用户名: 密码: 验证码:
新苊并杂环衍生物的合成、光谱及作为DNA靶向分子的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以高度缺电子的8-氧-8H-苊并[1,2-b]吡咯-9-腈为前体,通过芳香亲核氢取代反应,设计合成了一系列3位氨基、羟基和烷硫基单取代产物,并且得到了氨基单取代的异构体6位氨基取代产物和罕见的3,6-二氨基氢取代产物。研究了8-氧-8H-苊并[1,2-b]吡咯-9-腈与不同亲核试剂的反应活性,发现它有以下的特点:存在两个氢取代活性位点;两个氢可以同时被环状仲胺取代;与氮、氧、硫等不同亲核试剂都能发生氢取代反应。
     通过对8-氧-8H-苊并[1,2-b]吡咯-9-腈进行结构改造,得到了溶解性更好的新的8-氧-8H-苊并[1,2-b]吡咯-9-甲酸酯前体。腈基改造为酯基后,体系仍然高度缺电子,可以与胺亲核试剂发生芳香氢取代反应。由此,设计合成了两个系列3位氨基取代的8-氧-8H-苊并[1,2-b]吡咯-9-甲酸酯衍生物。
     研究了8-氧-8H-苊并[1,2-b]吡咯-9-甲酸甲酯的3位伯胺基取代物的紫外吸收和荧光光谱。发现它的吸收光谱比具有相同取代基的8-氧-8H-苊并[1,2-b]吡咯-9-腈衍生物红移17-20nm左右,而发射光谱红移14-17nm左右(>600nm),荧光量子产率降低。研究了8-氧-8H-苊并[1,2-b]吡咯-9-腈(甲酸甲酯)的3位仲胺基取代衍生物在不同极性溶剂中的紫外吸收和荧光光谱,发现它与伯胺基取代化合物的光谱有明显的不同,溶剂极性对吸收光谱和荧光量子产率的影响很大,斯托克斯位移从10-20nm增大至60-90nm,这可能是由于存在ICT(分子内电荷转移)激发态造成的。
     通过琼脂糖凝胶电泳、紫外可见光谱、荧光光谱、DNA熔解温度曲线、圆二色谱和细胞抑制试验等方法研究了8-氧-8H-苊并[1,2-b]吡咯-9-腈(甲酸酯)类化合物与DNA的相互作用和抗肿瘤活性。结果表明,具有N,N-二烷基和N-甲基-哌嗪基侧链的化合物与CT DNA发生强烈的相互作用,表观结合常数达到10~5-10~6数量级。其中化合物1-1在长波长(λ>400nm)激发下产生单线态氧切割M13 mp18单链环形DNA,最低作用浓度50μM。化合物1-1可以通过表面堆积和嵌入两种方式与CT DNA作用。以HeLa人宫颈癌细胞,A549人肺癌细胞和P388小鼠白血病细胞为靶细胞的体外抑制实验结果表明,能与DNA强烈作用的带有N,N-二烷基侧链取代基的化合物具有较高的细胞毒性,其IC_(50)值达到10~(-8)-10~(-6)μM。且分子中没有N,N-二烷基侧链取代基的大部分化合
8-Oxo-8H-acenaphtho[l,2-b]pyrrole-9-carbonitrile, a flat and highly electron-deficient heteroaromatic compound, was used as precursor to synthesize a series of amino, hydroxyl and dodecylsulfanyl mono-substituted derivatives at 3-position through nucleophilic aromatic substitution of hydrogen (NASH) reaction. 6-Amino substituted derivatives were obtained as the isomers of 3-substituted products. It can be concluded from unusual characteristics for NASH reactivity of the precursor that there were two active sites for NASH reaction in one molecule;two hydrogen atoms in one aromatic conjugation system could be replaced simultaneously;NASH reaction with different nucleophiles (nitrogen, hydroxy group, sulfur) could be happened also.8-Oxo-8//-acenaphtho[l,2-b]pyrrole-9-carboxylic acid esters with improved solubility were obtained from 8-oxo-8H-acenaphtho[l,2-b]pyrrole-9-carbonitrile, and the highly electron-deficient feature was kept in these novel precursors. So a series of 3-substituted derivatives of the ester precursors were synthesized by NASH reaction with amines.Compared with that of the carbonitrile precursor with primary amine substituents at 3-position, the maximum wavelength for the derivatives of ester precursors were red-shifted about 17-20 nm and 14-17 nm in UV-Vis absorption and emission spectra, respectively, and fluorescence quantum yields were decreased. There existed significant difference in UV-Vis and emission spectra between the derivatives with 3-alicyclic secondary amine substituents and those with 3-primary amine substituents. The maximum wavelength of UV-vis and the fluorescence quantum yield were mainly depended on the polarity of solvents and a large Stokes shift (60-90 nm) was obtained, which could be attributed to the excited-state intramolecular charge transfer (ICT).Interaction with DNA and antitumor abilities for 8-oxo-8H-acenaphtho[l,2-b]pyrrole-9-carbonitrile(carboxylic acid ester) and their derivatives were evaluated by agarose gel electrophoresis, UV-Vis absorption and fluorescence spectrum, DNA melt curves, circular
    dichroism (CD) spectroscopy, cytotoxicity experience etc. The results demonstrated that the compounds with N-dialkyl group and N-methyl-piperazinyl side chain could bind strongly with CT DNA and the binding constants are in the order of 105-106. Under the irradiation of long wavelength light (A. > 400 nm), compound 1-1 could be used to cleave Ml3 mpl8 single strand circular DNA by generating singlet oxygen, the lowest effective concentration is 50 uM. There were two different interaction mechanisms (intercalation and stacking on surface) involved in the interaction process of compound 1-1 with CT DNA. The inhibitory test against HeLa, A549 and P388 cell lines in vitro showed that the compounds with N-dialkyl group and N-methyl-piperazinyl side chain exhibited higher activity and the IC50 values are in the range of 10" -10" M. Moreover, those compounds without N-dialkyl group basic side chain showed moderate antitumor activity unexpectedly, especially for compound 1-9 with thiomorpholinyl substituent, the IC50 value against HeLa cell is 1.7><1O"5 M. Isotope incorporation experiment of compound 1-9 showed that it disturbed the synthesis of DNA and RNA.
引文
[1] Heinrich Z. Color Chemistry: Syntheses, Properties, and Applications of Organic Dyes and Pigments. Third, revised edition. VILEY-VCH: 2003.
    [2] Haugland R P. Handbook of fluorescent probes and research chemicals. Sixth edition. Eugene, Oregon, USA: Molecular Probe Inc., 1996.
    [3] Emptage N J. Fluorescent imaging in living systems. Current Opinion in Pharmacology, 2001, 1 (5): 521-525.
    [4] Bork G, Steinlein P, Huber L A. Cell biologists sort things out. Trends in Cell Biol., 1997, 7: 499-503.
    [5] Szollosi J, Nagy P, Sebestyen Z, Damjanovich S. Applications of fluorescence resonance energy tranfer for mapping biological membranes. Rev. Molecular Biotech., 2002, 82 (3): 251-266.
    [6] Lehn J-M. Perspectives in supramolecular chemistry-from molecule recognition towards molecular information processing and self-organization. Angew. Chem. Int. Ed. Engl., 1990, 29: 1304-1319.
    [7] Kilsa K, Macpherson A N, Gillbro T, Martensson J. Control of electron transfer in supramolecular systems. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2001, 57 (11): 2213-2227.
    [8] Xu H, Li X, Jiang H, Zhou Q. Effect of host-guest interactions on the photophysical properties of a monocrown ether substituted phthalocyanine. Materials Science and Engineering: C, 1999, 10 (1-2): 71-74.
    [9] Das G, Bharadwaj P K, Roy M B, Ghosh S. Transition metal cryptate-enhanced fluorescence in a trianthroyl cryptand: effect of spacer on the photoinduced electron transfer process. J. Photochem. Photobiol. A: Chem., 2000, 135 (1): 7-11.
    [10] Sirish M, Maiya B G. Fluorescence studies on a supramolecular porphyrin bearing anthracene donor moieties. J. Photochem. Photobiol. A: Chem., 1995, 85 (1-2): 127-135.
    [11] de Silva A P, Fox D B, Moody T S, Weir S M. The development of molecular fluorescent switches. Trends in Biotech., 2001, 19 (1): 29-34.
    [12] Yang C, Shimelis O, Zhou X, Li G, Bayle C, Nertz M, Lee H, Strekowski L, Patonay G, Couderc F, Giese R W. Handling and detection of 0.8 amol of a near-infrared cyanine dye by capillary electrophoresis with laser-induced fluorescence detection. Journal of Chromatography A, 2002, 979: 307-314.
    [13] de Silva A P, Gunatatne H Q N, Gunnlauggson T, Huxley A J M, McCoy C P, Radmancher J T, Rice T E. Signaling recognition events with fluorescent sensors and switches. Chem. Rev., 1997, 97: 1515-1566,
    [14] 王磊,朱训进,付世涛,李早英.季铵盐型金属卟啉的合成及其对大肠杆菌生长代谢的抑制作用.高等学校化学学报,2003,24:1145-1149.
    [15] 彭司勋.药物化学.北京:化学工业出版社,1988,300.
    [16] Leslie K D, Fox K R. Interaction of Hoechst 33258 and Echinomycin with Nucleosomal DNA Fragments Containing Isolated Ligand Binding Sites. Biochem., 2002, 41: 3484-3497.
    [17] Ossipov D, Pradeepkumar P I, Holmer M, Chattopadhyaya J. Synthesis of [Ru(phen)_2dppz]~(2+)- tethered oligo-DNA and studies on the metallointercalation mode into the DNA duplex. J. Am. Chem. Soc., 2001, 123: 3551-3562.
    [18] 刘次全,白春礼,张静编著.结构分子生物学.北京:高等教育出版社,1997.
    [19] 张礼和.以核酸为作用靶的药物研究[M].北京:科学出版社,1997.
    [20] 靳兰,杨频,李青山.荧光法研究手性金属配合物与DNA的作用机理.高等学校化学学报,1996,17:1345-1348.
    [21] Aldo H, Bhabatosh C, Heinz F. DNA binding properties of the marine sponge pigment fascaplysin. Bioorg. Med. Chem., 2001, 9: 917-921.
    [22] Tse W C, Boger D L. A fluorescent intercalator displacement assay for establishing DNA binding selectivity and affinity. Acc. Chem. Res., 2004, 37: 61-69.
    [23] Eis P S, Smith J A, Rydzewski J M, Case D A, Boger D L, Chazin W J. High resolution solution structure of a DNA duplex alkylated by the antitumor agent duocarmycin SA. J. Mol. Biol., 1997, 272: 237-252.
    [24] Utsuno K, Kojima K, Maeda Y, Tsubio M. The average unwinding angle of DNA duplex produced by the binding of chromomycin A3. Chem. Pharm. Bull., 1999, 46: 1363-1671.
    [25] Moser H E, Dervan P B. Sequence-specific cleavage of double helical DNA by triple helix formation. Science, 1987, 238: 645-650.
    [26] Lee M, Krowichi K, Hartley J A, Pon R T, Lown W J. Molecular recognition between oligopeptides and nucleic acids: influence of van der Waals contacts in determining the 3'-terminus of DNA sequences read by monocationic lexitropsins. J. Am. Chem. Soc., 1988, 110: 3641-3649.
    [27] Maher L J, Wold B, Dervan P B. Inhibition of DNA binding proteins by oligonucleotide-directed triple helix formation.. Science, 1989, 245: 725-730.
    [28] Praseuth D, Trung L D, Chassignd M, Decjut J L, Habhoub N, Lhomme J, Thueng N T, Helen T. Sequence-targeted photosensitized reactions in nucleic acids by oligo-α-deoxynucleotides and oligo-β-deoxynucleotides covalently linked to proflavin. Biochemistry, 1988, 27: 3031-3038.
    [29] Erkkila K E, Odom D T, Barton J K. Recognition and reaction of metallointercalators with DNA. Chem. Rev., 1999, 99: 2777-2795.
    [30] Long E C, Barton J K. On demonstrating DNA intercalation. Acc. Chem. Res., 1990, 23: 271-273.
    [31] Tjahjono D H, Akutsu T, Yoshioka N, Inoue H. Cationic porphyrins bearing diazolium rings: synthesis and their interaction with calf thymus DNA. Biochim. Biophys. Acta, 1999, 1472: 333-334.
    [32] Cao Y, He W. Studies of interaction between safranine T and double helix DNA by spectromethods. Spectrochim. Acta: Part A, 1998, 54: 883-892.
    [33] Ghosh J K, Mandal A K, Pal M K. Energy transfer from thiacyanine to acridine orange facilitated by DNA, Spectrochim. Acta: Part A, 1999, 55: 1877-1886.
    [34] Uno T, Hamasaki K, Tanigawa M, Shimabayashi S. Binding of meso-Tetrakis(N-methyl pyridinium-4-yl)porphyrin to double helical RNA and DNA. RNA Hybrids. Inorg. Chem., 1997, 36: 1676-1683.
    [35] Ismail M A, Sanders K J, Fennell G C. Spectroscopic studies of 9-hydroxyellipticine binding to DNA. Biopolymers, 1988, 46: 127-143.
    [36] Monnot M, Mauffret O, Simon V, Lescot E, Psaume B, Saucier J M, Charra M, Belehradek J Jr., Fermandjian S. DNA-drug recognition and effects on topoisomerase Ⅱ-mediated, a three-mode binding model for ellipticine derivatives. J. Biol. Chem., 1991, 33: 1820-1829.
    [37] Zhao G, Zhu J, Chen H. Spectroscopic studies of the interactive model of methylene blue with DNA by means of β-cyclodextrin. Spectrochim. Acta: Part A, 1999, 55: 1109-1117.
    [38] 郭茂林,杨频,杨斌盛,张志刚.Ethidium bromide as a fluorescent probe for the interaction mode between titanocene dichloride and DNA.科学通报,1995,40:1098-1103.
    [39] 徐春,何品刚,方禹之.溴化乙锭标记DNA电化学探针的研究.高等学校化学学报,2000,21:1187-1190.
    [40] Zhou Y L, Li Y Z. Studies of interaction between poly(allylamine hydrochloride) and double helix DNA by spectral methods. Biophys. Chem., 2004, 107: 273-281.
    [41] Solimani R. Quercetin and DNA in solution: analysis of the dynamics of their interaction with a linear dichroism study. Int. J. Biol. Macromol., 1996, 18: 287-295.
    [42] 赵晓杰,江山,陆冬生,陆琳,毛慈波,安承武,范永昌,李再光.用共振拉曼光谱研究电子激发态铜卟啉与DNA的相互作用.高等学校化学学报,1994,15(4):600-602.
    [43] Turro C, Bossmann S H, Leroi G E, Barton J K, Turro N J. Ligand-Specific charge localization in the MLCT excited state of Ru(bpy)_2(dpphen)~(2+) monitored by time-resolved resonance raman spectroscopy. Inorg. Chem., 1994, 33(7): 1344-1347.
    [44] 吕冬梅,闵吉梅,张礼和.药物-DNA相互作用的序列特异性的研究进展.国外医学药学分册,1998,25(2):65-71.
    [45] Carter M T, Rodriguez M, Bard A J. Voltammetric studies of the interaction of metal chelates with DNA. 2. Tris-chelated complexes of cobalt(Ⅲ) and iron(Ⅱ) with 1, 10-phenanthroline and 2, 2'-bipyridine. J. Am. Chem. Soc., 1989, 111 (24): 8901-8911.
    [46] 王素芬,彭图治,李建平.更生霉素—DNA反应的电化学研究.高等学校化学学报,2002,24(8):1468-1471.
    [47] 赵元弟,庞代文,王宗礼,程介克,乐芝凤,冯长建,沈昊宇,张香才.抗癌药物的电化学研究.化学学报,1998,56:178-183.
    [48] Strahan G D, Lu D S, Tsuboi M, Nakamoto K. Resonance raman spectra of electronically excited, water-soluble copper(Ⅱ) porphyrins bound to oligonucleotides: possibility of translocation from a GC to an AT site. J. Phys. Chem., 1992, 96: 6450-6457.
    [49] Feng Q, Li N Q, Jiang Y Y. Electrochemical studies of porphyrin interacting with DNA and determination of DNA. Anal. Chim. Acta, 1997, 344: 97-104.
    [50] Meunier B. Metalloporphyrins as versatile catalysts for oxidation reactions and oxidative DNA cleavage.. Chem. Rev., 1992, 92: 1411-1456.
    [51] Takahara P M, Rosenzweig A C, Frederick C A, Lippard S J. Crystal structure of double-stranded DNA containing the major adduct of the anticancer drug cisplatin.. Nature, 1995, 377: 649-652.
    [52] Magnus P, Fortt S, Pitterna T, Snyder J P. Synthetic and mechanistic studies on esperamicin Al and calichemicin. gamma.1. Molecular strain rather than. pi.-bond proximity determines the cycloaromatization rates of bicyclo[7.3.1]enediynes. J. Am. Chem. Soc., 1990, 112: 4986-4987.
    [53] Larsen I K. Anticancer Agents. Harwoal: Academic Publishers, 1996, 481.
    [54] Coll M, Aymami J, van der Marel G A. Molecular structure of the netropsin-d(CGCGATATCGCG) complex: DNA conformation in an alternating AT segment. Biochem., 1989, 28: 310-320.
    [55] Tao Z, Qian X. Naphthalimide hydroperoxides as photonucleases: substituent effects and structural basis. Dyes Pigm., 1999, 43(2): 139-145.
    [56] Brana M F, Castellano J M, Roldan C M. Synthesis and mode(s) of action of a new series of imide derivatives of 3-nitro-1, 8- naphthalic acid. Cancer Chemother Pharmacol., 1980, 4: 61-66.
    [57] Brana M F, Sanz A M, Castellano J M. Synthesis and cytostatic activity of benz[de]iso-quinoline-1, 3-diones: Structure-activity Relationships. Eur. J. Med. Chem. Chim. Ther., 1981, 16: 207-212.
    [58] Rosell R, Carles J, Abad A. Phase I study of mitonafide in 120 hour continuous infusion in non-small cell lung cancer. Invest. New Drugs, 1992, 10: 171-175.
    [59] Llombart M, Poveda A, Forner E. Phase I study of mitonafide in solid tumors. Invest. New Drugs, 1992, 10: 177-181.
    [60] Diaz-Rubio E, Martin M, Lopez-Vege J M. Phase I study of mitonafide with a 3-day administration schedule: early interruption due to severe central nervous system toxicity. Invest. New Drugs, 1994, 12: 277-281.
    [61] Malviya V K, Liu P Y, Alberts D S. Evaluation of amonafide in cervical cancer: phase Ⅱ. Am. J. Clin. Oncol., 1992, 15:41-44.
    [62] Ratiain M J, Mick R, Berezin F. Phase I study of amonafide dosing based on acetyllator phenotype. Cancer Res., 1993, 53: 2304-2308.
    [63] Allen S L, Budman D R, Fusco D. Proc. Am. Assoc. Cancer Res., 1994, 35: 225-240.
    [64] Warinbg M J, Gonzalez A, Jimeneza A. Intercalative binding to DNA of antitumor drugs derived from 3-nitro-1, 8-naphthalic acid. Nucleic Acids Res., 1979, 7: 217-230.
    [65] Feigon J, Deeny W A, Leupin W, Kearns D R. Interaction of antitumor drugs with natural DNA: HNMR study of binding mode and kinetics. J. Med. Chem., 1984, 27: 450-465.
    [66] Hsiang Y H, Jiang J B, Liu L F. Topoisomerase Ⅱ-mediated DNA cleavage by amonafide and its structural analogs. Mol. Phamacol., 1989, 36: 371-376.
    [67] Brana M F, Castellano J M, Moran M, et al. Emling F, Kluge M, Schlick E, Klebe G, Walker N.Synthesis, structure and antitumor activity of new benz[d,e] isoquinoline-1,3-diones. Arzneim-Forsch, 1995,45: 1311-1318.
    [68] Zee-Cheng R K Y, Cheng C C. N-(Aminoalkyl)imide antineoplastic agents: Synthesis and biological activity. J. Med. Chem., 1985, 28: 1216-1222.
    [69] Sami S M, Dorr R T, Albert D S, Remers W A. 2-substituted 1,2-dihydro-3H-dibenz[de,h] isoquinoline-l,3-diones. A new class of antitumor agent. J.Med. Chem., 1993, 36: 765-770.
    [70] Sami S M, Dorr R T, Solyom A M, Albert D S, Remers W A. Amino-substituted 2-[2'-(dimethylamino)ethyl]-1,2-dihydro-3H-dibenz[de,h]isoquinoline-1,3-diones. Synthesis, antitumor activity, and quantitative structure-acitvity relationship. J.Med. Chem., 1995, 38: 983-993.
    [71] Sami S M, Dorr R T, Albert D S, Solyom A M, Remers W A. Analogues of aminofide and azonafide with novel ring systems. J.Med. Chem., 2000, 43: 3067-3073.
    [72] Brafia M F, Cacho M, Carcia M A, de Pascual-Teresa B, Ramos A, Acero N, Llinares F, Munoz-Mingarro D, Abradelo C, Rey-Stolle M F, Yuste M. Synthesis, antitumor activity, molecular modeling and DNA binding properties of a new series of imidazonaphthalimides. J.Med. Chem., 2002, 45: 5813-5816.
    [73] Brafia M F, Cacho M, Ramos A. Synthesis, biological evaluation and DNA binding properties of novel mono and binaphthalimides. Org. Biomol. Chem., 2003, 1: 648-6545.
    [74] Brafia M F, Cacho M, Carcia M A, de Pascual-Teresa B, Ramos A, Dominguez M T, Pozuelo J M, Abradelo C, Rey-Stolle M F, Yuste M, Banez-Coronel M, Lacal J C. New analogues of amonafide and elinafide, containing aromatic heterocycles: synthesis, antitumor activity, molecular modeling and DNA bonding properties. J.Med. Chem., 2004, 47: 1391-1399.
    [75] 李永刚.含硫稠环萘酰亚胺DNA嵌入剂和光敏切断剂及其抗肿瘤效果:(博士学位论文).上海:华东理工大学,2003.
    [76] Li Z, Yang Q, Qian X. Synthesis, antitumor evaluation and DNA photocleaving activity of novel methylthiazonaphthalimides with aminoalkyl side chains. Bioorg. Med. Chem. Lett., 2005, 15: 3143-3146.
    [77] Li Z, Yang Q, Qian x. Novel thiazonaphthalimides as efficient antitumor and DNA photocleaving agents: Effects of intercalation, side chains, and substituent groups. Bioorg. Med. Chem., 2005, 13: 4864-4870.
    [78] Brana M F, Castellano J M, Moran M, Perez de Vega, M J, Romerdahl C R, Qian X D, Bousquet P, Emling F, Schlick E, Keilhauer G. Bis-naphthalimides: a class of antitumor agents. Anti-cancer Drug Des., 1993, 8: 257-268.
    [79] Brana M F, Castellano J M, Moran M, Perez de Vega, M J, Perron D, Conlon D, Bousquet P F, Romerdahl C A, Robinson S P. Bis-naphthalimides 3: synthesis and antitumor activity of N, N'-bis[2-(1, 8-naphthalimido)-ethyl]alkanediamines. Anti-cancer Drug Des., 1996, 11: 297-309.
    [80] Bousquet P F, Braa M F, Conlnon D. Preclinical evaluation of LU 79553: A novel bis-naphthalimide with potent antitumor activity. Cancer Res., 1995, 55: 1176-1189.
    [81] Bailly C, Braa M F, Waring J. Sequence-selective intercalation of antitumor bis- naphthalimides into DNA: Evidence for an approach via the major groove. Eur. J. Biochem., 1996, 240: 195-208.
    [82] Gallego J, Reid B R. Solution structure and dynamics of a complex between DNA and the antitumor bisnaphthalimide LU-79553: Intercalated ring flipping on the millisecond time scale. Biochemistry, 1999, 38: 15104-15115.
    [83] Cobb P W, Degen D R, Clark G M. Activity of DMP 840, a new bis-naphthalimide, on primary human tumor colony-forming units. J. Nat. Can. Inst., 1994, 86: 1462-1465.
    [84] McRipley R J, Burns-Horwitz P E, Czerniak P M, Diamond R J, Diamond M A, Miller J L D, Page R J, Dexter D L, Chen S F. Efficacy of DMP 840: A novel bis-naphthalimide cytotoxic agent with human solid tumor xenograft selectivity. Cancer Res., 1994, 54: 159-164.
    [85] Guo X, Qian X, Jia L. A highly selective and sensitive fluorescent chemosensor for Hg~(2+) in neutral buffer aqueous solution. J. Am. Chem. Soc., 2004, 126: 2272-2273.
    [86] Wang J, Qian X. Two regioisomeric and exclusively selective Hg(Ⅱ) sensor molecules composed of a naphthalimide fluorophore and an o-phenylenediamine derived triamide receptor. J. Chem. Soc. Chem. Commun., 2006, 109-111.
    [87] Zhang Z, Guo X, Qian X, Lu Z, Liu F. Fluorescent imaging of acute mercuric chloride exposure on cultured human kidney tubular epithelial cells. Kidney International, 2004, 66: 2279-2282.
    [88] Xu Z, Xiao Y, Qian X, Cui J, Cui D. Ratiometric and selective fluorescent sensor for Cu~Ⅱ based on internal charge transfer (ICT). Org. Lett., 2005, 7(5): 889-892.
    [89] Xu Z, Qian X, Cui J. Colorimetric and ratiometric fluorescent chemosensor with a large red-shift in emission: Cu(II)-only sensing by deprotonation of secondary amines as receptor conjugated to naphtha-alimide fluorophore. Org. Lett., 2006, 7(14): 3029-3032.
    [90] Cui D, Qian X, Liu F, Zhang R. Novel fluorescent pH sensors based on intramolecular hydrogen bonding ability of naphthalimide. Org. Lett. 2004, 6(16): 2757-2760.
    [91] Muller W, Crothers D. Interactions of heteroaromatic compounds with nucleic acids. 1. The influence of heteroatoms and polarizability on the base specificity of intercalating ligands. Eur. J. Biochem., 1975, 54: 267-277.
    [92] Charmantray F, Demeunynck M, Carrez D, Croisy A, Lansiaux A, Bailly C, Colson P. 4-Hydroxy-methyl-3-aminoacridine Derivatives as a New Family of Anticancer Agents. J. Med. Chem., 2003,46: 967-977.
    [93] Feng S X. The synthesis of novel acridine compounds with an additional fused carbonyl-containing ring at the 3,4-position antitumor agents: [Dissertation]. University of Mississippi, 1999.
    [94] Snyder H R, Herbert E F. The preparation of 10-chloro-7-(3-diethylaminopropylamino)- pyrid[3,2-c]-acridine. J. Am. Chem. Soc, 1947, 69(6): 1543-1544.
    [95] Albert A. The acridines, 2nd ed.,London: Edward Arnold Publishers, Ltd., 1966: 123-235.
    [96] Chen Q, Deady L W, Baguley B C, Denny W A. Electron-deficient DNA-intercalating agents as antitumor drugs: Aza analogues of the experimental clinical agent N-[2-(4-Dimethyl amino)ethyl]acridine-4-carboxamide. J. Med. Chem., 1994,37: 593-597.
    [97] Zwelling L A, Michaels S, Erickson L C, Ungerleider R S, Nicols M, Kohn K W. Protein-associated deoxyribonucleic acid strand breaks in L1210 cells treated with the deoxy- ribonucleic acid intercalating agents 4'-(9-acridinylamino)methanesulfon-m-anisidide and adriamycin. Biochemistry, 1981, 20: 6553-6563.
    [98] Baguley B C, Denny W A, Atwell G J, Finlay G J, Rewcastle G W, Twigden S J, Wilson W R. Synthesis, antitumor activity, and DNA binding properties of a new derivative of amsacrine, N-5-dimethyl-9-[(2-methoxy-4-methylsulfonylamino) phenylamino]-4- acridinecarboxamide.Cancer Res., 1984, 44: 3245-3251.
    [99] Harvey V J, Hardy J R, Smith S, Grove W, Baguley B C. Phase II study of the amsacrine analogue CI-921 (NSC 343499) in non-small cell lung cancer. Eur. J. Cancer, 1991, 27: 1617-1620.
    [100] Demeunynck M, Charmantray F, Martelli A. Interest of acridine derivatives in the anticancer chemotherapy. Curr. Pharm. Des., 2001, 7: 1703-1724.
    [101] Chagas C, Pullman B. Molecular mechanisms of carcinogenic and antitumor activity. New York: Adenine, 1987, 243-274.
    [102] Lown J W. Anthracyclines and anthracenedione-based anticancer agents. Amsterdam: Elsevier Science, 1988.
    [103] Lown J W. Bioactive molecules. Amsterdam: Elsevier Science, 1988, Vol 6: 401-445.
    [104] Collier D A, Neidle S. Synthesis, molecular modeling, DNA binding, and antitumor properties of some substituted amidoanthraquinones. J. Med. Chem., 1988, 31: 847-857.
    [105] Agbauje M, Jenkins T C, Sissi C, Cera C, Uriarte E, Palu G, Capranico G, Palumbo M. Peptidyl anthraquinones as potential antineoplastic drugs: Synthesis, DNA binding, redox cycling, and biological activity. J. Med. Chem., 1996, 39: 3114-3122.
    [106] Bailly C. Topoisomerase I poisons and suppressors as anticancer drugs. Current Medicinal Chemistry, 2000, 7: 39-58.
    [107] Lown J W, Morgan A R, Yen S-F, Wang Y-H, Wilson W D. Characteristics of the binding of the anticancer agents mitoxantrone and ametantrone and related structures to deoxyribonucleic acids. Biochemistry, 1985, 24: 4028-4035.
    [108] Krishnamoorthy C R, Yen S-F, Smith J C, Lown J W, Wilson W D. Stopped-flow kinetic analysis of the interaction of anthraquinone anticancer drugs with calf thymus DNA, poly[d(G-C)].cntdot.poly[d(G-C)], and poly[d(A-T)]. cntdot. poly[d(A-T)]. Biochemistry, 1986, 25: 5933-5940.
    [109] Tanious F A, Jekins T C, Neidle S, Wilson W D. Substituent position dictates the intercalative DNA-binding mode for anthracene-9, 10-dione antitumor drugs. Biochemistry, 1992, 31: 11632-11640.
    [110] Fox K R, Waring M J, Brown J R, Neidle S. DNA sequence preferences for the anti-cancer drug mitoxanthrone and related anthraquinones revealed by DNase I footprinting. FEBS Lett., 1986, 202: 289-294.
    [111] Panousis C, Phillips D R. DNA sequence specificity of mitoxantrone. Nucleic Acids Res., 1994, 22: 1342-1345.
    [112] Islam S A, Neidle S, Gandecha B M, Partridge M, Patterson L H, Brown J R. Comparative computer graphics and solution studies of the DNA interaction of substituted anthraquinones based on doxorubicin and mitoxantrone. J. Med. Chem., 1985, 28: 857-864.
    [113] Tsuchiya T, Takagi Y, Yamada H. Preparation of 5-(2, 6-dideoxy-2-fluoro-α-talopyranosyloxy)-6-hydroxynaphtho[2, 3-f]quinoline-7, 12-dione (FT-Alz), a new-type, potentially antitumor substance with various biological activities. Bioorg. Med. Chem. Lett., 2000, 10: 203-207.
    [114] 肖义.新荧光发色体系-含腈萘杂环:分子设计、合成、应用:(博士学位论文).大连:大连理工大学,2002.
    [115] Xiao Y, Liu F, Qian X, Cui J. A new class of long-wavelength fluorophores: strong red fluorescence, convenient synthesis and easy derivation. J. Chem. Soc. Chem. Commun., 2005, 239-240.
    [116] Li Y, Xu Y, Qian X, Qu B. Naphthalimide-thiazoles as novel photonucleases: molecular design, synthesis, and evaluation. Tetrahedron Lett., 2004, 45: 1247-1251.
    [117] 李来生,黄伟东,王瑞琼.荧光法研究抗癌药物更生霉素D与小牛胸腺DNA的作用机理.化学学报,1999,57:572-577.
    [118] Chatterjee S R, Shetty S J, Devasagaya T P A, Srivastava T S. Photocleavage of plasmid DNA by the prophyrin meso-tetrakis [4-(carboxymethyleneoxy)phenyl] porphyrin. J. Photochem. Photobio. B: Biology, 1997, 41: 128-135.
    [119] Antonini I, Polucci P, Kelland L R, Spinelli S, Pescalli N, Martelli S. N4-(ω-Aminoalkyl)-1-[(ω-aminoalkyl)amino]-4-acridinecarboxamides: novel, potent, cytotoxic, and DNA-binding agents. J. Med. Chem, 2000, 43(25): 4801-4805.
    [120] Brana M F, Ramos A. Naphthalimides as anticancer agents: synthesis and biological activity. Curr. Med. Chem.-Anti-Cancer Agents, 2001, 1: 237-255.
    [121] Blanchard S, Rodriguez I, Tardy C, Baldeyrou B, Bailly C, Colson P, Houssier C, Leonce S, Kraus-Berthier L, Pfeiffer B, Renard P, Pierre A, Caubere P, Guillaumet G. Synthesis of mono- and bis-dihydrodipyridopyrazines and assessment of their DNA binding and cytotoxic properties. J. Med. Chem, 2004, 47: 978-987.
    [122] Antonini I, Polucci P, Jenkins T C, Kelland L R, Menta E, Pescalli N, Stefanska B, Mazerski J, Martelli S. 1-[(ω-Aminoalkyl)amino]-4-[N-(ω-aminoalkyl)carbamoyl]-9-oxo-9, 10-dihydro- acridines as intercalating cytotoxic agents: synthesis, DNA binding, and biological evaluation. J. Med. Chem, 1997, 40(23): 3749-3755.
    [123] Chupakhin O N, Chupakhin V N, Van der Plas H C. Nucleophilic aromatic substitution of hydrogen. London: Academic Press, 1994.
    [124] Makosza M, Wojciechowski K. Nucelophilic substitution of hydrogen in heterocyclic chemistry. Chem. Rev., 2004, 104: 2631-2666.
    [125] Makosza M, Kwast A. Vicarious nucleophilic substitution of hydrogen: Mechanism and orientation. J. Phys. Org. Chem. 1998, 11: 341-349.
    [126] Makosza M, Winiarski J. Vicavious nucleophi1lic substitution of hydrogen. Acc. Chem. Res., 1987, 20: 282-289.
    [127] Suwinski J, Swierczek K. cine- and tele- Substitution reactions. Tetrahedron, 2001, 57: 1639-1662.
    [128] Surowisec M, Makosa M. Oxidative nucleophi1lic substitution of hydrogen in nitroarenes with trifluoromethyl carbanions. Synthesis of trifluoromethyl phenols. Tetrahedron, 2004, 60: 5019-5024.
    [129] Rykowski A, Makosza M. Reaction of 1, 2, 4-triazines with nitronate anions, direct nucleophilic acylation of 1, 2, 4-triazines. Tetrahedron Lett., 1984, 25: 4795-4796.
    [130] Stern M K, Hileman F D, Bashkin J K. Direct coupling of aniline and nitrobenzene: a new example of nucleophilic aromatic substitution for hydrogen. J. Am. Chem. Soc., 1992, 114: 9237-9238.
    [131] Stern M K, Cheng B K. Amination of nitrobenzene via nucleophilicaromatic substitution for hydrogen: direct formation of aromatic amide bonds. J. Org. Chem., 1993, 58: 6883-6888.
    [132] Makosza M, Surowiec M. Oxidative nucleophilic substitution of hydrogen in nitroarenes by silyl enol ethers. Tetrahedron, 2003, 59: 6261-6266.
    [133] Makosza M, Stalinski K. Oxidative nucleophilic substitution of hydrogen in nitro- arenes with pheny-lacetonitrile derivatives. Tetrahedron, 1998, 54: 8797-8810.
    [134] Makosza M, Sypniewski M. Oxidative versus vicarious nucleophilic substitution of hydrogen in the reaction of dithiane derivatives with nitroarenes. Tetrahedron, 1994, 50: 4913-4920.
    [135] Gallardo I, Guirado G, Marquet J. Nucleophilic aromatic substitution of hydrogen: a novel electrochemical approach to the cyanation of nitroarenes. Chem. Eur. J., 2001, 7: 1759-1765.
    [136] Bakke J M., Ranes E, Romming C, Sletvold I. The reaction of 3-nitropyridine with sulfite ions: a pathway to 2,5-disubstituted pyridines. J. Chem. Soc.Perkin Trans.1, 2000, 8: 1241-1243.
    [137] Bowman W R, Bridge C F, Brookes P. Synthesis of heterocycies by radical cyclisation. J. Chem. Soc.Perkin Trans. 1,2000, 1: 1-14.
    [138] Wrobel, Z. Tetrahedron, 2003, 59: 101-110.
    [139] Makosza M, Stalinski K. Oxidative nucleophilic substitution of hydrogen in nitro- arenes. Chem. Eur. J., 1997,3:2025-2031.
    [140] Makosza M, Bialecki M. Nitroarylamines via the vicarious nucleophilic substitution of hydrogen: amination, alkylamination, and arylamination of nitroarenes with sulfenamides. J. Org. Chem. 1998, 63: 4878-4888.
    [141] Snyder R D, Hendry L B. Toward a greater appreciation of noncovalent chemical/DNA interactions: Application of biological and computational approaches. Environ. Mol. Mutagenesis, 2005, 45: 100-105.
    [142] Ferguson L R, Denny W A. Potential antitumor agents. 30. Mutagenic activity of some 9-anilinoacridines: relationships between structure, mutagenic potential, and antileukemic activity. J. Med. Chem., 1979,22:251-255.
    [143] Wilson W R, Harris N M, Ferguson L R. Comparison of the mutagenic and clastogenic activity of amsacrine and other DNA-intercalating drugs in cultured V79 Chinese hamster cells. Cancer Res., 1984, 44: 4420-4431.
    [144] Casey K G, Quitevis E L. Effect of solvent polarity on nonradiative processes in xanthene dyes: Rhodamine B in normal alcohols. J. Phys. Chem., 1988, 92: 6590-6594.
    [145] Benniston A C, Harriman A, Lawrie D J, Mayeux A. The photophysical properties of a pyrene-thiophene-terpyridine conjugate and of its zinc(Ⅱ) and ruthenium(Ⅱ) complexes. Phy. Chem. Chem. Phy., 2004, 6: 51-57.
    [146] Valeur B. Molecular Fluorescence: Principles and Application. Wiley-Vch: Weinheim, 2002, 57.
    [147] Valeur B. Molecular Fluorescence: Principles and Application. Wiley-Vch: Weinheim, 2002, 35-36.
    [148] Grabowski Z R, Rotkiewicz K. Structural changes accompanying intramolecular electron transfer: Foucused on twisted intramolecular charge-transfer states and structures. Chem. Rev., 2003, 103: 3899-4031.
    [149] Acar N, Kurzawa J, Fritz N, Stockman A, Roman C, Schneider S, Clark T. Phenothiazine-pyrene dyads: Photoinduced charge separation and structural relaxation in the CT state. J. Phy. Chem. A., 2003, 107: 9530-9541.
    [150] Bhattacharyya K, Chowdhury M. Environmental and magnetic field effects on exciplex and twisted charge transfer emission. Chem. Rev., 1993, 93: 507-535.
    [151] Bandyopadhyay P, Bharadwaj P K, Roy M B, Duita R, Ghosh S. Photophysical properties of tris-acetylpyrene derivative of a cryptand in different environments. Chem. Phys., 2000, 255: 325-334.
    [152] Ramachandram B, Samanta A. Modulation of metal-fluorophores communication to develop structurally simple fluorescent sensors for transition metal ions. J. Chem. Soc., Chem. Comm., 1997: 1037-1038.
    [153] 张连文,林维真,韩镇辉.三联吡啶钌(Ⅲ)光敏损伤DNA的凝胶电泳研究.辐射研究与辐射工艺学报,2000,18(3):161-167.
    [154] Bjφrge C, Brunborg G, Wiger R, Holme J A, Scholz T, Dybing E, Sφderlund E J. A comparative study of chemically induced DNA damage in isolated human and rat testicular cells. Reproductive Toxicology, 1996, 10(6): 509-519.
    [155] Kumar C V, Asuncion E H. DNA binding studies and site selective fluorescence sensitization of an anthryl probe. J. Am. Chem. Soc., 1993, 115: 8547-8553.
    [156] Gupa M, Ali R. Fluorescence studies on the interaction of furocoumarins with DNA in the dark. J. Biochem., 1984, 95: 1243-1244.
    [157] Becker H C, Norden B. DNA Binding Mode and Sequence Specificity of Piperazinylcarbonyloxyethyl Derivatives of Anthracene and Pyrene. J. Am. Chem. Soc., 1999, 121: 11947-11952.
    [158] Juskowiak B, Galezowska E, Takenaka S. Spectral properties and binding study of DNA complexes with a rigid bisintercalator 1, 4-bis((N-mehtylquinolinium-4-yl)vinyl) benzene. Spectrachim. Acta A., 2003, 59: 1083-1094.
    [159] Slama-Schwok A, Rougee M, Ibanez V, Geachintov N E, Motenay-(Sarestier T, Lehn J-M, Helene C. Interactions of the dimethyldiazaperopyrenium dication with nucleic acids. 2. Binding to double-stranded polynucleotides. Biochemistry, 1989, 28: 3234-3242.
    [160] Dong C, Wei Y, Wei Y. Study on the interaction between methylene violet and calf thymus DNA by molecular spectroscopy. J. Photoch. Photobio. A., 2005, 174: 15-22.
    [161] Lyng R, Hard T, Norden B. Induced CD of DNA intercalators: Electric dipole allowed transitions. Biopolymers, 1987, 26:1327-1345.
    [162] Eriksson S, Kim S K, Kubista M, Norden B. Binding of 4,6-diamidino-2-phenylindole ( DAPI) to AT regions of DNA: Evidence for an allosteric conformational change. Biochemisty, 1993, 32: 2987-2998.
    [163] Lee S, Jeon S H, Kim B-J, Han S W, Jang H G, Kim S K. Classification of CD and absorption spectra in the Soret band of H2TMPyP bound to various synthetic polynucleotides. Biophys. Chem., 2001, 92: 35-45.
    [164] Jiang X, Shang L, Wang Z, Dong S. Spectrometric and voltammetric investigation of interaction of neutral red with calf thymus DNA: pH effect. Biophys. Chem., 2005, 118: 42-50.
    [165] Maheswari P U, Palaniandavar M. DNA binding and cleavage properties of certain tetrammine ruthenium(Ⅱ) complexes of modified 1,10-phenanthrolines-effect of hydrogen-bonding on DNA-binding affinity. J. Inorg. Biochem., 2004, 98: 219-230.
    [166] Kumar C V, Punzalan E H A, Tan W B. Adenine-thymine base pair recognition by an anthryl probe from the DNA minor groove. Tetrahedron, 2000, 56: 7027-7040.
    [167] Ogul'chansky T Y, Losytskyy M Y, Kovalska V B, Yashchuk V M, Yarmoluk S M. Interaction of cyanine dyes with nucleic acids. ⅩⅩⅣ. Aggregation of monomethine cyanine dyes in presence of DNA and its manifestation in absorption and fluorescence spectra. Spectrocimica Acta Part A, 2001, 57: 1525-1532.
    [168] Ballistreri F P, Barresi V, Benedetti P, Caltabiano G, Fortuna C G, Longo M L, Musumarra G. Design, synthesis and in vitro antitumor activity of new trans 2-[2-(heteroaryl)vinyl]-1,3-dimethylimida-zolium iodides. Bioorg. Med. Chem., 2004, 12: 1689-1695.
    [169] Meade E A, Wotring L L, Drach J C, Townsend L B. Synthesis, antiproliferative, and antiviral activity of 4-amino-1-(b-D-ribofuranosyl)pyrrolo[2,3-d]pyridazin-7(6H)-one and related derivatives. J. Med. Chem., 1993, 36: 3834-3842.
    [170] Meade E A, Wotring L L, Drach J C, Townsend L B. Synthesis and antiproliferative and antiviral activity of carbohydrate-modified pyrrolo[2,3-d]pyridazin-7-one nucleosides. J. Med. Chem., 1997,40: 794-801.
    [171] Thompson M D, Cupps T L, Wise D S, Wotring L L, Townsend L. B. Synthesis and evaluation of 6-(Dibromomethyl)-5-nitropyrimidines as potential antitumor agents. J. Med. Chem., 1997, 40: 766-770.
    [172] Skibo E B, Huang X, Martinez R, Lemus R H, Craigo W A. Pyrimidoquinazoline-based antitumor agents. Design of topoisomerase Ⅱ to DNA cross-linkers with activity against protein kinases. J. Med. Chem., 2002, 45: 5543-5545.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700