用户名: 密码: 验证码:
染料结构与性能关系的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以Hyperchem和Gaussian两个程序包为工具,对几类染料化合物的最大可见吸收波长、吸收半峰宽和活性染料的反应活性等重要性质进行了量子化学研究。
     在最大可见吸收波长的研究中,对于偶氮苯类化合物、吡啶酮偶氮类化合物、氨基嘧啶类化合物和噻唑杂环偶氮类化合物,采用B3LYP/6-311G~*方法对分子构型进行优化后,用TD-DFT法和ZINDO/S法都可以较准确地计算它们的最大可见吸收波长。比较发现,通过选取合适的OWF_(π-π)(π-π兀重叠加权因子)值,用ZINDO/S法可以更快地得到更为精确的结果。在用ZINDO/S方法计算化合物的最大可见吸收波长时,研究发现,对偶氮苯类化合物,OWF_(π-π)与偶氮键氮氮键长BL(N-N)存在较好的线性关系;对吡啶酮偶氮类化合物,OWF_(π-π)与吡啶酮羰基氧原子的平均电荷Z_O存在较好的线性关系;对氨基嘧啶类化合物,OWF_(π-π)与苯环平面和嘧啶环平面间的夹角α存在较好的线性关系;对噻唑杂环偶氮类化合物,OWF_(π-π)与噻唑环上硫原子电荷Z_S存在较好的线性关系。进一步对其它同类化合物最大可见吸收波长的研究结果表明上述关系具有一定的普遍适用性。
     分子轨道研究表明,偶氮苯类化合物、吡啶酮偶氮类化合物、氨基嘧啶类化合物和噻唑杂环偶氮类化合物的最大可见吸收波长均对应着从HOMO(最高占有轨道)到LUMO(最低空轨道)的电子跃迁,从分子轨道的组成来看,该跃迁是从给电子区域到吸电子区域的。
     在吸收半峰宽的研究中,对偶氮苯类化合物、吡啶酮偶氮类化合物和氨基嘧啶类化合物,在用B3LYP/6-311G~*方法优化基态构型、CIS/6-311G~*方法优化激发态构型后,用TD-DFT法计算分子的最大可见吸收波长λ_(max)和发射波长λ_(max)~*,取S=λ_(max)~*-λ_(max),将吸收半峰宽△λ_(1/2)的实测值与S关联,得到了较好的线性关系。利用这一关系对其它同类化合物的吸收半峰宽进行预测的结果与实测值基本吻合,表明所得的关系具有一定的普遍适用性。
     在对活性染料反应活性的研究中,由于活性染料的水解反应和染色反应在相同条件下机理具有相似性,可以通过研究活性染料的水解反应速率来确定活性染料对纤维的反应活性。
Based on Hyperchem and Gaussian program, the important properties of some kinds of dyes, such as maximum visible absorption wavelength, half band-width and reactivity are studied by quantum chemical methods.In the study of maximum absorption wavelength, with the optimized geometry obtained by B3LYP/6-311G*, the visible absorption wavelength of azobenzene compounds, pyridone azo compounds, amino pyrimidine compounds and thiazole heterocyclic azo compounds are calculated by TD-DFT method and ZINDO/S method. By setting OWF_(π-π)(π-π Overlap Weighting Factor) at an appropriate value, better results could be obtained by ZINDO/S method in much shorter time than TD-DFT method. In the calculation of maximum absorption wavelength by ZINDO/S method, it is found that, for azobenzene compounds, there is an excellent linear relationship between OWF_(π-π)and BL_(N-N)(the length of azo bond);for pyridone azo compounds, there is an excellent linear relationship between OWF_(π-π) and Z_O(the average net charge on oxygen of the two carbonyl-groups in pyridine);for amino pyrimidine derivatives, there is also a good linear relationship between OWF_(π-π) and α(the include angle between azo ring and pyrimidine ring);and for thiazole heterocyclic azo derivatives, there is a good linear relationship between OWF_(π-π) and Z_S(the net charge on sulfur in thiazole heterocycle). Further study indicates that the relationships obtained above could be extended to the prediction of visible absorption wavelength of other compounds in the same series.The research on molecular orbitals indicates that the maximum absorption wavelength of azobenzene compounds, pyridone azo compounds, amino pyrimidine derivatives and thiazole heterocyclic azo derivatives are all in accordance with the electron transiton from HOMO (the Highest Occupied Molecular Orbital) to LUMO (the Lowest Unoccupied Molecular Orbital). In view of the component of the orbitals, the transition is from regions around electron donators to those around electron acceptors.
    In the research of absorption half band-width, for azobenzene compounds, pyridone azo compounds, and amino pyrimidine compounds, based on the ground state geometry optimized by B3LYP/6-311G* method and the excited state geometry optimized by CIS/6-311G* method, the maximum absorption wavelength (X max) and emission wavelengths (A. *max) are calculated by TD-DFT method respectively. It is found that a good linear relationship between S (the difference between A. *max and ^ max) value and A X 1/2 (the observed absorption half band-width). Further study indicates that the relationships obtained above could be extended to the prediction of absorption half band-width of other compounds in the same series.In the research on the reactivity of reactive dyes, it is found that the dyeing reactivity could be approached through the study of the hydrolytic reactivity because of their similarity in reaction mechanism.Based on the geometry optimized by B3LYP/6-311G*, the configuration parameters and orbital parameters of a series of vinyl sulfone reactive dyes and triazine reactive dyes are obtained. Then these parameters are screened by Stepwise Regression method regarding Ink (the natural logarithm of hydrolysis rate constant) as the objective function, and the Partial Least Squares method is used to construct the QSPR equation. Using the equations obtained above to predict the hydrolysis reactivity of other compound in the same series, results agreement with the experiment data could be obtained. These equations could also be used to predict the hydrolysis reactivity of the dyes with two or more active groups and mixed dyes and to design of new type dyes.The accurate prediction of maximum visible absorption wavelength and absorption half band-width could, on one hand, reveals the relationship between molecular structure and absorption spectroscopy, and on the other hand, offers a theoretical basis for the design of dye molecules, and gives assistance in the analysis of dye samples. To further study the dyeing performace of reactive dyes and to exploit more new excellent reactive dyes, the QSPR study of the reactivity is of great significance.
引文
[1] 侯毓汾,朱振华,王任之.染料化学,化学工业出版社,北京,(1994).
    [2] 章杰,王功平.国内外染料工业发展新动向,染料与染色,(2005),42(1),5~9.
    [3] 袁慎峰.染料结构与吸收光谱的关系,浙江大学博士学位论文,杭州,(2003).
    [4] 候毓汾,吴祖望,胡家振.颜色与有机分子结构,化学工业出版社,北京,(1985).
    [5] 吕荣文,高昆玉.活性染料的发展趋向,染料与染色,(2005),41(3),131~136.
    [6] K. Yutaka, H. Naoki, A. Kingo. Fiber Reactive Yellow Dye Composition, US 5308362, (1994).
    [7] R. Edmond, T. Athanassions, K. Herbert. Verfahren zum Farben oder Bedrucken von Cellulosehaltigen Fsaermaterialien und Neue Reaktivfarbstoffe, EP 0887386, (1997).
    [8] A. Katsumi, K. Nobutaka, S. Junichi. Reactive Dye Mixture and its Appplication, JP 113231170, (1999).
    [9] E. Bright, S. Christian. Yellow Dye Mixtures Comprising Watersoluble Fiber-reactive Azo Dyes and Use thereof, EP 0999240, (1999).
    [10] D. Joerg, E. Stefan. Wasser Losliche Faserreaktive Farbstoffe Verfahren zu ihrer Herstellung und ihre Verwendung, EP 1055710, (1999).
    [11] A. Katsumi, K. Nabataka, Y. Shinichi. Reactive Dye Mixture and its Appplication, JP 11323168, (1999).
    [12] 约阿希姆.艾克霍恩,罗纳德.佩德蒙特.纤维活性偶氮染料的深黑混合物及使羟基和/或酰胺基染色方法,CN 1513037,(2000).
    [13] P. Ron, S. Andreas. Deep Black Dye Mixtures of Fiber-reactive Azo Dyes and a Process for Dyeing Hydroxy and Carboxamide Containing Fibers, EP 1155089, (2000).
    [14] V. O. Geeske. Yellow Dye Mixtures Comprising Water-soluble Fiber-reactive Azo Dyes and Use thereof, US 6238422, (2001).
    [15] P. Ronald, R. Werner. Blue Dye Mixtures of Fiber-reactive Copper Complex Formazan Dyes, EP 1045008, (2002).
    [16] J.斯德科尔伯格,R.P.贝德蒙德.含水溶性纤维活性染料的染料混合物制备方法及其 应用,CN 1404512,(2003).
    [17] 陈荣圻.活性染料商品化技术进展,印染助剂(2005),22(1),1~9.
    [18] 吴祖望,董振堂,卢圣茂,林莉.近十年活性染料技术进展—纪念活性染料开发五十年,染料与染色,(1998),35(1),1~8.
    [19] 李宗石,孙育贤,程侣柏.用HMO法计算偶氮化合物的吸收光谱,大连工学院学报,(1979),18(4),70~82.
    [20] D. A. Brown, M. J. S. Dewar. Fluorene Analogues of Triphenylmethane Dyes: Calculation of their Light Absorption by the Molecular-orbital Method, J. Chem. Soc. B, (1954), 54(6),2134~2136.
    [21] K. Y. Chu, J. Griffiths. Colour and Constitution of the Nitro-and Dintro-p-phenylenediamines and Their N-methyl Derivatives, J. Chem. Soc., Perkin Trans. I, (1978), 78(10), 1194~1198.
    [22] J. Griffiths. Practical Aspects of Colour Prediction of Organic Dye Molecules, Dyes Pigm,(1982), 3, 211~233.
    [23] K. Y. Chu, J. Griffiths. Naphthoquinone Colouring Matters, Part2, J. Chem. Res. (s), (1978), 78(5), 180~181.
    [24] K. Y. Chu. J. Griffiths. Naphthoquinone Colouring Matters, Part 1, J. Chem. Soc.,Perkin Tran. 1, (1978), 78(9), 1083~1087.
    [25] K. Y. Chu, J. Griffiths. Naphthoquinone Colouring Matters, Part3, J. Chem. Soc.,Perkin Trans. 1, (1979), 79(3), 696~701.
    [26] 陈兴,高昆玉,程侣柏,胡家振.杂环偶氮染料的结构与颜色的研究(Ⅱ),染料工业,(1986),23(5),14~17.
    [27] L. B. Cheng, X. Chen, K. Y. Gao, J. Z. Hu, J. Griffiths. Colour and Constitution of Azo Dyes Derived from 2-Thioalkyl-4,6-diaminopyrimidines and 3-Cyano-1,4-dimethyl-6-hydroxy-2-pyridoneas Coupling Components, Dyes Pigm., (1986), 7, 373~388.
    [28] 陈兴,高昆玉,程侣柏,胡家振.杂环偶氮染料的结构与颜色的研究(Ⅰ),染料工业,(1986),23(3),18~23.
    [29] 陈兴,程侣柏.PPP-MO法在染料分子设计中的作用,染料工业,1992,29(5),6~13.
    [30] 程侣柏,李宗石,孙育贤.用PPP-SCF-CI法计算简单有机化合物的吸收光谱,大连工 学院学报,(1980),19(2),51~63.
    [31] Y. Kogo, H. Kikuchi, M. Matsuoka, T. Kitao. Colour and Constitution of Anthraquinonoid Dyes, Part 1, J. Soc. Dyes Color., (1980), 96, 475~480.
    [32] 王学杰.分子轨道法计算吲哚双碳菁类染料分子的电子结构和电子光谱,计算机与应用化学,(2000),17(4),324~326,340.
    [33] 王学杰.分子轨道法计算三苯二恶嗪类分子的电子光谱,光谱学与光谱分析,(2002),22(1),9~11.
    [34] C. Weiss, H. Kobayashi, M. Gouterman. Spectra of Porphyrins, Part Ⅲ, J. Mol. Spec.,(1965), 16, 415~450.
    [35] L. Turke. Theoretical Optical Spectra of some [2_2](1,4)-Cyclophane Fused Tetraazaporphyrins, J. Mol. Struct. (Theochem), (2002), 588, 133~138.
    [36] H. R. Blattmann, E. Heilbronner, G. Wagniere. Electronic States of Perimeter π Systems, Ⅳ, J. Am. Chem. Soc., (1968), 90(18), 4786~4789.
    [37] J. Griffiths, M. Lockwood. Chromogens Based on Non-Benzenoid Aromatic Systems,Part Ⅲ, J. Chem. Soc., Perkin Trans. I, (1976), 76(1), 48~54.
    [38] A. Mehlhorn, B. Schwenzer, K. Schwetlick. MO-calculations of the Energy Transfer Activities of Organic π-Structures in the Photo-fries Rearrangement, I, Tetrahedron, (1977), 33,1483~1488.
    [39] E. Horiguchi, K. Shirai, M. Matsuoka, M. Matsui. Syntheses and Spectral Properties of Non-planar Bis(styryl)diazepine Fluorescent Dyes and Related Derivatives, Dyes Pigm., (2002), 53, 45~55.
    [40] S. M. Al-Hazmy, K. N. Kassab, S. A. El-Daly, E. M. Ebeid. Spectral Properties of(5-Phenyl-1,3,4-oxadiazol-2-yl)-7-hydroxycoumarin (POHC), Spectrochim. Acta. Part A,(2000), 56, 1773~1780.
    [41] R. M. Christie, C. H. Lui. Studies of Fluorescent Dyes, Part 1: An Investigation of the Electronic Spectral Properties of Substituted Coumarins, Dyes Pigm., (1999), 42, 85~93.
    [42] R. M. Christie, C. H. Lui. Studies of Fluorescent Dyes, Part 2: An Investigation of the Synthesis and Electronic Spectral Properties of Substituted 3-(2'-Benzimidazolyl)coumarins, Dyes Pigm., (2000), 47, 79~89.
    [43] A. E. H. Machado, J. A. Miranda, S. Guilardi, D. E. Nicodem, D. Severino. Photophysics and Spectroscopic Properties of 3-Benzoxazol-2-yl-chromen-2-one, Spectrochim. Acta. Part A, (2003), 59, 345~355.
    [44] J. S. Melo, P. F. Femandes. Spectroscopy and Photophysics of 4-and 7-Hydroxycoumarins and their Thione Anologs, J. Mol. Struct., (2001), 565-566, 69~78.
    [45] W. M. F. Fabian, K. S. Niederreiter, G. Uray, W. Stadlbauer. Substituent Effects on Absorption and Fluorescence Spectra of Carbostyrils, J. Mol. Struct., (1999), 477,209~220.
    [46] J. Griffiths. Modern dye chemistry, Chem. Brit., (1986), 22, 997~1000.
    [47] J. Griffiths, M. Lockwood, B. Roozpeikar. Orientation Effects in the Benzene Chromophore Bearing One Donor and Two Acceptor Groups, J. Chem. Soc., Perkin Trans. Ⅱ, (1977), 77(4),1608~1610.
    [48] K. Y. Chu, J. Griffiths, D. Ward. Light-absorption and Emission Properties of Cyanovinyl-Substituted Dimethoxybenzenes, J. Chem. Res., (1981), (s), 300~301.
    [49] M. Nepras, O. Machalicky, M. Seps, R. Hrdina, P. Kapusta, V. Fidler. Structure and Properties of Fluorescent Reactive Dyes: Electronic Structure and Spectra of some Benzanthrone Derivatives, Dyes Pigm., (1997), 35(1), 31~44.
    [50] J. M. Maud. Optical Transitions in Oligothiophene Radical Cations (Positive Polarons): A Semi-empirical Study, Syn. Metals, (1999), 101, 575~578.
    [51] N. DiCesare, M. Belletete, M. Leclerc, G. Durocher. HF/3-21G~*Ab Initio Calculations on Methoxy-substituted Bithiophenes, J. Mol. Struct. (Theochem), 1999, 467, 259~273.
    [52] M. Breza, V. Lukes, I. Vrabel. On the Dependence of Optical Properties on Conformational Changes in Oligothiophenes, I: Electron Absorption Spectra, J. Mol. Struct. (Theochem), (2001),572, 151~160.
    [53] V. Lukes, M. Breza, V. Laurinc. Structure Dependence of Optical Properties of Bridged Bis-thienyls, Ⅰ: Simple Five-membered Aromatic Bridges, J. Mol. Struct. (Theochem), (2002), 582, 213~224.
    [54] V. Luke,, M. Breza, D. Vegh, P. Hrdlovie, J. Krajeovie, V. Laurinc. Optical Properties of 2,3-Diaza-1,3-butadiene Bridged Oligothiophenes, A Combined Experimental and Theoretical Study, Syn. Metals, (2002), 129, 85~94.
    [55] V. Lukes, M. Breza, D. Vegh, P. Hrdlovie, J. Krajeovie, V. Laurinc. Non-linear Optical Properties of New Bridged Bis-thienyls, I, Pyrazine-based Bridges: Theory, Synthesis and Spectra, Syn. Metals, (2001), 124, 279~286.
    [56] M. Yanagita, S. Kanda, S. Tokita. The Relationship Between the Steric Hindrance and Absorption Spectrum of Fluoran Dyes, Part Ⅱ, Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A, (1999), 327, 53~56.
    [57] M. S. Khan, Z. H. Khan. Electronic Absorption Spectra of Amino Substitute Anthraquinones and Their Interpretation Using the ZINDO/S and AM1 Method. Spectrochim. Acta. Part A,(2003), 59, 1409~1426.
    [58] M. Belletete, M. Bedard, M. Leclere, G. Durocher. Ground and Excited State Properties of Carbazole-based Dyes: Correlation with their Respective Absorption and Fluorescene Spectra, J. Mol. Struct. (Theochem), (2004), 679, 9~15.
    [59] 任爱民,封继康,刘文革,孙秀云,付伟,金宏威.两种C_(60)双氰衍生物的结构、光谱和二阶非线性光学性质的理论研究,高等学校化学学报,(1999),20(10),1609~1614.
    [60] 任爱民,封继康,孙秀云,傅伟,王素凡.两种C_(60)双炔衍生物的结构、光谱和二阶非线性光学性质的理论研究,化学学报,(1999),57(7),730~739.
    [61] 张锁秦,封继康,任爱民,付伟,李耀先.C_(60)-TTF及其衍生物的二阶非线性光学性质的理论研究,化学学报,(2000),58(12),1582~1588.
    [62] 阚玉和,苏忠民,孙世玲,杨彦杰,朱玉兰,任爱民,封继康.2,5-取代基-3,4-C_(60)吡咯衍生物的电子光谱和非线性光学性质规律的理论研究,高等学校化学学报,(2002),23(3),444~447.
    [63] 张锁秦,封继康,任爱民,付伟,李耀先.C_(60)-TTF及其衍生物的结构与光谱的理论研究,高等学校化学学报,(2001),22(6),987~990.
    [64] X. Zhou, A. Ren, J. Feng. Theoretical Investigation on the Two-photon Absorption of C_(60),J. Mol. Struct. (Theochem), (2004), 680, 237~242.
    [65] S. I. Gorelsky, A. B. P. Lever, M. Ebadi. Ruthenium d-Orbital Delocalization in Bis(bipyridine) Ruthenium Derivatives of Redox Active Quinonoid Ligands, Coord. Chem. Rev., (2002), 230, 97~105.
    [66] S. I. Gorelsky, A. B. P. Lever. Electronic Structure and Spectra of Ruthenium Diimine Complexes by Density Functional Theory and INDO/S, Comparison of the Two Methods, J. Organomet. Chem., (2001), 635, 187~196.
    [67] S. I. Gorelsky, E. S. Dodsworth, A. B. P. Lever, A. A. Vlcek. Trends in Metal-ligand Orbital Mixing in Generic Series of Ruthenium N-donor Ligand Complexes, Effect on Electronic Spectra and Redox Properties, Coord. Chem. Rev., (1998), 174, 469~494.
    [68] M. K. Nazeeruddin, S. M. Zakeeruddin, R. H. Baker, S. I. Gorelsky, A. B. P. Lever, M. Gratzel. Synthesis, Spectroscopic and a ZINDO Study of cis- and trans-(X2)Bis(4,4'-dicarboxylic acid-2,2'-bipyridine)ruthenium(Ⅱ) Complexes, Coord. Chem. Rev., (2000), 208, 213~225.
    [69] C. D. S. Sebastiao, W. F. Douglas. Metastable Excited State and Electronic Structure of [Ru(NH_3)_5NO]~(3+) and [Ru(NH_3)_4(OH)NO]~(2+), Spectrochim. Acta, Part A, (1999), 55, 1515~1525.
    [70] V. A. Basiuk, E. V. Basiuk, J. G. Lara. Molecular Modeling of Octahedral Complex Cations Composed of [Ni(Ⅱ)(rac-Me_6[14]aneN_4)]~(2+) Units and Bidentate Carboxylate Ligands, J. Mol. Struct. (Theochem), (2001), 536, 17~24.
    [71] K. M. T. Oliveira, M. Trsic. Comparative Theoretical Study of the Electronic Structures and Electronic Spectra of Fe~(2+)-, Fe~(3+)-porphyrin and Free Base Porphyrin, J. Mol. Struct. (Theochem), (2001), 539, 107~117.
    [72] L. F. Yang, Z. H. Peng, X. M. Ren, G. Z. Cheng, P. Cai. Spectroscopic and Theoretical Studies on Copper(Ⅱ) Complex of Maleinitriledithiolate and 1,10-Phenanthroline, Spectrochim. Acta, PartA, (2001), 57, 2745~2754.
    [73] 张锁秦,封继康,任爱民,苏忠民.取代吡啶系列分子的光谱和二阶非线性光学性质的理论研究,高等学校华沙学报,(1999),20(11),1754~1758.
    [74] 高晓顺,封继康,肖长永,孙家钟.N—取代吩噻嗪衍生物分子的结构和二阶非线性光学性质的理论研究,化学学报,(1997),55,242~249.
    [75] 尚兴宏,贡雪东,肖鹤鸣,田禾.4种菁染料化合物结构和性能的密度泛函理论研究,南京理工大学学报,(2002),26(2),186~191.
    [76] J. Peszke, W. Sliwa. AMI CI and ZINDO/S Study of Quaternary Salts of Diazaphenan threnes with Haloalkanes, Spectrochim. Acta, Part A, (2002), 58, 2127-2133.
    [77] X. L. Zhu, X. Z. You, Y. Zhong, Z. Yu, S. L. Guo. An Improved Calculation Method on Optical Second-order Susceptibilities of Organic Materials, Chem. Phys., (2000), 253, 241-248.
    [78] W. Fu, J. K. Feng, G. B. Pan. Theoretical Study on the Third-order Nonlinear Optical Properties of a Series of Derived 9,9'-spirobifluorenes, J. Mol. Struct. (Theochem), (2001), 545, 157-165.
    [79] H. Moustafa, S. H. Shalaby, K. M. E. Sawy, R. Hilal. Electronic Structure of some Adenosine Receptor Antagonists, III: Quantitative Investigation of the Electronic Absorption Spectra of Alkyl Xanthines, Spectrochim. Acta, Part A, (2002), 58, 2013-2027.
    [80] W. M. F. Fabian, J. M. Kauffman. Computational Methods as an Aid in the Design of Fluorophores with Predictable Absorption and Emission Wavelengths, J. Lumin., (1999), 85, 137-148.
    [81] P. M. V. B. Barone, R. S. Braga, A. Camilo Jr., D. S. Galvao. Electronic Indices from Semi-empirical Calculations to Identify Carcinogenic Activity of Polycyclic Aromatic Hydrocarbons, J. Mol. Struct. (Theochem), (2000), 505, 55-66.
    [82] J. D. Nero, B. Laks. Spectroscopic Study of Polyazopyrroles (a Narrow Band Gap System), Syn. Metals, (1999), 101, 440-441.
    [83] A. Pielesz, A. Wlochowicz. Semi-empirical Infrared Spectra Simulations for some Aromatic Amines of Interest for Azo Dye Chemistry, Spectrochim. Acta, Part A, (2001), 57, 2637-2646.
    [84] Y. J. Liu, Y. Liu, D. J. Zhang, H. Q. Hu, C. B. Liu. Theoretical Investigation on Second-order Nonlinear Optical Properties of (Dicyanomethylene)-pyran Derivatives, J. Mol. Struct., (2001), 570,43-51.
    [85] A. Scemama, P. Chaquin, M. C. Gazeau, Y. Benilan. Semi-empirical Calculation of Electronic Absorption Wavelengths of Polyynes, Monocyano- and Dicyanopolyynes, Predictions for Long Chain Compounds and Carbon Allotrope Carbyne, Chem. Phys. Lett., (2002), 361, 520-524.
    [86] J. Fabian, L. A. Diaz, G. Seifert, T. Niehaus. Calculation of Excitation Energies of Organic Chromophores: a Critical Evaluation, J. Mol. Struct. (Theochem), (2002), 594, 41~53.
    [87] K. Torskangerpoll, K. J. Bφrve, φ. M. Andersen, L. J. Saethre. Color and Substitution Pattern in Anthocyanidins, A Combined Quantum Chemical-chemometrical Study, Spectrochim. Acta, Part A, (1999), 55,761~771.
    [88] S. M. Bonesi, R. E. Balsells. Electronic Spectroscopy of Carbazole and N- and C-substituted Carbazoles in Homogeneous Media and in Solid Matrix, J. Lumin, (2001), 93, 51~74.
    [89] P. M. V. B. Barone, S. O. Dantas, D. S. Galvao. A Semi-empirical Study on the Electronic Structure of Ellipticines, J. Mol. Struct. (Theochem), (1999), 465, 219~229.
    [90] S. O. Dantas, P. M. V. B. Barone, S. F. Braga, D. S. Galvao. A Dual-mode Photoswitching Mechanism and Charge Transfer on Chiroptical Systems-Theoretical Study, Syn. Metals, (2001), 116, 275~279.
    [91] M. D. McClain, D. S. Dudis. Electronic and Structural Consequences of n-doping: Bithiazole Oligomers and Partially Reduced Bithiazolium Cations, Syn. Metals, (2001), 116, 199~202.
    [92] M. C. Zerner, C. Reidlinger, W. M. F. Fabian, H. Junek. Push-pull Dyes Containing Malononitrile Dimer as Acceptor: Synthesis, Spectroscopy and Quantum Chemical Calculations, J. Mol. Struct. (Theochem), (2001), 543,129~146.
    [93] M. Belletete, J. F. Morin, S. Beaupre, M. Leclerc, G. Durocher. Electronic Spectroscopy and Photophysics of Phenylene-Fluorene Derivatives as well as their Corresponding Polyesters, Syn. Metals, (2002), 126, 43~51.
    [94] T. Hoshiba, T. Ida, M. Mizuno, T. Otsuka, K. T akaoka, K. Endo. C-13 NMR Chemical Shifts and Visible Absorption Spectra of Unsymmetrical Fluoran Dye by MO Calculations, J. Mol. Struct., (2002), 602-603,381~388.
    [95] S. F. Yuan, Z. R. Chen. Calculation of Visible Absorption Maxima of Phthalocyanine Compounds by Quantum Theory, Chinese Chem. Lett., (2003), 14(11), 1189~1192.
    [96] S. Yuan, Z. Chen. Study on the Prediction of Electronic Absorption Spectrum for Cyanine Compounds, J. Mol. Struct. (Theochem), (2005), 717, 81~84.
    [97] S. F. Yuan, Z. R. Chen. Study on the Prediction of Visible Absorption Maximum of Phthalocyanine Compounds by Semiempirical Quantum Methods, J. Phys. Chem., (2005), 109,2582~2585.
    [98] S. Yuan, Z. Chen. Study on the Prediction of Maximum Absorption Wavelength for Conjugated Alkenes, Dyes Pigm., (2006), 68, 79~83.
    [99] L. B. Cheng, X. Chen, Y. F. Hou, J. Griffiths. An Approach to the Prediction of Absorption Bandwidths of Dyes Using the PPP-MO Procedure, Dyes Pigm., (1989), 10, 123~140.
    [100] 裴洪平,许高金.量子化学参数用于苯胺类化合物的QSAR研究,浙江大学学报(理学版),(2003),30(3),310~313.
    [101] S. Joshi, N. Khosla. QSAR Study on Antibacterial Activity of Sulphonamides and Derived Mannich Bases, Bioorg. Med. Chem., (2003), 13, 3747~3751.
    [102] L. Sztandera, A. Garg, S. Hayik, K. L. Bhat, C. W. Bock. Mutagenicity of Aminoazo Dyes and their Reductive-cleavage Metabolites: a QSAR/QSPR Investigation, Dyes Pigm., (2003), 59, 117~133.
    [103] C. Jiang, Y. Li, Q. Tian, T. You. QSAR Study of Catalytic Asymmetric Reactions with Topological Indices, J Chem. Inf. Comput. Sci., (2003), 43(6), 1876~1881.
    [104] V. K. Agrawal, S. Chaturvedi, M. H. Abraham, P. V. Khadikar. QSAR Study on Tadpole Narcosis, Bioorg. Med. Chem., (2003), 11, 4523~4533.
    [105] M. Karelson, V. S. Lobanov. Quantum-Chemical Descriptors in QSAR/ASPR Studies, Chem.Rev. (1996), 96, 1027~1043.
    [106] T. Moon, J. Song, J. K. Lee, C. N. Yoon. QSAR Analysis of SH_2-Binding Phosphopeptides: Using Interaction Energies and Cross-correlation Coefficients, J. Chem. Inf. Comput. Sci., (2003), 43(5), 1570~1575.
    [107] Z. Lin, K. Yin, P. Shi, L. Wang, H. Yu. Development of QSARs for Predicting the Joint Effects between Cyanogenic Toxicants and Aldehydes, Chem. Res. Toxicol. (2003), 16(10),1365~1371.
    [108] N. R. McElroy, P. C. Jurs, C. Morisseau, B. D. Hammock. QSAR and Classification of Murine and Human Soluble Epoxide Hydrolase Inhibition by Urea-Like Compounds, J. Med. Chem., (2003), 46(6), 1066~1080.
    [109] R. Garg, A. Kurup, S. B. Mekapati, C. Hansch. Cyclooxygenase (COX) Inhibitors: A Comparative QSAR Study, Chem. Rev., (2003), 103(3), 703~732.
    [110] 杨蕾,王鹏,周德瑞,陈传品.新型氯喹酸酯类除草剂的定量构效关系,清华大学学报(自然科学版),(2004),44(3),323~325.
    [111] 孔德信,江涛,阎作伟,管华诗.使用本征值法研究抗氧化剂的构效关系,高等学校化学学报,(2004),25,713~716.
    [112] 李宝宗.脂肪醇的生物毒性与结构参数的相关研究,化学研究(2004),15(1),50~52.
    [113] 裴洪平,许高金.多元逐步回归对本胺类化合物结构与毒性模型研究,环境污染与防治,(2004),26(1),16~18.
    [114] 杨光富,丁宇,杨铮,吴小军.新型黄烷酮类衍生物的合成、杀菌活性及定量构效关系研究,高等学校化学学报,(2004),25(1),71~75.
    [115] M. Thakur, A. Agarwal, A. Thakur, P. V. Khadikar. QSAR Study on Phenolic Activity: Need of Positive Hydrophobic Terrn(logP) in QSAR, Bioorg. Med. Chem., (2004), 12, 2287~2293.
    [116] J. Lu, Q. Shen, J. Jiang, G. Shen, R. Yu. QSAR Analysis of Cyclooxygenase Inhibitor Using Particle Swarm Optimization and Multiple Linear Regression, J. Pharm. Biomed. Anal., (2004),35,679~687.
    [117] B. D. Gute, K. Balasubramanian, K. T. Geiss, S. C. Basak. Prediction of Halocarbon Toxicity from Structure: a Hierarchical QSAR Approach, Environ. Toxicol. and Pharmacol., (2004), 16, 121~129.
    [118] P. P. Singh, H. K. Srivastava, F. A. Pasha. DFT-based QSAR Study of Testosterone and its Derivatives, Bioorg. Med. Chem., (2004), 12, 171~177.
    [119] A. Macchiarulo, L. D. Luea, G. Costantino, M. L. Barreca, R. Gitto, R. Pellicciari, A. Chimirri. QSAR Study of Anticonvulsant Negative Allosteric Modulators of the AMPA Receptor, J. Med. Chem., (2004), 47(7), 1860~1863.
    [120] V. Mazzatorta, E. Benfenati, P. Lorenzini, M. Vighi. QSAR in Ecotoxicity: An Overview of Modern Classification Techniques, J. Chem. Inf. Comput. Sci., (2004), 44(1), 105~112.
    [121] O. A. Santos-Filho, A. J. Hopfinger, T. Zheng. Characterization of Skin Penetration Processes of Organic Molecules Using Molecular Similarity and QSAR Analysis, Mol. Pharmacol., (2004), 1(6), 466~476.
    [122] T. I. Netzeva, J. C. Dearden, R. Edwards, A. D. P. Worgan, M. T. D. Cronin. QSAR Analysis of the Toxicity of Aromatic Compounds to Chlorella Vulgaris in a Novel Short-Term Assay, J. Chem. Inf. Comput. Sci., (2004), 44(1), 258~265.
    [123] T. Oberg. A QSAR for Baseline Toxicity: Validation, Domain of Application, and Prediction,Chem. Res. Toxicol., (2004), 17(12), 1630~1637.
    [124] M. Shen, C. Beguin, A. Golbraikh, J. P. Stables, H. Kohn, A.Tropsha. Application of Predictive QSAR Models to Database Mining: Identification and Experimental Validation of Novel Anticonvulsant Compounds, J. Med. Chem., (2004), 47(9), 2356-2364.
    [125] D. H. Litina, R. Garg, C. Hansch. Comparative Quantitative Structure-Activity Relationship Studies (QSAR) on Non-benzodiazepine Compounds Binding to Benzodiazepine Receptor (BzR), Chem. Rev., (2004), 104(9), 3751-3794.
    [126] 肖乾芬,戴玄吏,王晓栋,王连生.取代苯对人体细胞的定量结构.遗传毒性研究,中国环境科学,(2005),25(1),18~22.
    [127] 于瑞莲,胡恭任.苯胺类化合物对发光菌的毒性及定量构效,华侨大学学报(自然科学版),(2005),26(2),195~198.
    [128] 习保民,李华,张斌,倪沛洲,夏霖,江振洲.卤代芳氧烷胺类α_1-肾上腺素受全拮抗剂的合成、生物活性及构效关系研究,中国药物化学杂志,(2005),15(1),5~12.
    [129] A. G. Saliner, X. Girones. Topological Quantum Similarity Measures: Applications in QSAR, J. Mol. Struct., (Theochem), (2005), 727, 97~106.
    [130] B. W. Clare, C. T. Supuran. A Physically Interpretable Quantum-theoretic QSAR for Some Carbonic Anhydrase Inhibitors with Diverse Aromatic Rings, Obtained by a New QSAR Procedure, Bioorg. Med. Chem., (2005), 13, 2197~2211.
    [131] T. Oberg. QSAR for the Hydroxyl Radical Reaction Rate Constant: Validation, Domain of Application, and Prediction, Atmos. Environ., (2005), 39, 2189~2200.
    [132] T. I. Netzeva, A. O. Aptula, E. Benfenati, M. T. D. Cronin, G. Gini, I. Lessigiarska, U. Maran, M. Vracko, G. Schuurmann. Description of the Electronic Structure of Organic Chemicals Using Semiempirical and Ab Initio Methods for Development of Toxicological QSARs, J Chem. Inf. Model, (2005), 45(1), 106~114.
    [133] 段彩明,程铸生,朱正华.活性基团的结构与活性染料反应活泼性之间的关系,华东化工学院学报,1983,9(3),281~290.
    [134] 俞荣根,程铸生,朱正华.一些新型2-甲砜基卤代嘧啶型活性染料的反应性研究,华 东化工学院学报,1985,11(1),33~39.
    [135] 汤炜,朱正华,陈孔常.活性基团结构与活性染料反应性间的关系,纪工学报,1986,3(3),329~341.
    [136] 汤炜,朱正华,陈孔常.反应性染料结构与性能间的关系,华东化工学院学报,1987,13(3),285~293.
    [137] G. Klopman. Chemical Reactivity and the Concept of Charge- and Frontier-conrolled Reactions, J. Am. Chem. Soc., 1968, 90(2), 223~234.
    [138] 汤炜,朱正华,陈孔常.用CNDO/2分子轨道法研究模拟活性染料的水解、醇解反应,化东化工学院学报,1988,14(2),181~187.
    [139] 徐光宪,黎乐民.量子化学(基本原理和从头算法),科学出版社,北京,(1999).
    [140] A. Szabo, R. Ostlund. Quantum Chemistry, Introduction to Advanced Electronic Structure Theory, Dover Publications. INC., Mineola, New York, (1996).
    [141] B. Ball, X. Zhou, R. Liu. Density Functional Theory Study of Vibrational Spectra. 8. Assignment of Fundamental Vibrational Modes of 9,10-anthraquinone and 9,10-anthraquinone-d_8.Spectrochim. Acta, Part A, (1996), 52, 1803~1814.
    [142] 吴红丽,张伟,赵德丰.三只通用染料对涤纶纤维的染色性能的研究,染料与染色,(2004),41(6),351~353,347.
    [143] 陈志行.有机分子轨道理论,山东科学技术出版社,济南,(1991).
    [144] 陈念陔,高坡,乐征宇,量子化学理论基础,哈尔滨工业大学出版社,哈尔滨,(2002).
    [145] E. Schrodinger. Quantisierung als Eigenwertproblem, Ann. Phys., (1926), 79, 361~376.
    [146] E. Schrodinger. An Undulatory Theory of the Mechanics of Atoms and Molecules, Phys. Rev. (1926), 28(6), 1049~1070.
    [147] M. Born, R. Oppenheimer. Zur Quantentheorie der Molekeln, Ann. Phys., (1927), 84(20),457~484.
    [148] J. A. Pople. Approximate Self-Consistant Molecular Orbital Theory, Ⅰ: Invariant Procedures, J. Chem. Phys., (1965), 43(10), S129~135.
    [149] J. A. Pople. Approximate Self-Consistent Molecular Orbital Theory, Ⅱ: Calculations with Complete Neglect of Diffrential Overlap, J. Chem. Phys., (1965), 43 (10), S136~151.
    [150] J. A. Pople. Approximate Self-consistent Molecular Orbital Theory, III: CNDO Results for AB_2 and AB_3 System, J. Chem. Phys., (1966), 44(9), 3289-3296.
    [151] M. J. S. Dewar, W. Thiel. Ground States of Molecules, 38: The MNDO Method Approximations and Parameters, J. Am. Chem. Soc, (1977), 99(15), 4899-4907.
    [152] M. J. S. Dewar, E. G. Zoebisch, E. F. Healy, J. J. P. Steware. A New General Purpose Quantum Mechanical, J. Am. Chem. Soc, (1985), 107(13), 3902-3909.
    [153] J. J. P. Stewart. MOPAC: A Semiempirical Molecular Orbital Program, J. Comp. Aided. Mol. Design, (1990), 4, 1-105.
    [154] M. J. S. Dewar, K. M. Dieter. Evaluation of AM1 Calculated Proton Affinities and Deprotonation Enthalpies, J. Am. Chem. Soc, (1986), 108(25), 8075-8086.
    [155] J. J. P. Stewart. Optimization of Parameters for Semiempirical Methods, I: Method, J. Comp. Chem., (1989), 10(2), 209-220.
    [156] J. J. P. Stewart. Optimization of Parameters for Semiempirical Methods, II: Applications, J. Comp. Chem., (1989), 10(2), 221-264.
    [157] J. J. P. Stewart. Optimization of Parameters for Semiempirical Methods, III: Extension of PM3 to Be, Mg, Zn, Ga, Ge, As, Se, Cd, In, Sn, Sb, Te, Hg, Tl, Pb, and Bi, J. Comp. Chem., (1991), 12(3), 320-341.
    [158] W. D. Anderson, T. R. Cundarl, M. C. Zerner. An Inermediate Neglect of Differential Overlap Model for Second-row Transition Metal Species, Int. J. Quantum Chem., (1991), 39(1), 31-45.
    [159] A. D. Bacon. An Intermediate Neglect of Differential Overlap Theory for Transition Metal Complexes: Fe, Co, and Cu Chlorides, Theoret. Chim. Acta, (1979), 53(1), 21-54.
    [160] K. K. Stavrev, M. C. Zerner. Outer-sphere Charge-transfer Effects on the Spectroscopy of the [Ru(NH_3)_5(py)]~2+ Complex, J. Am. Chem. Soc, (1995), 117(33), 8684-8690.
    [161] M. C. Zerner, G. H. Loew, R. Kirchner, U. T. M. Westerhoff. An Intermidiate Neglect of Differential Overlap Technique for Spectroscopy of Transition-Metal Complexes, J. Am. Chem. Soc, (1980), 102 (2), 589-599.
    [162] K. K. Stavrev, M. C. Zerner. A Theoretical Treatment of the Absorption and Emission Properties of Cu(Ⅱ) Porphyrin, Chem. Phys. Lett., (1995), 233 (1~2), 179~184.
    [163] K. K. Stavrev, M. C. Zerner. Theoretical Study of the Jahn-Teller Effect on the Spectroscopy of VCl_4, Chem. Phys. Lett., (1996), 263(5), 667~670.
    [164] J. D. Bene, H. H. Jaffe. Use of the CNDO Method in Spectroscopy, Ⅰ: Benzene, Pyridine, and the Diazine, J. Chem. Phys., (1968), 48(4), 1807~1813.
    [165] J. D. Bene, H. H. Jaffe. Use of the CNDO Method in Spectroscopy, Ⅱ: Five-Membered Rings, J. Chem. Phys., (1968), 48(9), 4050~4055.
    [166] K. K. Stavrev, M. C. Zerner. On the Jahn-Teller Effect on Mn~(2+) in Zinc-blend ZnS Crystal, J Chem. Phys., (1995), 102(1), 34~38.
    [167] J. E. Ridley, M. C. Zerner. Triplet States via Intermediate Neglect of Differential Overlap: Benzene, Pyridine and the Diazines, Theoret. Chim. Acta, (1976), 42(3), 223~236.
    [168] J. E. Ridley, M. C. Zerner. An Intermediate Neglect of Differential Overlap Technique for Spectroscopy: Pyrrole and the Azines, Theoret. Chim. Acta, (1973), 32(2), 111~134.
    [169] D. Hartreee. Calculations of Atomic Structure. Wiley, (1957).
    [170] 陈念贻,许志宏,刘洪霖.计算化学及其应用,上海科技出版社,上海,(1985).
    [171] W. Koch, M. C. Holthausen. A Chemist's Guide to Density Functional Theory (Second Edition), Wiley-VCH Verlag GmbH, (2001).
    [172] 戴英,黎乐民.密度泛函理论处理激发态与多重态结构研究进展,化学进展(2001),13(3),167~176.
    [173] Z. Li, J. Yang, J. G. Hou, Q. Zhu. Hybrid Density-functional Study of SF_5CF_3, Chem. phys. lett, (2003), 359, 321~325.
    [174] B. Dai, K. M. Deng, J. L. Yang. A Theoretical Study of the Y_4O Cluster, Chem. Phys. Lett.,(2002), 364, 188~195.
    [175] S. M. Reimann, M. Manninen. Electronic Structure of Quantum Dots, Rev. Mod. Phys.,(2002), 74, 1283~1342.
    [176] H. J. Xiang, J. L. Yang, J. G. Hou, Q. S. Zhu. First-principle Study of Small-radius Singlewalled BN Nanotubes, Phys. Rev. B, (2003), 68, 35427~35431.
    [177] Z. Y. Li, J. L Yang, J. G. Hou, Q. S. Zhu. First-principle Study of MgB_2(0001) Surfaces, Phys. Rev. B, (2002), 65, 100507~100510.
    [178] G. P. Brivio, M. I. Trioni. The Adiabatic Molecule-metal Surface Interaction: Theoretical Approaches, Rev. Mod. Phys., (1999), 71, 231~265.
    [179] Z. Y. Li, L. Yang, J. G. Hou, Q. S. Zhou. Inorganic Electride:Theoretical Study on Structural and Electronic Properties, J. Am. Chem. Soc., (2003), 125, 6050~6051.
    [180] W. E. Pickett. Electronic Structure of the High-temperature Oxide Superconductors, Rev. Mod. Phys., (1989), 61,433~512.
    [181] E. Runge, E. K. U. Gross. Density-functional Theory for Time-Dependent Systems, Phys. Rev.Lett., (1984), 52, 997~1000.
    [182] E. K. U. Gross, Wo Kohn. Local Density-functional Theory of Frequency-dependent Linear Response, Phys. Rev. Lett., (1985), 55, 2850~2852.
    [183] R. Bauernschmitt, M. Haser, O. Treutler, R. Ahlrichs. Calculation of Excitation Energies within Time-dependent Density Functional Theory Using Auxiliary Basis Set Expansions, Chem. Phys. Lett., (1997), 264, 573~578.
    [184] S. J. A. V. Gisbergen, F. Kootstra, P. R. T. Schipper, O. V. Gritsenko, J. G. Snijders, E. J. Baerends. Density-functional Theory Response-property Calculations with Accurate-correlation Potentials, Phys. Rev., A57, (1998), 2556~2571.
    [185] M. E. Casida, K. C. Casida, D. R. Salahub. Excited-state Potential Energy Curves from Time-dependent Density-functional Theory: A Cross Section of Formaldehyde's A_1 Manifold,Int. J. Quantum Chem., (1998), 70, 933~941.
    [186] K. Burke, E. K. U. Gross. A Guided Tour of Time-Dependent Density Functional Theory, in Springer Lecture Notes in Physics, (1998).
    [187] 福井谦一著,李荣森译.化学反应与电子轨道,科学出版社,北京,(1985).
    [188] N. Moiseyev, F. Weihold. Criteria of Accuracy of Resonance Eigenvalues, Int. J. Quantum.Chem., (1980), 17, 1201~1211.
    [189] A. E. Reed, L. A. Curtiss, F. Weinhold. Intermolecular Interaction from a Natural Bond Orbital, Donor-acceptor Viewpoint, Chem. Rev., (1988), 88, 899~926.
    [190] E. D. Glendening, F. Weihold. Natural Resonance Theory: Natural Bond Order and Valency, J. Comput. Chem., (1998), 19, 610~627.
    [191] 王尔华编译.定量药物设计,人民卫生出版社,北京,(1983).
    [192] 俞庆森,朱龙观.分子设计导论,高等教育出版社,北京,(2001).
    [193] 籍国东,赵元慧,袁星.量化参数在定量结构-活性-性质相关研究中的应用,东北师大学报(自然科学版),(1998),4,47~53.
    [194] P. Geladi, B. R. Kowalski. Partial. Least-squares Regression: a Tutorial, Anal Chim Acta, (1985), 185, 1~17.
    [195] 吕荣文,张英菊,高昆玉.一些苯系偶氮型分散染料的光谱及染色性能,染料工业,(1993),30(3),1~5.
    [196] 潘鑫,王梅.含羧甲磺酰基水暂溶性分散染料的研究-几个中间体及染料的合成,高等学校化学学报,(1994),15(4),574~579.
    [197] 杨新玮,张澎声.分散染料,化学工业出版社,北京,(1989).
    [198] M. A. Weaver, L. Shuttleworth. Heterocyclic Diazo Components, Dyes Pigm., (1982), 3,81~121.
    [199] A. Cee, B. Horakova, A. Lycka. Structural Analysis of Substituted 3-Arylazo-2-hydroxy-6-Pyridones, Dyes Pigm., (1988), 9, 357~369.
    [200] 彭勃,李慕洁,程侣柏.吡啶酮系偶氮型分散染料结构与性能的研究-吡啶酮系偶氮型分散染料结构与光谱性能的关系,染料工业,(1996),33(3),1~6.
    [201] 康鸣,陈孔常,任绳武.噻唑杂环偶氮分散染料的合成及电子光谱计算,华东北工学院学报,(1990),16(2),334~340.
    [202] A. M. Grana. Structure and Tautomerism of 7-Aaindole in the Ground and Excited States,J. Mol. Struct. (Theochem), (1999), 466, 145~153.
    [203] M. K. Shukla, A. Kumar, P. C. Mishra. An Ab initio Study of Excited State Molecular Electrostatic Potential Maps and Other Related Properties of 5-Fluorouracil: A Comparative Study with Uracil, J. Mol. Struct. (Theochem), (2001), 535, 269~277.
    [204] 易海波,李象远,段晓惠.电子给受体复合物中电荷转移吸收光谱和溶剂效应,化学学报,(2004),62(6),583~586.
    [205] 李桂贞,乐一鸣,朱正华,刘允毅.薄层色谱法测定乙烯砜型活性染料的水解产物,色谱(1989),7(5),285~288.
    [206] 苗蔚荣,侯毓汾.三嗪型活性染料的研究:Ⅰ活性基结构与染料性能的关系,染料工业,(1994),31(5),1~6,8.
    [207] 苗蔚荣,侯毓汾.三嗪型活性染料的研究:Ⅱ HMO法在三嗪型活性基反应性研究中 的应用,染料工业,(1994),31(6),1~4,11.
    [208] 吴祖望,王桂娟,林莉,刘冬梅,田雅珍.一类含β-硫酸酯乙基砜和2-甲氧基4-氯均三嗪双活性基团的新型活性染料的研究,染料工业,(1995),32(5),1~8,51.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700