0.69-0.97)(P<0.05),而AL组MTHFR基因677位点CT、TT+CT的分布频率与对照组比较,无显著差异(P>0.05)。MTHFR基因1298位点AC、CC、AC+CC在AL的分布频率与对照组比较,无差异,其OR值及95%CI分别为1.11(0.83-1.49)、1.15(0.93-1.42)、1.18(0.95-1.46)(P均>0.05)。
     亚组分析:1.白血病类型:对MTHFR基因677位点CT、TT+CT与ALL关系的文献进行分析,结果Z为1.43,1.74,P均>0.05;而对MTHFR基因677位点CT、TT+CT与ANLL关系的文献进行分析,结果Z为0.69,0.37,P均>0.05。对纳入MTHFR基因1298位点多态性与ALL、ANLL关系的文献进行分析,结果提示MTHFR基因1298位点多态性与ALL、ANLL均无关。2.来源人群:亚洲人群:MTHFR基因1298位点AC+CC与AL的结果为Z=2.01,P均<0.05。欧洲人群:对MTHFR基因677位点CT、CT+TT与AL关系的文献进行分析,结果Z=2.63,2.07,P均<0.05。对MTHFR基因1298位点CC与AL关系的文献进行分析,结果Z为=1.93,P=0.05。其他人群:MTHFRC基因677、1298位点多态与AL均无关。发表偏倚分析和敏感性分析结果均提示本文的结果是稳定与可靠的。
     结论:MTHFR基因677位点TT有利于儿童AL发生;CT、CT+TT也是导致欧洲儿童发生AL的危险因素。MTHFR基因1298位点CC是欧洲儿童发生AL的保护因素,而AC+CC则是导致亚洲人群儿童发生AL的危险因素。
     目的:探讨细胞色素P4501A1 (CYP1A1) MspⅠ基因多态性与儿童急性白血病(AL)的关系。
     方法:以AL组和正常对照组的CYP1A1 MspⅠ基因型例数为统计量,全面检索、筛选相关文献,提取研究数据结果和选择基因位点,进行异质性检验,按照AL类型和来源人群进行亚组分析;应用RevMan4.2对各研究结果进行计算合并OR值及其95%CI,并利用漏斗图进行发表偏倚分析。
     结果:共检索符合条件的文献6篇,其中AL组837例,对照组1252例。异质性检验结果:除杂合子型不存在异质性外(χ2=11.68 P>0.05),余两型均存在异质性(χ2=16.38,14.77 P均<0.05)。根据异质性检验结果,利用固定或随机效应模型估计,以CYP1A1 MspⅠ野生纯合子为参照组,杂合子、突变纯合子、杂合子+突变纯合子的合并OR分别为1.18(0.9-1.49)、0.96(0.31-3.00)、1.10(0.77-1.57)。对存在异质性的突变纯合子、杂合子+突变纯合子进行亚组分析,结果提示CYP1A1 MspⅠ基因突变纯合子、杂合子+突变纯合子型与急性淋巴细胞白血病关系合并分析的Z=0.10,0.76 P均>0.05; CYP1A1 MspⅠ基因突变纯合子、杂合子+突变纯合子型与急性非淋巴细胞白血病关系合并分析的Z=0.74,0.75 P均>0.05。
     结论:CYP1A1 MspⅠ基因多态性与儿童AL的发生无关。
     目的:探讨母亲怀孕过程中饮酒与儿童急性白血病(AL)发生的关系,为预防白血病提供依据。
     方法:以母亲怀孕过程中儿童AL组和对照组饮酒的例数为统计量,全面检索、筛选相关文献,提取研究数据结果,进行异质性检验,按照AL类型进行亚组分析;应用RevMan 4.2对各研究结果进行数据合并,计算合并OR值及其95%CI,并进行统计学处理;同时利用漏斗图进行发表偏倚分析。
     结果:共纳入有效文献10篇,其中AL组4593例,对照组6157例。根据两组异质性检验结果(χ2=16.26 P<0.05),采用随机效应模型计算,结果提示合并OR值及95%CI为1.02(0.92-1.14),Z=0.41,P=0.68>0.05,提示两组差异无统计学意义。亚组分析:对母亲怀孕过程中饮酒与儿童急性淋巴细胞白血病(ALL)关系的6篇文献进行,合并分析的OR值及95%CI为0.92(0.84-1.00),Z=1.92,P=0.05,提示两组差异有统计学意义。而对母亲怀孕过程中饮酒与儿童急性非淋巴细胞白血病(ANLL)关系的4篇文献进行合并分析,合并OR值及95%CI为0.82(0.61-1.11),Z=1.30,P=0.19>0.05,提示两组差异无统计学意义。
     结论:母亲怀孕过程中饮酒与儿童ALL的发生有关,但与ANLL发生无关。
Objective:Leukemia cell lines were usually used as research target in most childhood leukemia study, however, cell lines were lack of cell heterogeneity and easy to mutate, which affect of the experimental accuracy. To provide biologically and genetically similar cells as those in vivo, we explored the isolation and culture methods in childhood primary leukemia cells and proposed the optimal cultivation methods. Our study serves as important references in childhood leukemia study in vitro.
     Methods:The primary leukemia cells were collected from 25 children with acute leukemia. The primary leukemia cells were isolated by human lymphocyte separation medium. The cell morphology was observed by inverted microscope. The cell proliferation activities were analyzed by CCK-8 method under various cell densities and cell culture medium.
     Results:Cell morphology and CCK-8 shows that the primary leukemia cells have higher viability within 72 h. Cells at high density [(4-10)×106/ml]have higher cell proliferation than those at low density[(1-2)×106/ml]. The fetal bovine serum was better for primary cell proliferation than patients' own serum (P<0.05)
     Conclusions:The primary leukemic cell can be successfully isolated by human lymphocyte separation medium.6×106/ml planting density and 10% fetal bovine serum medium were the most optimal culture condition for primary leukemia cells.
     Objective:To investigate berberine-induced cell proliferation and apoptosis in childhood primary leukemia.
     Methods:The primary leukemic cells were isolated from bone marrow or peripheral blood by human lymphocyte separation medium in 27 children with newly diagnosed acute leukemia. These primary leukemic cells were divided into the following four groups:(1) the control group,(2) 25uM berberine group, (3)50uM berberine group,(4) 100 uM berberine group. Primary leukemic cell proliferation inhibition rate of berberine was obtained by cell counting kit-8 assay (CCK-8) at 24 h,48 h, and 72 h. The berberine-induced apoptosis of primary leukemia cells was analyzed by flow cytometry and optical microscopy at 24h.
     Results:After 24,48,72 h treatment of berberine, proliferation of primary leukemia cell were remarkably inhibited in a time-and dose-dependent manner, which was of significant differences (F=125.86,12.67 P<0.01). Cell morphology changes and typical apoptotsis were observed under optical microscope at 24h of berberine treatment. The berberine induced apoptotic rates at 25 uM,50 uM,100 uM were 28.51%,31.98%,48.60% at 24 h, which was detected by flow cytometry.
     Conclusion:Berberine induces apoptosis and inhibits the proliferation of primary leukemia cells in a time-and dose-dependent manner.
     Objective:To explore the relationship of MDM2, P53 gene expression and cell growth inhibition of berberine in childhood leukemic cell.
     Methods:Forty patients with newly diagnosed childhood leukemia were collected from Department of Pediatrics, Tongji Hospital as research objective, and leukemic cells were isolated by human lymphoid separation liquid, and leukemia cell growth inhibition rate of berberine was detected by CCK-8 methods. MDM2, P53 mRNA expression were detected by RT-PCR; MDM2, P53 protein expression were detected by immunohistochemistry in leukemia cells. The correlations between cell growth inhibition rate and the expression of MDM2mRNA, P53mRNA were investigated.
     Results:The higher expression of MDM2, P53 gene were observed in childhood leukemia. After 24 h of treatment, berberine induced cell growth inhibition in various concentration in MDM2 positive cells were significantly higher than that in MDM2-negative cells, while similar results was not found in P53 positive cells.
     Conclusion:Berberine may inhibit the growth of leukemia cells, which is correlated with the expression of MDM2, but not with the expression of P53.
     Objective:As the antigen expression in leukemic cells are not necessarily the same as normal hematopoietic cells. leukemic cells were often lost those normal antigens present those abnormal antigen. No specific antigen patterns were found in childhood leukemia cells. To solve the problem, we analyzed immunophenotype reaults which were detected by flow cytometry in childhood acute leukemia (AL) and compared with their clinical data.
     Methods:2-3 ml bone marrow or blood with heparin anticoagulation from children were used to test immunophenotype classification by flow cytometry. The first remissions were inducted by VDLP in ALL children, while in children with AML were DA or DAE or ARTA+DA schema.
     Results:
     1. According to characteristics of the immunophenotype in 195 AL children, the number of ALL was 139 cases (71.28%), AML were 42 cases (21.54%); AMLL 14 cases (7.18%). In 139 ALL children, B-ALL 103 cases (74.1%), T-ALL 24 cases (17.27%), T/B biphenotypic 12 cases (8.63%).In 42 children of AML, the incidence rate of M2 was the highest (40.78%), followed by M3(28.57%), M5 (16.67%), M4 (9.52%), M1 (4.76%). In this study, the consistent diagnosis rate with FAB classification was 92.82%.
     2. In 103 children of B-ALL, expression of the major antigen were CD19 (90.29%), CD10 (83.50%), CD20 (27.18%); In 24 children with T-ALL, expression of the major antigens were CD3 (79.17%), CD7 (66.67%), CD5 (33.33%). In 12 cases of B/T-ALL, the expression of T-lymphoid antigens were CD7 (50%), CD5 (41.67%), while the B lymphoid antigens were CD19 (50%), CD10 (33.33%). In 139 children of ALL, myeloid antigen expression (My+ALL) was 32 cases(23.02%), and the main expression antigen were CD 13, CD33, CD 14, MPO and CD 15 was not expressed; In 139 children of ALL, expression of CD34 in 31 cases with ALL, followed by T/B-ALL, B-ALL, T-ALL. CD34-positive expression (15.62%) in My+ALL was significantly lower than that of My-ALL (24.30%). In 82 cases of HLA-DR expression, the sequence was B-ALL, T/ B-ALL, T-ALL.
     3. In 42 children of AML, the major antigen were CD13 (64.29%), CD33 (59.52%), MPO (42.86%), CD15 (33.33%). For expression of CD13, CD33, MPO in all of ALL, whereas no expression of CD 15, the myeloid lineage specificity of CD 15 was superior to that of CD13, CD33, MPO. In M1, CD13, CD117, CD15 were mainly expressed; M2 was CD13, CD33, MPO. M3 was CD13, CD33, MPO. M4 was CD13, CD33, CD15. M5 was CD 14. In 13 children of AML were associated with lymphoid antigen expression of CD 19, CD7, CD3. In 42 cases of AML, expression of CD34 was 15 cases, which were the most common in M1, M2. Ly+ AML in the CD34-positive expression of Ly-AML was not different from that of Ly+ AML.And expression of HLA-DR was 25 cases, which were the most common in M1, M2, M4, M5.
     4. In 14 cases of AMLL, the main expression of B lineage antigens were CD 19, CD 10, CD22;the main expression of T antigens were CD7, CD3, CD5; myeloid antigen expression were CD13, CD14, CD33, CD15. Nine cases received chemotherapy in 14 cases of AMLL,6 patients achieved complete remission (CR) (66.67%) after first chemotherapy, which was lower than that of ALL and AML. In 14 cases of AML,2 cases expressed CD34; 7 cases expressed HLA-DR.
     5. The number of sex, bleeding in My+ALL group and My-ALL group were significantly different (x2=4.20,20.03 P<0.05), while the other indexes wasnot different significantly (P>0.05). CR rate (56.25%) of My+ALL group and My-ALL group (57.94%) have more differences (x2= 6.18 P<0.05). The number of cases of liver large in Ly+AML group compared with in the Ly-AML are different (x2= 6.48 P<0.05), while the other indexes did not differ significantly (P>0.05). CR rate (31.03%) in Ly+AML group and Ly-ALL group was not also different (x2= 0.15 P> 0.05).
     Conclusions:
     1. Immunetyping helps to differentiate the sources of leukemic cells, and helps to get the correct typing in most cases of childhood leukemia.
     2. To identify ALL and AML, the myeloid lineage specificity of CD 15 is superior to that of CD13, CD33 and MPO.
     3. HLA-DR negative could be of certain value in the diagnosis of AML M3.
     4. In My+ALL, the major expression of myeloid antigens was CD13 and CD33. And in Ly+AML, the major expression of lymphoid expression are CD 19, CD3. And the myeloid expression and the lymphoid expression are not related with their prognosis.
     5. AMLL is a unique acute leukemia expresses both myeloid and lymphoid antigen, which has worse prognosis than either AML or ALL.
     Objective:To evaluate of the correlations of methylenetetrahydrofolate reductase gene (MTHFR) polymorphisms and childhood acute leukemia (AL).
     Methods:MTHFR gene C677T and A1298C genotype frequencies in children with AL and control group were used as statistical quantity. Relevant literatures were extensively searched and screened according to the type of leukemia and population subgroup. These results of research data were extracted and the gene loci were tested for heterogeneity. Various research datas consolidation, combined OR values and their 95% CI were statistically tested by RevMan 4.2; Funnel plots was used for the bias analysis of published literature; sample size alteration were used to analyze the results sensitivity in order to evaluate the stability of Meta analysis.
     Results:Seventeen literatures were searched for Meta analysis. Except for MTHFR gene 677 loci genotype TT had no heterogeneity (P>0.05), the other MTHFR gene 677 loci genotypes all had heterogeneity. the frequency distribution of MTHFR gene 677 loci genotype TT in AL group was significantly higher than that in control group, and it's combined OR values and 95% CI were 0.81(0.69-0.97)(P<0.05). MTHFR gene 677 loci genotype CT, TT+CT of the frequency in AL group compared with that in control group had no significant difference (P>0.05). Compared to control group, there were no significant difference of frequency distribution of MTHFR gene 1298 loci AC, CC, AC+ CC in pediatric AL group. Combined OR values and 95%CI were 1.11 (0.83-1.49),1.15 (0.93-1.42),1.18 (0.95-1.46) (P>0.05).
     Subgroup analysis:1.the results suggest that MTHFR 677 loci CT, CT+TT and 1298 loci AC, CC, AC+CC were not correlated with ALL; In ANLL group, analysis results indicated that MTHFR gene polymorphism in ANLL group has nothing to do with control group.2. The analysis results suggested that MTHFR1298 loci CC, AC+CC was related with childhood AL in Asian populations (Z=2.05,2.01,P<0.05) while in Europe population, MTHFR 677 loci CT, CT+TT was related with childhood AL (Z=2.91,2.08,P <0.05).In other population, MTHFR677,1298 was not related with childhood AL. The bias and sensitivity analysis confirmed that the Meta analysis of the publicated literatures in this article werestable and reliable.
     Conclusions:MTHFR gene 677 loci TT is closely related with pediatric AL; And MTHFR gene 677 CT, CT+TT are also contributed to the occurrence of AL in European children. MTHFR gene 1298 loci CC is the protective factors of AL in European children, and MTHFR gene 1298 loci AC+CC can led to the occurrence of AL in the Asian children.
     Objective:To investigate the relationship of cytochrome P4501A1 (CYP1 A1) MspⅠgene polymorphism and childhood acute leukemia (AL).
     Methods:The CYP1 A1 MspⅠgene frequencies were used as statistical quantity in AL and control group. Relevant literatures were extensively searched and screened according to the type of leukemia and the subgroup of population. These results of research data were extracted and the gene loci were tested for heterogeneity. Various research datas consolidation, combined OR values and their 95% CI were statistically tested by RevMan 4.2; Funnel plots was used for the bias analysis of published literature.
     Results:Six related literatures were found to meet the requirements of screen,including 837 cases in AL group and 1252 cases in control group. According to heterogeneity test result, there was no significant difference (x2=11.68, P>0.05)in homozygous types, but in two others types, there were significant difference (x2= 16.38,14.77, P all<0.05). For the wild CYP1A1 MspⅠhomozygous for the reference group, the combined OR of heterozygous mutation, homozygous, heterozygous + homozygous mutation in AL and control groups were 1.18(0.94-1.49),0.96(0.31-3.00),1.10(0.77-1.57). Subgroup analysis: combined analysis(Z value) of CYP1A1 MspⅠhomozygous, heterozygous + homozygous in acute lymphoblastic leukemia (ALL) and control group were 0.10,0.76 respectively, P all > 0.05; Z value of CYP1A1 MspⅠhomozygous, heterozygous + homozygous in non-acute lymphoblastic leukemia (ANLL) and control group were 0.74,0.75, P all> 0.05.
     Conclusion:There is no correlation between CYP1 A1 MspⅠgene polymorphism and the susceptibility of pediatric AL.
     Objective:To explore the relationship between maternal alcohol consumption during pregnancy and childhood acute leukemia (AL), which provides a basis for the prevention of childhood AL.
     Methods:These relevant literatures of maternal alcohol consumption during pregnancy were comprehensively searched and screened in AL group and control group, and according to the type of leukemic subgroup, Meta analysis was used. These results of research data of maternal alcohol consumption during pregnancy were tested for heterogeneity. The combined OR values and their 95%CI were statistically tested by Rev Man 4.2; and the funnel plots was used for the bias analysis of all the published literatures.
     Results:Ten pieces of related literatures meeted the requirements of data screen. The number of AL cases and control group were 4593 and 6157 respectively. According to heterogeneity test result, there was difference (x2= 16.26, P<0.05), and combined OR values and 95% CI in AL and control group by random effects model were 1.00 (0.90-1.11), and the total effect Z value was 0.02, P>0.05. Subgroup analysis:combined OR values and 95% CI in childhood acute lymphoblastic leukemia (ALL) and control group were 0.92 (0.84-1.00), and the total effect (Z value) of the results was 1.92, P= 0.05. Combined OR values and 95% CI in childhood acute nonlymphoblastic leukemia (ANLL) and control group were 0.82(0.61-1.11), and the total effect (Z value) of the results was 1.30, P> 0.05.
     Conclusion:Maternal alcohol consumption during pregnancy is a risk factor in childhood ALL, but not in ANLL.
引文
1.郑胡镛.儿童急性淋巴细胞白血病治疗进展.实用儿科临床杂志,2007,22(3):167-169.
    2.马金香,雷毅雄,叶铁真,等.广东省儿童青少年白血病流行特征分析.中国预防医学杂志,2008,9(4):245-247.
    3.赵筱昱,孙月吉,李倩.儿童白血病对母亲心理健康状况的影响.中国医药导报,2009,6(18):133-135.
    4.赖永洪,吴梓梁.小儿白血病化疗药物的毒性反应及处理.实用儿科临床杂志,2008,23(15):1150-1153.
    5.赵玉红,佟莉贞.儿童急性白血病42例的死亡原因及相关因素.实用儿科临床杂志,2009,24(3):211-213.
    6. Mayer SP, Giamelli J, Sandoval C, et al. Quantitation of leukemia clone-specific antigen gene rearrangements by a single-step PCR and fluorescence-based detection method. Leukemia,2005,13:1843-1852.
    7. Taub JW, Konrad MA, Ge Y, et al. High frequency of leukemic clones in newborn screening blood samples of children with B-precursor acute lymphoblastic leukemia. Blood,2002,99:2992-2996.
    8. Mori H, Colman SM, Xiao Z, et al. Chromosome translocations and covert leukemic clones are generated during normal fetal development. Proc Natl Acad Sci USA,2004, 99:8242-8247.
    9. Ravindranath Y. Recent advances in pediatric acute lymphoblastic and myeloid leukemia. Curr Opin Oncol,2003,15:23-35.
    10. Zur Stadt U, Rischewski J, Schneppenheim R, et al. Denaturing HPLC for identification of clonal T-cell receptor gamma rearrangements in newly diagnosed acute lymphoblastic leukemia. Clin Chem,2004,47:2003-2011
    11. Jeha S. Recent progress in the treatment of acute lymphoblastic leukemia:clofarabine. Hematol Oncol Clin North Am,2009,23(5):1137-44.
    12. Krajinovic M, Labuda D, Mathonnet G, et al. Polymorphisms in genes encoding drugs and xenobiotic metabolizing enzymes, DNA repair enzymes, and response to treatment of childhood acute lymphoblastic leukemia. Clin Cancer Res,2005,8:802-810.
    13. Hochberg J, Cairo MS.Childhood and adolescent lymphoblasti lymphoma:end of the beginning and future directions.Pediatr Blood Cancer,2009,53(6):917-919.
    14.赵立峰,李明.黄连素研究进展.唐山学院学报,2008,21(6):35-36.
    15.吴丹,魏敬.黄连素治疗2型糖尿病的临床疗效观察.南京医科大学学报(自然科学版),2009,29(5):736-738.
    16. Ho YT, Lu CC, Yang JS, et al. Berberine induced apoptosis via promoting the expression of caspase-8,-9 and-3, apoptosis-inducing factor and endonuclease G in SCC-4 human tongue squamous carcinoma cancer cellsAnticancer Res,2009, 29(10):4063-4070.
    17. Zhang H, Wei J, Xue R, et al.Berberine lowers blood glucose in type 2 diabetes mellitus patients through increasing insulin receptor expression. Metabolism,2010, 59(2):285-292.
    18. Sun X, Zhang X, Hu H, et al.Berberine inhibits hepatic stellate cell proliferation and prevents experimental liver fibrosis.Biol Pharm Bull,2009,32(9):1533-1537.
    19. Sun Y, Xun K, Wang Y, et al. A systematic review of the anticancer properties of berberine, a natural product from Chinese herbs. Anticancer Drugs,2009, 20(9):757-769.
    20. Zhang W, Su X, Gao Y, et al.Berberine protects mesenchymal stem cells against hypoxia-induced apoptosis in vitro. Biol Pharm Bull,2009,32(8):1335-1342.
    21. Jin L, Liao HJ, Zhang MY, et al. Effect of berberine on the differentiation and apoptosis of K562 cell line.Zhong Yao Cai,2009,32(3):384-388.
    22. Letasiova S, Jantova S, Cipak L, et al. Berberine anti-proliferative activity in vitro and induction of apoptosis/necrosis of the U937 and B16 cells. Cancer Lett,2006, 239:254-262.
    23. Kettmann V, Kosfalova D, Jantova S, et al. In vitro cytotoxicity of berberine against HeLa and L1210 cancer cell lines. Pharmazie,2004,59:548-551.
    24. Hwang JM, Kuo HC, Tseng TH, et al. Berberine induces apoptosis through a mitochondria/caspases pathway in human hepatoma cells.Arch Toxicol,2006,80:62-73.
    25. Liu SJ, Sun YM, Tian DF, et al. Downregulated NM23-H1 expression is associated with intracranial invasion of nasopharyngeal carcinoma. Br J Cancer,2008, 98(2):363-369.
    26. Mantena SK, Sharma SD, Katiyar SK. Berberine, a natural product, induces G1-phase cell cycle arrest and caspase-3-dependent apoptosis in human prostate carcinoma cells. Mol Cancer Ther,2006,5(2):296-308.
    27. Lin JP, Yang JS, Lee JH, et al. Berberine induces cell cycle arrest and apoptosis in human gastric carcinoma SNU-5 cell line. World J Gastroenterol,2006,12:21-28.
    28. Liu ZJ, Liu Q, Xua B, et al. Berberine induces p53-dependent cell cycle arrest and apoptosis of human osteosarcoma cells by inflicting DNA damage. Mutat Res,2009, 662(1-2):75-83.
    29. Kim S, Choi JH, Kim JB, et al. Berberine suppresses TNF-alpha-induced MMP-9 and cell invasion through inhibition of AP-1 activity in MDA-MB-231 human breast cancer cells. Molecule,2008,13(12):2975-2985.
    30. Choi MS, Yuk DY, Oh JH, et al. Berberine inhibits human neuroblastoma cell growth through induction of p53-dependent apoptosis. Anticancer Res,2008,28(6A):3777-3784.
    31. Katiyar SK, Meeran SM, Katiyar N, et al. p53 Cooperates berberine-induced growth inhibition and apoptosis of non-small cell human lung cancer cells in vitro and tumor xenograft growth in vivo. Mol Carcinog,2009,48(l):24-37.
    32. Kuo CL, Chi CW, Liu TY. Modulation of apoptosis by berberine through inhibition of cyclooxygenase-2 and Mcl-1 expression in oral cancer cells. In vivo,2005,19:247-252.
    33. Mantena SK, Sharma SD, Katiyar SK. Berberine inhibits growth, induces G1 arrest and apoptosis in human epidermoid carcinoma A431 cells by regulating Cdki-Cdk-cyclin cascade, disruption of mitochondrial membrane potential andcleavage of caspase 3 and PARR Carcinogenesis,2006,27:2018-2027.
    34. Choi MS, Oh JH, Kim SM, et al. Berberine inhibits p53-dependent cell growth through induction of apoptosis of prostate cancer cells. Int J Oncol,2009,34(5):1221-1230.
    35. Piyanuch R, Sukhthankar M, Wandee G, et al. Berberine, a natural isoquinoline alkaloid, induces NAG-1 and ATF3 expression in human colorectal cancer cells. Cancer Lett, 2007,258(2):230-240.
    36. Teodoro JG, Evans SK, GreenMR. Inhibition of tumor angiogenesis by p53:a new role for the guardian of the genome. JMol Med,2007,85:1175-1186.
    37. Hu W, Feng Z, Atwal GS, et al. p53:a new player in reproduction. Cell Cycle,2008, 7(7):848-852.
    38. Weber L. Patented inhibitors of p53-Mdm2 interaction (2006-2008).Expert Opin Ther Pat,2010,20(2):179-191.
    39. Michael D, Oren M. The p53-Mdm2 module and the ubiquitin system. Semin Cancer Biol,2003,13:49-58.
    40. Dastidar SG, Lane DP, Verma CS.Modulation of p53 binding to MDM2:computational studies reveal important roles of Tyr100. BMC Bioinformat,2009,10 (Suppl 15):S6.
    41. Marchenko ND, Hanel W, Li D, et al.Stress-mediated nuclear stabilization of p53 is regulated by ubiquitination and importin-alpha3 binding. Cell Death Differ,2010, 17(2):255-267.
    42. Nie J, Tian CY. Progress in regulation of activity and stability of ubiquitin protein ligase MDM2.Yi Chuan,2009,31(10):993-998.
    43. Zhou M, Yeager AM, Smith SD, et al. Overexpression of the MDM2 gene by childhood acute lymphoblastic leukemia cells expressing the wild-type p53 gene. Blood,1995,85: 1608-1614.
    44. Zhou M, Gu L, Abshire T, et al. Incidence and prognostic significance of MDM2 oncoprotein overexpresion in relapsed childhood acute lymphoblastic leukemia. Leukemia,2000,14:61-67.
    45. Noon AP, Vlatkovic N, Polanski R, et al. p53 and MDM2 in renal cell carcinoma: biomarkers for disease progression and future therapeutic targets? Cancer,2010, 116(4):780-790.
    46. Lin CC, Lin SY, Chung JG, et al.Down-regulation of cyclin B1 and up-regulation of Weel by berberine promotes entry of leukemia cells into the G2/M-phase of the cell cycle. Anticancer Res,2006,26(2A):1097-1104.
    47. He ZW, Zhao XY, Xu RZ, et al.Effects of berbamine on growth of leukemia cell line NB4 and its mechanism. Zhejiang Da Xue Xue Bao Yi Xue Ban,2006,35(2):209-214.
    48. Lin CC, Kao ST, Chen GW, et al. Apoptosis of human leukemia HL-60 cells and murine leukemia WEHI-3 cells induced by berberine through the activation of caspase-3. Anticancer Res,2006,26(1A):227-242.
    49. Chung JG, Chen GW, Hung CF, et al. Effects of berberine on arylamine N-acetyltransferase activity and 2-aminofluorene-DNA adduct formation in human leukemia cells. Am J Chin Med,2000,28(2):227-238.
    50. Kinooka M, Taya M. Recent developments in processing systems for cell and tissue cultures toward therapeutic application J Biosci Bioeng,2009,108(4):267-76.
    1.赖永洪.儿科造血系统疾病新进展.实用儿科临床杂志,2007,22(3):238-240.
    2. Mayer SP, Giamelli J, Sandoval C,et al. Quantitation of leukemia clone-specific antigen gene rearrangements by a single-step PCR and fluorescence-based detection method. Leukemia,2005,13:1843-1852.
    3. Taub JW, Konrad MA, Ge Y, et al. High frequency of leukemic clones in newborn screening blood samples of children with B-precursor acute lymphoblastic leukemia. Blood,2002,99:2992-2996.
    4.孟建华,高怡瑾,陆凤娟,等.儿童急性淋巴细胞白血病治疗失败原因分析.中国小儿血液与肿瘤杂志,2009,14(3):140-143.
    5. Vereecque R, Saudemont A, Quesnel B.Short-term culture of myeloid leukemic cells allows efficient transduction by adenoviral vectors.J Gene Med,2004,6(7):751-759.
    6. Ying HG, Brigitte G, Donna EH. Detection, isolation and stimulation of quiescent primitive leukemic progenitor cells from patients with acute myeloid leukemia (AML). Blood,2003,101 (8):3142-3149.
    7.中华医学会儿科学分会血液学组中华儿科杂志编辑委员会.儿童急性淋巴细胞白血病诊疗建议(第3次修订草案).中华儿科杂志,2006,44(5):392-395.
    8.中华医学会儿科学分会血液学组中华儿科杂志编辑委员会.儿童急性髓细胞白血病诊疗建议.中华儿科杂志,2006,44(11):877-878.
    9.何璐璐,符仁义,陆勤,等.儿童白血病体外药物敏感实验的临床意义.南京医科 大学学报(自然科学版),2006,26(10):964-967.
    10. Kouni M, Vavatsi N, Gombakis N, et al.Increased expression of multidrug resistance gene (MDR1) at relapse in a child with acute Iymphoblastic leukemia. Pediatr Hematol Oncol,2006,23(6):489-494.
    11.吴丽萍,陈福雄,卢慧敏,等.急性白血病儿童骨髓间充质干细胞的生物学特点的初步研究.中国实验血液学杂志,2009,17(3):734-738.
    12. Drexler HG, MacLeod RA.Malignant hematopoietic cell lines:in vitro models for the study of mast cell leukemia.Leuk Res,2003 27(8):671-676.
    13. Olsnes AM, Ryningen A, Ersvaer E, et al.In vitro induction of a dendritic cell phenotype in primary human acute myelogenous leukemia (AML) blasts alters the chemokine release profile and increases the levels of T cell chemotactic CCL17 and CCL22JInterferon Cytokine Res,2008,28(5):297-310.
    14. Zhou ZX, Zhang BG, Zhang H, et al. Drug packaging and delivery using perfluorocarbon nanoparticles for targeted inhibition of vascular smooth muscle cells Acta Pharmacol Sin,2009,30(11):1577-1584.
    15. Park HH, Lee KY, Kim SH, et al.L-DOPA-induced neurotoxicity is reduced by the activation of the PI3K signaling pathway. Toxicology,2009,265(3):80-86.
    16.李宁,万文婷,金林红.CCK-8法和MTT法检测人前列腺癌PC3细胞活性的最佳条件比较研究.贵州大学学报(自然版),2009,26(3):18-20.
    17.张炳强,于丽, 石娟,等.人脐血间充质干细胞分离培养方法的优化.中国组织化学与细胞化学杂志,2009,18(2):123-127.
    18.王佳南,张晓刚,汤为学,等.大鼠骨髓间充质干细胞的原代培养条件.中国组织工程研究与临床康复,2009,13(14):2740-2745.
    19.魏绪仓,吴成苗,韩秀蕊,等.无血清培养慢性粒细胞白血病树突状细胞的方法及其杀瘤效应研究.现代检验医学杂志,2008,23(5):52-54.
    20. Nijmeijer BA, Szuhai K, Goselink HM, et al.Long-term culture of primary human lymphoblastic leukemia cells in the absence of serum or hematopoietic growth factors. Exp Hematol,2009,37(3):376-385.
    21.王莹,孙立荣.儿童急性白血病免疫分型及其临床意义.齐鲁医学杂志,2008,23(3):210-212.
    22. Barsov EV. Selective immortalization of tumor-specific T cells to establish long-term T-cell lines maintaining primary cell characteristics.Methods Mol Biol,2009, 511:143-158.
    1.林艳娟,吕联煌,陈志哲,等.Bc1-2反义核酸联合化疗药对HL-60细胞及原代白血病细胞的作用.中国药理学通报,2009,25(8):1007-1012.
    2.郑胡镛.儿童急性淋巴细胞白血病治疗进展.实用儿科临床杂志,2007,22(3):167-169.
    3. Russell NH. Biology of acute leukemia. Lancet,2003,349:118-122.
    4.廖清奎.小儿血液病基础与临床.北京人民卫生出版社.2001:496-522.
    5.赖永洪,吴梓梁.小儿白血病化疗药物的毒性反应及处理.实用儿科临床杂志,2008,23(15):1150-1153.
    6. Taub JW, Konrad MA, Ge Y, et al. High frequency of leukemic clones in newborn screening blood samples of children with B-precursor acute lymphoblastic leukemia. Blood,2002,99:2992-2996.
    7. Mayer SP, Giamelli J, Sandoval C,et al. Quantitation of leukemia clone-specific antigen gene rearrangements by a single-step PCR and fluorescence-based detection method. Leukemia,2005,13:1843-1852.
    8.孟建华,高怡瑾,陆凤娟,等.儿童急性淋巴细胞白血病治疗失败原因分析.中国小儿血液与肿瘤杂志,2009,14(3):140-143.
    9. Sack RB, Froehlich JL. Berberine inhibits intestinal secretory response of Vibrio cholerae and Escher ichia coli enterotoxins. Infect Immunol,1982,35(2):471-475.
    10. Zhang MF, Shen YQ.Antidiarrheal and anti-inflammatory effects of berberine. Zhongguo Yao Li Xue Bao,1989,10(2):174-176.
    11. Huang WM. A study of the antiarrhythmic mechanism of berberine on delayed activation potassium current by voltage clamp. Zhonghua Xin Xue Guan Bing Za Zhi, 1992,20(5):310-325.
    12. Lee CH, Chen JC, Hsiang CY, et al. Berberine suppresses inflammatory agents-induced interleukin-lbeta and tumor necrosis factor-alpha productions via the inhibition of Ikappa B degradation in human lung cells. Pharmacol Res,2007,56(3):193-201.
    13. Kong W, Wei J, Abidi P,et al.Berberine is a novel cholesterol-lowering drug working through a unique mechanism distinct from statins.Nat Med,2004,10(12):1344-1351.
    14. Li B, Zhu WL, Chen KX. Advance in the study of berberine and its derivatives. Yao Xue Xue Bao,2008,43(8):773-787.
    15. Sun Y, Xun K, Wang Y, et al. A systematic review of the anticancer properties of berberine, a natural product from Chinese herbs.Anticancer Drugs,2009, 20(9):757-769.
    16. Anis KV, Rajeshkumar NV, Kuttan R. Inhibition of chemical carcinogenesis by berberine in rats and mice. Pharmacol,2001,53(5):763-768.
    17. Wang DY, Yeh CC, Lee JH, et al. Berberine inhibitedarylamine N-acetyltransferase activity and gene exp ression and DNA adduct formation in human malignant astrocytoma and brain glioblastoma multiforms cells.Neurochem Res,2002,27 (9): 883-889.
    18. Ho YT, Lu CC, Yang JS, et al. Berberine induced apoptosis via promoting the expression of caspase-8,-9 and-3, apoptosis-inducing factor and endonuclease G in SCC-4 human tongue squamous carcinoma cancer cellsAnticancer Res,2009, 29(10):4063-4070.
    19. Nishino H, Kitagawa K, Fujiki H, et al. Berberine sulfate inhibits tumor-promoting activity of teleocidin in two-stage carcinogenesis on mouse skin. Oncology,1986,43 (2):131-134.
    20. Khan M, Giessrigl B, Vonach C, et al.Berberine and a Berberis lycium extract inactivate Cdc25A and induce alpha-tubulin acetylation that correlate with HL-60 cell cycle inhibition and apoptosis.Mutat Res,2010,683(1-2):123-130.
    21. Lin CC, Kao ST, Chen GW, et al. Berberine decreased N-acetylation of 2-aminofluorene through inhibition of N-acetyltransferase gene exp ression in human leukemia HL-60 cells. Anticancer Res,2005,25 (6B):4149-4155.
    22. Lin CC, Kao ST, Chen GW, et al. Apoptosis of human leukemia HL-60 cells and murine leukemia WEHI-3 cells induced by berberine through the activation of caspase-3 Anticancer Res,2006,26(1A):227-242.
    23. Lin SS, Chung JG, Lin JP, et al. Berberine inhibits arylamine N-acetyltransferase activity and gene exp ression in mouse leukemia L1210 cells. Phytomedicine,2005,12 (5):351-358.
    24. Jantova S, Cipak L, Cernakova M, et al. Effect of berberine on proliferation, cell cycle and apoptosis in HeLa and L1210 cells. JPharm Pharmacol,2003,55(8):1143-1149.
    25.蒋艳,胡群,刘双又,等.小檗碱诱导人急性T淋巴细胞白血病细胞凋亡的研究.医药导报,2005,24(7):568-570.
    26.熊建文,肖化,张镇西.MTT法和CCK-8法检测细胞活性之测试条件比较.激光生物学报,2007,16(5):559-562.
    27.李宁,万文婷,金林红.CCK-8法和MTT法检测人前列腺癌PC3细胞活性的最佳条件比较研究.贵州大学学报(自然科学版),2009,26(6):18-21.
    1. Gustafsson B, Christenson B, Gustafsson B, et al. Cellular expression of MDM2 and p53 in childhood leukemias with poor prognosis.Med Pediatr Oncol,2000,34:117-124.
    2. Li M, Zhang Z, Hill DL, et al. Curcumin, a dietary component, has anticancer, chemosensitization, and radiosensitization effect by down-regulating the MDM2 oncogene through the PI3K/mTOR/ETS-pathway.Cancer Res,2007,67(5):1988-1996.
    3.中华医学会儿科学分会血液学组中华儿科杂志编辑委员会.儿童急性淋巴细胞白血病诊疗建议(第3次修订草案).中华儿科杂志,2006,44(5):392-395.
    4.中华医学会儿科学分会血液学组中华儿科杂志编辑委员会.儿童急性髓细胞白血病诊疗建议.中华儿科杂志,2006,44(11):877-878.
    5.马夫天,姬静璐,王素明,等.儿童急性白血病MDM2基因的表达及其临床意义.承德医学院学报,2005,22(2):109-111.
    6. White DE, Talbott KE, Arva NC, et al. Mouse double minute 2 associates with chromatin in the presence of p53 and is released to facilitate activation of transcription.Cancer Res,2006,66(7):3463-3470.
    7. Mayr C, Bund D, Schlee M, et al.MDM2 is recognized as a tumor-associated antigen in chronic lymphocytic leukemia by CD8+ autologous T lymphocytes.Exp Hematol,2006, 34(1):44-53.
    8.魏华,孔燕,靳振怀.mdm2基因在肾母细胞瘤中的及其与临床病理因素的关系.实用儿科临床杂志,2006,21(3):183-184
    9.晁恒军,王立,王建祥,等.MDM2基因在急性白血病中作用的研究.中华血液学杂志,1997,18:13-16.
    10. Momand J, Jung D, Wilczynski S, et al. MDM2 gene amplification database. Nucleic Acids Res,1998,26:3453-3459.
    11. Sugimoto K,Kawamata N,Sakajiri S,et al.Molecular analysis of oncogenes,ras family genes(N-ras,K-ras,H-ras),myc family genes(c-myc,N-myc),and mdm2 in Nature Killer cell neoplasms Jpn J Cancer Res,2002,93:1270-1277.
    12.黄岩,王俊萍.MDM2与MMP-9在骨肉瘤组织中的表达及临床意义.实用肿瘤学杂志,2009,23(1):35-38.
    13.胡群,宋宇,郭艺杰,等.MDM2及P53在儿童急性淋巴细胞白血病中的表达及临床意义探讨.华中科技大学学报(医学版),2002,31(6):682-684.
    14. Gao C, Nakajima T, Taya Y, et al.Activation of p53 in MDM2-overexpressing cells through phosphorylation.Biochem Biophys Res Commun,1999,264:860-864.
    15.祝峙,朱明华.p53基因网络的研究进展.癌症,2003,22(5):547-551.
    16. Momand J, Zambetti G.P, Olson DC, et al. The mdm2 oncogene product forms a complex with the p53protein and inhibits p53-mediated transactivation. Cell,1992, 69:1237-1245.
    17. Kubbutat MH, Jones SN, Vousden KH. Regulation of p53 stability by Mdm2. Nature, 1997,387:299-303.
    18. Bueso-Ramos CE, Manshouri T, Haidar MA, et al. Multiple patterns of MDM2 deregulation in human leukemias:implications in leukemogenesis and prognosis. Leuk Lymph,1995,17:131.
    19. Hendy OM, Elghannam DM, El-Sharnouby JA, et al. Frequency and prognostic significance of murine double minute protein-2 overexpression and p53 gene mutations in childhood acute lymphoblastic leukemia.Hematology,2009,14(6):335-340.
    20.蒋莎义,陈力军,高飞,等.癌基因MDM2过度表达与儿童急性淋巴细胞白血病的发病和预后的关系.中华儿科杂志,2000,38(7):445.
    21. Marks DI, Kurz BW, Link MP, et al. Altered expression of p53 and mdm-2 proteins at diagnosis is associated with early treatment failure in childhood acute lymphoblastic leukemia. J Clin Oncol,1997,15:1158-1162.
    22. Zhou M, Gu L, Abshire TC, et al. Incidence and prognostic significance of MDM2 oncoprotein overexpression in relapsed childhood acute lymphoblastic leukemia. Leukemia,2000,14:61-67.
    23. Haidar MA, El-Hajj H, Bueso-Ramos CE,et al. Expression profile of MDM-2 proteins in chronic lymphocytic leukemia and their clinical relevance. Am J Hematol,1997, 54:189-195.
    24. Gustafsson B,Christenson B, Hjalmar V, et al. Cellular expression of MDM2 and p53 in childhood leukemias with poor prognosis. Med Pediatr Oncol,2000,34:117-124.
    25. Faderl S, Kantarjian HM, Estey E, et al.The prognostic significance of p16(INK4a)/pl4(ARF) locus deletion and MDM-2 protein expression in adult acute myelogenous leukemia. Cancer,2000,1:1976-1982.
    26. Pagnano KB, Vassallo J, Lorand-Metze I, et al. p53, Mdm2, and c-Myc overexpression is associated with a poor prognosis in aggressive non-Hodgkin's lymphomas. Am J Hematol,2001,67:84-92.
    27. Wilda M, Bruch J, Harder L, et al. Inactivation of the ARF-MDM-2-p53 pathway in sporadic Burkitt's lymphoma in children. Leukemia,2004,18:584-588.
    28. Moller MB. Molecular control of the cell cycle in cancer:biological and clinical aspects. Dan Med Bull,2003,50:118-138.
    29. Moller MB, Nielsen O, Pedersen NT. Oncoprotein MDM2 overexpression is associated with poor prognosis in distinct non-Hodgkin's lymphoma entities. Mod Pathol,1999, 12:1010-1016.
    30. Moller MB, Nielsen O, Pedersen NT. Frequent alteration of MDM2 and p53 in the molecular progression of recurring non-Hodgkin's lymphoma. Histopathology,2002,41: 322-330.
    31.林茂芳,刘艳春,金洁.MDM2和p53基因蛋白在急性白血病细胞中表达及与化疗反应的关系.中华血液学杂志,1998,19(7):350-352.
    32. Finnegan MC, Goepel JR, Royds, et al. Elevated levels of MDM2 and p53 expression are associated with high-grade non-Hodgkin's lymphomas. Cancer Lett,1994, 11:215-221.
    33. Styczynski J, Wysocki M.Ex vivo drug resistance in childhood acute myeloid leukemia on relapse is not higher than at first diagnosis.Pediatr Blood Cancer,2004,42(2): 195-199.
    34. Woerden NL, Beverloo HB,Veerman AJ,et al.In vitro drug-resistance profile in infant acute lymphoblastic leukemia in relation to age,MLL rearrangements and immunophenotype.Leukemia,2004,18(3):521-529.
    35. Mihal V,Hajduch M,Noskova V,et al.The analysis of correlations between drug resistance and clinical/laboratory measures found in a group of children with all treated by ALL-BFM 90 protocol.Bull Cancer,2004,91(4):80-89.
    36.赵满仓,魏文青,刘晶,等.MTT法抗肿瘤药敏试验影响因素的探讨.临床肿瘤学杂志,2009,14(4):306-308.
    37.李宁,万文婷,金林红.CCK-8法和MTT法检测人前列腺癌PC3细胞活性的最佳条件比较研究.贵州大学学报(自然科学版),2009,26(6):18-21.
    38. Marks DI, Kurz BW, Link MP, et al. Altered expression of p53 and mdm-2 proteins at diagnosis is associated with early treatment failure in childhood acute lymphoblastic leukemia. J Clin Oncol,2007,15:1158-1162.
    39. Cocker HA, Hobbs SM, Tiffin N, et al. High levels of the MDM2 oncogene in pediatric rhabdomyosarcoma cell lines may confer multidrug resistance. Br J Cancer,2001, 85:1746-1752.
    40. Suzuki A,Toi M,Yamamoto Y,et al. Role of MDM2 overexpression in doxorubicin resistance of breast carcinoma. Jpn J Cancer Res,1998,89:221-227.
    41. Gustafsson B, Axelsson B, GustafssonB, et al. MDM2 and p53 in childhood acute lymphoblasticleukemia:higher expression in childhood leukemias with poor prognosis compared to long-term survivors.Pediatr Hematol Oncol,2001,18:497-508.
    42. Konikova E, Kusenda J.Altered expression of p53 and MDM2 proteins in hematological malignancies. Neoplasma,2003,50:31-40.
    43. Bueso-Ramos CE, Yang Y, deLeon E, et al. The human MDM-2 oncogene is overexpressed in leukemias. Blood,1993,82:2617-2623.
    44.何璐璐,符仁义,陆勤,等.儿童白血病体外药物敏感实验的临床意义.南京医科大学学报(自然科学版),2006,26(10):964-967.
    1.王莹,孙立荣.儿童急性白血病免疫分型及其临床意义.齐鲁医学杂志,2008,23(3):210-212.
    2. Yasmeen N, Ashraf S.Childhood acute lymphoblastic leukaemia:epidemiology and clinicopathological features JPakMed Assoc,2009,59(3):150-153.
    3.黄婕,何璐璐,方拥军,等.儿童急性白血病免疫表型及临床研究.医学临床研究,2008,25(12):2159-2161.
    4. Hamouda F, El-Sissy AH, Radwan AK, et al.Correlation of karyotype and immunophenotype in childhood acute lymphoblastic leukemia; experience at the National Cancer Institute, Cairo University, Egypt.J Egypt Natl Canc Inst,2007, 19(2):87-95.
    5. Ratei R, Basso G, Dworzak M, et al. Monitoring treatment response of childhood precursor B-cell acute lymphoblastic leukemia in the AIEOP-BFM-ALL 2000 protocol with multiparameter flow cytometry:predictive impact of early blast reduction on the remission status after induction. Leukemia,2009,23(3):528-534.
    6.中华医学会儿科学分会血液学组,中华儿科杂志编辑委员会.儿童急性淋巴细胞白血病诊疗建议(第三次修订草案).中华儿科杂志,2006,44(5):392-395.
    7.中华医学会儿科学分会血液学组中华儿科杂志编辑委员会.儿童急性髓细胞白血病诊疗建议.中华儿科杂志,2006,44(11):877-878.
    8.蔡耘,陈惠芹,李晓峰,等.111例儿童急性淋巴细胞白血病免疫分型与临床研究.中国热带医学,2009,9(6):1039-1042.
    9.黄正刚,陈启文,吴星恒,等.67例儿童急性白血病流式细胞术免疫分型的研究.实用临床医学,2008,9(5):87-90.
    10. Bene MC, Castoldi G, Knapp W, et al. Proposals for the immunological classification of acute leukemias. European Group for the Immunological Characterization of Leukemias (EGIL). Leukemia,1995,9(10):1783-1786.
    11. Attarbaschi A, Mann G, Konig M, et al. Mixed lineage leukemia-rearranged childhood pro-B and CD10-negative pre-B acute lymphoblastic leukemia constitute a distinct clinical entity.Clin Cancer Res,2006,12(10):2988-2994.
    12. Wu WL, Liang JY, Zhu MQ, et al. MIC categorization of acute lymphoblastic leukemia with myeloid surface antigen expression.Zhonghua Xue Ye Xue Za Zhi,2007, 28(11):754-756.
    13. Vormoor HJ.Malignant stem cells in childhood acute lymphoblastic leukemia:the stem cell concept revisited. Cell Cycle,2009,8(7):996-999.
    14. Zangrando A, Luchini A, Buldini B, et al. Immunophenotype signature as a tool to define prognostic subgroups in childhood acute myeloid leukemia.Leukemia,2006, 20(5):888-891.
    15. Dakka N, Bellaoui H, Khattab M, et al. Immunologic profile and outcome of childhood acute lymphoblastic leukemia (ALL) in Morocco. J Pediatr Hematol Oncol,2007, 29(8):574-580.
    16. Zheng J, Wang X, Hu Y, et al. A correlation study of immunophenotypic, cytogenetic, and clinical features of 180 AML patients in China.Cytometry B Clin Cytom,2008, 74(1):25-29.
    17. Sachdeva MU, Ahluwalia J, Das R, et al. Role of FAB classification of acute leukemias in era of immunophenotyping.Indian JPathol Microbiol,2006,49(4):524-527.
    18. Bulsa J, Sedek L, Sonta-Jakimczyk D, et al. Comparative analysis of blast immunophenotype between the diagnosis and relapse of childhood acute lymphoblastic leukaemia-implications for monitoring of minimal residual disease.Med Wieku Rozwo J,2008,12(4 Pt 2):1045-1050.
    19. Bachir F, Bennani S, Lahjouji A, et al.Characterization of acute lymphoblastic leukemia subtypes in Moroccan children.Int J Pediatr,2009,67(4):801.
    20. Babusikova O, Stevulova L, Fajtova M. Immunophenotyping parameters as prognostic factors in T-acute leukemia patients.Neoplasma,2009,56(6):508-513.
    21. Langebrake C, Brinkmann I, Teigler-Schlegel A, et al.Immunophenotypic differences between diagnosis and relapse in childhood AML:Implications for MRD monitoring.Cytometry B Clin Cytom,2005,63(1):1-9.
    22. Roberson JR, Onciu M, Pounds S, et al. Prognostic significance of myeloperoxidase expression in childhood acute myeloid leukemia.Pediatr Blood Cancer,2008, 50(3):542-548.
    23. Zangrando A, Luchini A, Buldini B, et al.Immunophenotype signature as a tool to define prognostic subgroups in childhood acute myeloid leukemia.Leukemia,2006,20 (5):888-891.
    24. Gudowius S, Recker K, Laws HJ, et al. Identification of candidate target antigens for antibody-based immunotherapy in childhood B-cell precursor ALL.Klin Peadiatr,2006, 218(6):327-333.
    25. Junghanss C, Waak M, Knopp A, et al. Multivariate analyses of prognostic factors in acute myeloid leukemia:relevance of cytogenetic abnormalities and CD34 exp ression. Neoplasma,2005; 52 (5):402-410.
    26. Dakka N, Bellaoui H, Bouzid N, et al.CD10 and CD34 expression in childhood acute lymphoblastic leukemia in Morocco:clinical relevance and outcome.Pediatr Hematol Oncol,2009,26(4):216-231.
    27. Taylor M, Hussain A, Urayama K, et al.The human major histocompatibility complex and childhood leukemia:an etiological hypothesis based on molecular mimicry.Blood Cells Mol Dis,2009,42(2):129-135.
    28.翟志敏,何晓东,戴海明,等.112例成人急性白血病免疫分型.中华血液学杂志,2001,22(12):633-635.
    29. Steiner M, Attarbaschi A, Dworzak M, et al.Cytochemically myeloperoxidase positive childhood acute leukemia with lymphoblastic morphology treated as lymphoblastic leukemia.J Pediatr Hematol Oncol,2010,32(1):e4-7.
    30. Kalina T, Vaskova M, Mejstrikova E, et al. Myeloid antigens in childhood lymphoblastic leukemia:clinical data point to regulation of CD66c distinct from other myeloid antigens.BMC Cancer,2005,5:38.
    31. Pui CH, Schrappe M, Ribeiro RC, et al. Childhood and adolescent lymphoid and myeloid leukemia.Hematol Am Soc Hematol Educ Program,2004:118-145.
    32. Abdelhaleem M. Frequent but nonrandom expression of myeloid markers on de novo childhood acute lymphoblastic leukemia. Exp Mol Pathol,2007,83(1):138-141.
    33. Hu Q, Zhang LQ, Liu SY, et al. Expression of myeloid antigen in childhood acute lymphoblastic leukemia.Zhonghua Er Ke Za Zhi,2003,41(5):370-371.
    34. Abdelhaleem M. Frequent but nonrandom expression of lymphoid markers on de novo childhood acute myeloid leukemia. Exp Mol Pathol,2007,83(2):259-263.
    35.顾龙君,帖利军,蒋黎敏,等.儿童急性髓系白血病的免疫学特征与预后的关系.中国当代儿科杂志,2009,11(4):241-245.
    36.姚志娟,廖丽,党永辉,等.180例急性白血病流式细胞术免疫分型的特点分析.中国实验血液学杂志,2004,12(1):83-85.
    37.帖利军,顾龙君,蒋黎敏,等.儿童双表型白血病的临床特征及预后分析.中国实用儿科杂志,2006,21(1):47-50.
    38. Bene MC.Biphenotypic, bilineal, ambiguous or mixed lineage:strange leukemias. Haematologica,2009,94(7):891-893.
    39. Raimondi SC. Acute mixed lineage leukemia in children:the experience of St Jude Children's Research Hospital.Blood,2009,113:5083-5089.
    40. Shen HQ, Tang YM, Yang SL, et al.Immunophenotyping of 222 children with acute leukemia by multicolor flow cytometry.Zhonghua Er Ke Za Zhi,2003,41(5):334-337.
    41. Weir EG, Ansari-Laril MA, Batistal D, et al. Acute bilineal leukemia:a rare disease with poor outcome.Leukemia,2007,21:2264-2270.
    42.崔新宇.免疫分型对急性白血病诊断和预后诊断的意义.中国肿瘤临床与康复,2003,10(6):481-483.
    43. Legrand O, Perrot JY, Simonin G, et al.Adult biphenotypic acute leukaemia:an entity with poor prognosis which is related to unfavourable cytogenetics and P-glycoprotein overexpression.Br J Haematol,1998,100(1):147-155.
    44.肖佩芳,柴忆欢,李健,等.小儿急性白血病免疫分型及其临床意义.中国小儿血液,2001,6(1):25-27.
    1. Sinnett D, Krajinovic M, Labuda D. Genetic susceptibility to childhood acute lymphoblastic leukemia. Leuk Lymphoma,2000,38 (526):4462-4472.
    2.杨友,颜崇淮,沈晓明.儿童白血病发病的基因-环境相互作用研究进展.国际儿科学杂志,2007,34(2):121
    3. Ashton LJ, Gifford AJ, Kwan E, et al. Reduced folate carrier and methylenetetrahydrofolate reductase gene polymorphisms:associations with clinical outcome in childhood acute lymphoblastic leukemia.Leukemia,2009,23(7):1348-1351.
    4. Cai DW, Liu XF, Bu RG, et al.Genetic polymorphisms of MTHFR and aberrant promoter hypermethylation of the RASSF1A gene in bladder cancer risk in a Chinese population JInt MedRes,2009,37(6):1882-1889.
    5. Haghighi MM, Radpour R, Mahmoudi T, et al. Association between MTHFR polymorphism (C677T) with nonfamilial colorectal cancer. Oncol Res,2009, 18(2-3):57-63.
    6. Ismail SI, Ababneh NA, Khader Y, et al. Methylenetetrahydrofolate reductase genotype association with the risk of follicular lymphoma. Cancer Genet Cytogenet,2009, 195(2):120-124.
    7.徐世侠,汤先华,陈海青Meta分析及RevMan软件介绍.中华医学图书情报杂志,2009,18(3):61-63.
    8.孙福红,魏水易,许自明,等.随机对照试验Meta分析的质量评价.药物流行病学杂志,2002,11(1):31-37.
    9. Alcasabas P, Ravindranath Y, Goyette G, et al.5,10-methylenetetrahydrofolate reductase (MTHFR) polymorphisms and the risk of acute lymphoblastic leukemia (ALL) in Filipino children.Pediatr Blood Cancer,2008,51(2):178-182.
    10. de Jonge R, Tissing WJ, Hooijberg JH, et al. Polymorphisms in folate-related genes and risk of pediatric acute lymphoblastic leukemia.Blood,2009,113(10):2284-2289.
    11. Krajinovic M, Lamothe S, Labuda D, et al.Role of MTHFR genetic polymorphisms in the susceptibility to childhood acute lymphoblastic leukemia. Blood,2004,103(1):252-257.
    12. Oliveira E, Alves S, Quental S, et al.The MTHFR C677T and A1298C polymorphisms and susceptibility to childhood acute lymphoblastic leukemia in Portugal. J Pediatr Hematol Oncol,2005,27(8):425-429.
    13. da Costa Ramos FJ, Cartaxo Muniz MT, Silva VC, et al. Association between the MTHFR A1298C polymorphism and increased risk of acute myeloid leukemia in Brazilian children.Leuk Lymphoma,2006,47(10):2070-2075.
    14. Chatzidakis K, Goulas A, Athanassiadou-Piperopoulou F, et al.Methylenetetrahydrofolate reductase C677T polymorphism:association with risk for childhood acute lymphoblastic leukemia and response during the initial phase of chemotherapy in greek patients. Pediatr Blood Cancer,2006,47(2):147-151.
    15. Thirumaran RK, Gast A, Flohr T, et al.MTHFR genetic polymorphisms and susceptibility to childhood acute lymphoblastic leukemia. Blood,2005, 106(7):2590-2592.
    16. Kamel AM, Moussa HS,Ebid GT,et al.Synergistic effect of methyltetrahydrofolate reductase (MTHFR) C677T and A1298C polymorphism as risk modifiers of pediatric acute lymphoblastic leukemia J Egypt Nat Cancer Inst,2007,19(2):96-105.
    17. Reddy H, Jamil K.Polymorphisms in the MTHFR gene and their possible association with susceptibility to childhood acute lymphocytic leukemia in an Indian population. Leuk Lymphoma,2006,47(7):1333-1339.
    18. Franco RF, Simies BP, Tone LG, et al.The methylenetetrahydrofolate reductase C677T gene polymorphism decreases the risk of childhood acute lymphocytic leukaemia. Br J Haematol,2001,115(3):616-618.
    19. Balta G, Yuksek N, Ozyurek E, et al.Characterization of MTHFR, GSTM1, GSTT1, GSTP1, and CYP1A1 genotypes in childhood acute leukemia. Am J Hematol,2003, 73(3):154-160.
    20. Kim NK, Chong SY, Jang MJ, et al.Association of the methylenetetrahydrofolate reductase polymorphism in Korean patients with childhood acute lymphoblastic leukemia. Anticancer Res,2006,26(4B):2879-2881.
    21.Zanrossoa CW, Hatagimab A, Emerencianoa M, et al. The role of methylenetetrahydrofolate reductase in acute lymphoblastic leukemia in a Brazilian mixed population.Leuk Res,2006,30:477-481.
    22. Tong N, Fang Y, Li J, et al.Methylenetetrahydrofolate reductase polymorphisms, serum methylenetetrahydrofolate reductase levels, and risk of childhood acute lymphoblastic leukemia in a Chinese population. Cancer Sci,2010,101:782-786.
    23.余慧,金润铭,白燕,等.亚甲基四氢叶酸还原酶基因多态性与儿童急性淋巴细胞白血病发病的关系.临床血液学杂志,2006,19(4):205-207.
    24.江华,顾龙君,薛惠良,等.儿童急性淋巴细胞白血病MTHFR基因多态性分析中华血液学杂志,2004,25(7):439-440.
    25. Giovannettia E, Ugrasenac DG, Supriyadid E, et al. Methylenetetrahydrofolate reductase (MTHFR) C677T and thymidylate synthase promoter (TSER) polymorphisms in Indonesian children with and without leukemia. Leuk Res,2008,32:19-24.
    26.孟建华,高怡瑾,陆凤娟,等.儿童急性淋巴细胞白血病治疗失败原因分析.中国小儿血液与肿瘤杂志,2009,14(3):180-183.
    27.陈涛,黄红,田英.室内、外环境因素与儿童白血病关系的研究进展.环境与职业医学,2009,26(1):89-93.
    28.宫婷,李芬,石建,等.孕期环境危险因素以及母MTHFR677C→T、血浆Hcy与 儿童先天性心脏病的关系.中国妇幼保健,2009,24(22):3117-3121.
    29. Du W, Li WY, Lu R, et al.Folate and fiber in the prevention of colorectal cancer: between shadows and the light.World J Gastroenterol,2010,16(8):921-926.
    30. Smith MT, McHale CM, Wiemels JL, et al.Molecular biomarkers for the study of childhood leukemia. Toxicol Appl Pharmacol,2005,206(2):237-245.
    31. Wiemels JL, Smith RN, Taylor GM, et al.Methylenetetrahydrofolate reductase (MTHFR) polymorphisms and risk of molecularly defined subtypes of childhood acute leukemia. Proc Natl Acad Sci USA,2001,98(7):4004-4009.
    32. Chiusolo P, Reddiconto G, Farina G, et al.MTHFR polymorphisms' influence on outcome and toxicity in acute lymphoblastic leukemia patients.Leuk Res,2007,31(12):1669-1674.
    33.刘晶霞,陈洁平,林东昕.亚甲基四氢叶酸还原酶多态与急性淋巴细胞白血病风险关系的研究.解放军医学杂志,2008,33(11):1291-1293.
    34.张静,魏影非.叶酸、亚甲基四氢叶酸还原酶基因多态性与白血病的研究进展.国际输血及血液学杂志,2007,30(5):429-434.
    35. Chen BA, Jiang N, Ji MJ, et al.A new method for 5,10-methylenetetrahydrofolate reductase single nucleotide polymorphisms genotyping used to study susceptibility of hematological malignancy.Zhongguo Shi Yan Xue Ye Xue Za Zhi,2006, 14(6):1069-1073.
    36. Jakubowska A, Gronwald J, Menkiszak J, et al.Methylenetetrahydrofolate reductase polymorphisms modify BRCA1-associated breast and ovarian cancer risks.Breast Cancer Res Treat,2007,104(3):299-308.
    37. Hur M, Park JY, Cho HC, et al.Methylenetetrahydrofolate reductase A1298C genotypes are associated with the risks of acute lymphoblastic leukaemia and chronic myelogenous leukaemia in the Korean population. Clin Lab Haematol,2006, 28(3):154-159.
    1.高雅丽,姜达.细胞色素P450与肿瘤.中国癌症杂志,2009,19(1):60-64.
    2.姜烈君,覃桂芳.细胞色素P4501A1、谷胱甘肽转硫酶基因多态性和慢性粒细胞白血病的相关性研究.广西医科大学学报,2009,26(4):544-546.
    3. Yamaguti GG, Lourenco GJ, Costa FF, et al. High risk of'de novo' acute myeloid leukaemia in individuals with cytochrome P450 A1 (CYP1A1) and NAD(P)H:quinone oxidoreductase 1 (NQO1) gene defects. Eur J Haematol,2009,83(3):270-272.
    4. Lee KM, Ward MH, Han S, et al. Paternal smoking, genetic polymorphisms in CYP1A1 and childhood leukemia risk.Leuk Res,2009,33(2):250-258.
    5. Majumdar S, Mondal BC, Ghosh M, et al. Association of cytochrome P450, glutathione S-transferase and N-acetyl transferase 2 gene polymorphisms with incidence of acute myeloid leukemia. Eur J Cancer Prev,2008,17(2):125-132.
    6.李文凯,刘清霞,陈放知,等.CYP1A1和CYP2D6基因多态性对白血病发生的影响.基础医学与临床,2008,28(6):553-556.
    7. Bolufer P, Collado M, Barragan E, et al. The potential effect of gender in combination with common genetic polymorphisms of drug-metabolizing enzymes on the risk of developing acute leukemia.Haematologica,2007,92(3):308-314.
    8. Infante-Rivard C, Krajinovic M, Labuda D, et al. Parental smoking, CYP1A1 genetic polymorphisms and childhood leukemia (Quebec, Canada).Cancer Causes Control,200, 11(6):547-553.
    9. Krajinovic M, Labuda D, Richer C, et al. Susceptibility to childhood acute lymphoblastic leukemia:influence of CYP1A1, CYP2D6, GSTM1 and GSTT1 genetic polymorphisms.Blood,1999,93(5):1496-1501.
    10. Rogalidou M, Evangeliou A, Stiakaki E, et al. Serum carnitine levels in childhood leukemia J Pediatr Hematol Oncol,2010,32(2):e61-69.
    11.徐世侠,汤先华,陈海青.Meta分析及RevMan软件介绍.中华医学图书情报杂志,2009,18(3):61-63.
    12. Joseph T, Kusumakumary P, Chacko P, et al. Genetic polymorphism of CYP1A1, CYP2D6, GSTM1 and GSTT1 and susceptibility to acute lymphoblastic leukaemia in Indian children.Pediatr Blood Cancer,2004,43(5):560-567.
    13.高建平,黄跃东,梁建平,等CYP1A1基因多态性与急性淋巴细胞白血病的关系.中国优生与遗传杂志,2003,11(5):21-23.
    14. Krajinovic M, Labuda D, Mathonnet G, et al.Polymorphisms in genes encoding drugs and xenobiotic metabolizing enzymes, DNA repair enzymes, and response to treatment of childhood acute lymphoblastic leukemia.Clin Cancer Res,2002,8(3):802-810.
    15. Balta G, Yuksek N, Ozyurek E, et al. Characterization of MTHFR, GSTM1, GSTT1, GSTP1, and CYP1A1 genotypes in childhood acute leukemia.Am J Hematol,2003, 73(3):154-160.
    16. Clavel J, Bellec S, Rebouissou S, et al. Childhood leukaemia, polymorphisms of metabolism enzyme genes, and interactions with maternal tobacco, coffee and alcohol consumption during pregnancy.Eur J Cancer Prev,2005,14(6):531-540.
    17. Canalle R, Burim RV, Tone LG, et al. Genetic polymorphisms and susceptibility to childhood acute lymphoblastic leukemia.Environ Mol Mutagen,2004,43(2):100-109.
    18.陈涛,黄红,田英.室内、外环境因素与儿童白血病关系的研究进展.环境与职业医学,2009,26(1):89-93.
    19.杨友,颜崇淮,沈晓明.儿童白血病发病的基因-环境相互作用研究进展.国际儿科学杂志,2007,34(2):121.
    20. Selvin S.Cytochrome P4501A1 polymorphism and childhood leukemia:an analysis of matched pairs case-control genotype data. Cancer Epidemiol Biomarkers Prev, 2004,13(8):1371-1374.
    21. Sinnett D, Krajinovic M, Labuda D.Genetic susceptibility to childhood acute lymphoblastic leukemia. LeukLymphoma,2000,38(5-6):447-462.
    1.陈涛,黄红,田英.室内、外环境因素与儿童白血病关系的研究进展.环境与职业医学,2009,26(1):89-93.
    2. Plichart M, Menegaux F, Lacour B, et al.Parental smoking, maternal alcohol, coffee and tea consumption during pregnancy and childhood malignant central nervous system tumours:the ESCALE study (SFCE).Eur J Cancer Prev,2008,17(4):376-383.
    3.杨友,颜崇淮,沈晓明.儿童白血病发病的基因-环境相互作用研究进展.国际儿科学杂志,2007,34(2):117-120.
    4. Infante-Rivard C, Krajinovic M, Labuda D, et al. Childhood acute lymphoblastic leukemia associated with parental alcohol consumption and polymorphisms of carcinogen-metabolizing genes. Epidemiology,2002,13:277-281.
    5. McNally RJ, Parker L.Environmental factors and childhood acute leukemia and lymphoma. Leuk Lymphoma,2006,47(4):583-598.
    6. Lightfoot TJ, Roman E. Causes of childhood leukaemia and lymphoma.Toxicol Appl Pharmacol,2004,199(2):104-117.
    7. Mejia-Arangure JM, Fajardo-Gutierrez A, Flores-Aguilar H, et al.Environmental factors contributing to the development of childhood leukemia in children with Down's syndrome. Leukemia,2003,17(9):1905-1907.
    8. Schuz J, Kaatsch P, Kaletsch U, et al.Association of childhood cancer with factors related to pregnancy and birth.Int J Epidemiol,1999,28(4):631-639.
    9. Ji BT, Shu XO, Linet MS, et al. Paternal cigarette smoking and the risk of childhood cancer among offspring of nonsmoking mothers.J Natl Cancer Inst,1997, 89(3):238-244.
    10. Monge P, Wesseling C, Guardado J, et al. Parental occupational exposure to pesticides and the risk of childhood leukemia in Costa Rica. Scand J Work Environ Health,2007, 33(4):293-303
    11. Clavela J, Belleca S, Rebouissou S, et al. Childhood leukaemia, polymorphisms of metabolism enzyme genes, and interactions with maternal tobacco, coffee and alcohol consumption during pregnancy.Eur J Cancer Prevent,2005,14:531-540.
    12. Menegaux F, Ripert M, Hemon D, et al.Maternal alcohol and coffee drinking, parental smoking and childhood leukaemia:a French population-based case-control study. Paediatr Perinatal Epidemiol,2007,21:293-299.
    13. Canfield KN, Spector LG, Robison LL. Childhood and maternal infections and risk of acute leukaemia in children with Down syndrome:a report from the Children's Oncology Group.Br J Cancer,2004,91:1866-1872.
    14. Petridou E, Trichopoulos D, Kalapothakil V, et al. The risk profile of childhood leukaemia in Greece:a nationwide case-control study.Br J Cancer,1997,76(9): 1241-1247.
    15. MacArthur AC, McBride ML, Spinelli JJ. Risk of childhood leukemia associated with parental smoking and alcohol consumption prior to conception and during pregnancy: the cross-Canada childhood leukemia study. Cancer Causes Control,2008, 19:283-295.
    16. Schuz J, Kaatsch P, Kaletsch U, et al.Association of childhood cancer with factors related to pregnancy and birth.Int J Epidemiol,1999,28(4):631-639.
    17. Rudant J, Menegaux F, Leverger G, et al. Childhood hematopoietic malignancies and parental use of tobacco and alcohol:the ESCALE study (SFCE).Cancer Causes Control,2008,19:1277-1290.
    18. Infante-Rivard C, El-Zein M. Parental alcohol consumption and childhood cancers:a review J Toxicol Environ Health B Crit Rev,2007,10(1-2):101-129.
    19. Wen WQ, Shu XO, Potter JD, et al. Parental medication use and risk of childhood acute lymphoblastic leukemia. Cancer,2002,95:1786-1794.
    20. Shu XO. Epidemiology of childhood leukemia. Curr Opin Hematol,1997, 4(4):227-232.
    1.任贻军,高逢喜.黄连素的研究进展.辽宁中医药大学学报,2009,11(1):50-51.
    2.王凯.思密达和黄连素保留灌肠治疗秋季腹泻疗效观察.医药论坛杂志,2009,30(7):86-87
    3. Zhang H, Wei J, Xue R, et al. Berberine lowers blood glucose in type 2 diabetes mellitus patients through increasing insulin receptor expression.Metabolism,2010, 59(2):285-292.
    4. Tang J, Feng Y, Tsao S, et al. Berberine and Coptidis rhizoma as novel antineoplastic agents:a review of traditional use and biomedical investigations. J Ethnopharmacol, 2009,126(1):5-17.
    5. Choi BH, Kim YH, Ahn IS, et al.The inhibition of inflammatory molecule expression on 3T3-L1 adipocytes by berberine is not mediated by leptin signaling.Nutr Res Pract, 2009,3(2):84-88.
    6. Li K, Yao W, Zheng X, et al.Berberine promotes the development of atherosclerosis and foam cell formation by inducing scavenger receptor A expression in macrophage.Cell Res,2009,19(8):1006-1017.
    7. Ho YT, Lu CC, Yang JS, et al.Berberine induced apoptosis via promoting the expression of caspase-8,-9 and-3, apoptosis-inducing factor and endonuclease G in SCC-4 human tongue squamous carcinoma cancer cellsAnticancer Res,2009, 29(10):4063-4070.
    8. Kim JB, Yu JH, Ko E, et al.The alkaloid Berberine inhibits the growth of Anoikis-resistant MCF-7 and MDA-MB-231 breast cancer cell lines by inducing cell cycle arrest.Phytomedicine,2009 Oct 1. [Epub ahead of print]
    9. Auyeung KK, Ko JK.Coptis chinensis inhibits hepatocellular carcinoma cell growth through nonsteroidal anti-inflammatory drug-activated gene activation.Int J Mol Med, 2009,24(4):571-577.
    10. Hur JM, Hyun MS, Lim SY, et al.The combination of berberine and irradiation enhances anti-cancer effects via activation of p38 MAPK pathway and ROS generation in human hepatoma cells.J Cell Biochem,2009,107(5):955-964.
    11. Chen TC, Lai KC, Yang JS, et al. Involvement of reactive oxygen species and caspase-dependent pathway in berberine-induced cell cycle arrest and apoptosis in C6 rat glioma cells.Int J Oncol,2009,34(6):1681-1690.
    12. Wang GY, Lv QH, Dong Q, et al. Berbamine induces Fas-mediated apoptosis in human hepatocellular carcinoma HepG2 cells and inhibits its tumor growth in nude mice.J Asian Nat Prod Res,2009,11 (3):219-228.
    13. Choi MS, Oh JH, Kim SM, et al Berberine inhibits p53-dependent cell growth through induction of apoptosis of prostate cancer cells.Int J Oncol,2009,34(5):1221-1230.
    14. Choi MS, Yuk DY, Oh JH, et al.Berberine inhibits human neuroblastoma cell growth through induction of p53-dependent apoptosis.Anticancer Res,2008,28(6A):3777-3784.
    15. Liu Z, Liu Q, Xu B, et al. Berberine induces p53-dependent cell cycle arrest and apoptosis of human osteosarcoma cells by inflicting DNA damage.Mutat Res,2009, 662(1-2):75-83.
    16. Thirupurasundari CJ, Padmini R, Devaraj SN.Effect of berberine on the antioxidant status, ultrastructural modifications and protein bound carbohydrates in azoxymethane-induced colon cancer in rats.Chem Biol Interact,2009,177(3):190-195.
    17. Katiyar SK, Meeran SM, Katiyar N, et al. p53 Cooperates berberine-induced growth inhibition and apoptosis of non-small cell human lung cancer cells in vitro and tumor xenograft growth in vivo.Mol Carcinog,2009,48(1):24-37.
    18. Lin CC, Kao ST, Chen GW, et al. Berberine decreased N-acetylation of 2-aminofluorene through inhibition of N-acetyltransferase gene expression in human leukemia HL-60 cells. Anticancer Res,2005,25(6B):4149-4155.
    19. Lin SS, Chung JG, Lin JP, et al. Berberine inhibits arylamine N-acetyltransferase activity and gene expression in mouse leukemia L 1210 cells. Phytomedicine,2005, 12(5):351-358.
    20. Yu FS, Yang JS, Lin HJ, et al. Berberine inhibits WEHI-3 leukemia cells in vivo.In Vivo, 2007,21(2):407-412.
    21.王志红,林菁.盐酸小檗碱对HL-60细胞的诱导分化及其作用机制.中国药科大学学报,2006(7):165-168.
    22.张云娟,王军,王西阁,等.细胞周期蛋白A、生存素在儿童急性白血病中的表达及相关性.实用儿科临床杂志,2009,24(3):193-195.
    23.彭志刚,罗军,赖永榕,等.芒果苷对白血病K562细胞周期分布及细胞周期素A、细胞周期素B1表达的影响.中华中医药杂志,2007,22(8):510-513.
    24. Du W, Zhou Y, Pike S, et al.NPM phosphorylation stimulates Cdkl, overrides G2/M checkpoint and increases leukemic blasts in mice.Carcinogenesis,2010,31(2):302-10.
    25. Harikumar KB, Kuttan G, Kuttan R. Inhibition of progression of erythroleukemia induced by Friend virus in BALB/c mice by natural products-berberine, curcumin and picroliv JExp Ther Oncol,2008,7(4):275-284.
    26. Lin CC, Lin SY, Chung JG, et al. Down-regulation of cyclin B1 and up-regulation of Weel by berberine promotes entry of leukemia cells into the G2/M-phase of the cell cycle.Anticancer Res,2006,26(2 A):1097-1104.
    27. Jantova S, Cipak L, Cernakova M, et al. Effect of berberine on proliferation, cell cycle and apoptosis in HeLa and L1210 cells.J Pharm Pharmacol,2003,55(8):1143-1149.
    28. Gemin A, Sweet S, Preston TJ, et al. Regulation of the cell cycle in response to inhibition of mitochondrial generated energy.Biochem Biophys Res Commun,2005,332 (4):1122-1132.
    29. Kluza J, Baldeyrou B, Colson P, et al. Cytotoxicity and DNA binding properties of the plant alkaloid burasaine.Eur J Pharm Sci,2003,20(4-5):383-391.
    30. Youn MJ, So HS, Cho HJ, et al. Berberine, a natural product, combined with cisplatin enhanced apoptosis through a mitochondria/caspase-mediated pathway in HeLa cells.Biol Pharm Bull,2008,31(5):789-795.
    31. Li TK, Bathory E, LaVoie EJ, et al.Human topoisomerase I poisoning by protoberberines:potential roles for both drug-DNA and drug-enzyme interactions.Biochemistry,2000,39(24):7107-7116.
    32. Kettmann V, Kosfalova D, Jantova S, et al. In vitro cytotoxicity of berberine against HeLa and L1210 cancer cell lines. Pharmazie,2004,59(7):548-551.
    33. He ZW, Zhao XY, Xu RZ, et al. Effects of berbamine on growth of leukemia cell line NB4 and its mechanism. Zhejiang Da Xue Xue Bao Yi Xue Ban,2006,35(2):209-214.
    34. Lin CC, Kao ST, Chen GW, et al. Apoptosis of human leukemia HL-60 cells and murine leukemia WEHI-3 cells induced by berberine through the activation of caspase-3. Anticancer Res,2006,26(1A):227-242.
    35.吴建国,周永列,夏大静,等.大萼香茶菜甲素通过线粒体途径诱导HL-60白血病细胞 凋亡.中国临床药理学与治疗学,2009,14(7):741-747
    36. Inoue K, Kulsum U, Chowdhury SA, et al. Tumor-specific cytotoxicity and apoptosis-inducing activity of berberines.Anticancer Res,2005,25(6B):4053-4059.
    37. Kuo CL, Chou CC, Yung BY.Berberine complexes with DNA in the berberine-induced apoptosis in human leukemic HL-60 cells. Int J Cancer,1999,81(6):923-929.
    38.蒋艳,胡群,刘双又,等.小檗碱诱导人急性T淋巴细胞白血病细胞凋亡的研究.医药导报,2005,24(7):568-570.
    39. Chung JG, Chen GW, Hung CF, et al. Effects of berberine on arylamine N-acetyltransferase activity and 2-aminofluorene-DNA adduct formation in human leukemia cells. Am J Chin Med,2000,28(2):227-238.
    40. Wu HL, Hsu CY, Liu WH, et al. Berberine-induced apoptosis of human leukemia HL-60 cells is associated with down-regulation of nucleophosmin/B23 and telomerase activity. Int J Cancer,1999,81(6):923-929.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700