用户名: 密码: 验证码:
气候变化对大兴安岭塔河林业局森林火灾的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大兴安岭是我国北方最为重要的林区,也是森林火灾的重灾区。而塔河林业局地处大兴安岭腹地,是我国东北地区重点的林业生产基地之一,其森林防火工作一直是全林业局安全生产的重中之重。如何对林火的发生进行分析,进而为林火的总结、决策提供支持,已成为迫切需要解决的问题。本论文选取塔河林业局作为研究对象,对局内1972-2009年间的气象情况和1974-2004年间的火灾发生情况进行研究。
     由于林火发生的条件极为复杂,与气象、植被、地形和人为活动诸因子关系密切,且存在较大的地域性差异。本文结合ArcMap和统计方法作为手段,在收集1974-2004年塔河林业局林火发生资料和温度、相对湿度、降水量、风速等气象数据的基础上,对31年间林火发生的时间、空间规律进行了总结与分析,同时对温度、相对湿度、降水量、风速四个与林火发生关系最密切的因子的数据进行整合,研究其与火灾发生之间的关系,证明了其与火灾发生之间存在着一定的关系,研究结果如下:
     1972-2009年间,塔河林业局年平均温度增势较快,最后5年的年平均气温比最初5年的年平均气温升高了0.64-C,已经接近IPCC在2007年2月第四次报告中提到的全球平均地表气温上升0.74℃的值。历年各防火期内、非防火期的平均气温也均呈增加趋势。
     从1972年到2009年,塔河林业局的年降水量仍呈增加趋势。其中最后5年的年平降水量较最初5年增加了1.26mm,但与之前的几个5年时间段相比,最后5年的降水量明显减少。历年各防火期、非防火期内,除了夏季非防火期降水量缓慢减少,其他防火期、非防火期内降水量均呈增加趋势。
     1972-2009年间,塔河林业局平均风速的总体情况为下降趋势。2005-2009年的5年平均风速相比1972-1976年间的5年均值减少了0.55m/s。历年各防火期内、非防火期的平均风速也均呈下降趋势。但仍然存在着若干极端年份,如1987年和1995年。
     1972-2009年间,塔河林业局的年平均相对湿度呈显著下降趋势,其中1972-1979年、1983-1987年以及2003-2006年三个时间区间内年平均相对湿度下降趋势最为明显。2005-2009年间的5年平均相对湿度仅为63.48%,是1972-2009年间所有5年区间中年平均相对湿度最小的区间。历年各防火期内、非防火期的平均相对湿度也均呈显著下降趋势,可燃物含水率呈下降趋势,当地的森林防火形势依然严峻。
     1974年-2004年间,塔河林业局共发生森林火灾298起,平均每年9.6起,森林火灾次数随着时间发展呈现较明显的增加趋势,且火灾次数较多的年份周期为4-5年。所发生的298起森林火灾所引发的总过火面积为1.63×106hm2,年均过火面积5.28×104hm2,年均每次火灾过火面积177.71 hm2。31年间森林火灾次数和过火面积随着时间发展呈现较明显的增加趋势,尤其是进入90年代,林火次数和面积明显增多。从20世纪70年代后期到90年代的前期,过火面积呈下降趋势,进入90年代后,过火面积又呈现上升趋势。这主要是由于雷击火增加导致的结果。
     统计结果显示森林火灾的成因可分为雷击火、人为火和火因不明火三种类型。其中雷击火发生次数占50.00%、人为火占37.18%、火因不明占11.74%,31年间不明火和雷击火次数均呈显著上升趋势,其中雷击火是导致林火次数和面积增多的主要原因。
     从林火季节分布情况看,塔河林业局的林火在2-11月间均有发生,主要发生在3-9月份,其中,以4月、5月、6月、7月和8月份的林火居多,从过火面积上看,5月和7月的林火过火面积较大,森林受害严重。从林火空间分布情况看,塔林林场发生次数最多为85次,沿江林场林火最少为15次;从过火面积看,塔林林场和盘中林场的重大森林火灾和特大森林火灾最为严重。
     从林火发生的时间上看,火灾发生的Julian时间段集中在4月12日-6月30日和8月28日-10月20日,历年第一场火灾的发生日期有缓慢滞后的趋势,但历年最后一场火灾的发生日期明显拖后,秋季森林防火的形势越来越严峻。历年最第一场大型森林火灾和第一场人为火灾的发生时间有略微滞后的趋势,而历年最晚发生的大型森林火灾和人为火灾的发生时间明显滞后,秋季防火期内大型森林火灾和人为火灾的发生概率越来越大。历年第一场雷击火的发生时间有略微提前的趋势,历年最后一次雷击火的发生时间明显滞后,秋季防火期内雷击火的发生概率越来越大。
     温度、相对湿度、降水量和风速是影响森林火灾发生和发展的最重要的四个因素,根据对1974年-2004年塔河林业局记载的森林火灾发生次数、过火面积和气象数据进行的分析,得出火灾发生次数、过火面积与温度、相对湿度、降水量、风速各单因子和多因子之间存在着一定的关联。其中气温指标只在历年5月与森林火灾发生次数显著性极高,在其他月份都不显著。相对湿度指标在4-8月间各个月份与火灾次数关系都显著,与过火面积在4、5、6、8月显著。降水量指标在6月与火灾次数和过火面积关系显著。风速指标只在历年4月与火灾次数关系显著。
     总之,在全球气候变暖的大背景下,塔河林业局的气候总体上向着有利于森林火灾发生的方向演变,有助于森林火灾发生和蔓延的天气越来越多,森林火灾的数量增加,大火、雷击火和人为火的火险期延长。若今后的气候进一步向着有利于森林火灾发生于蔓延的方向发展,塔河林业局的森林火险天气状况和森林防火形势将越来越严峻。
The Great Xing'an Mountain region is one of the most important forest areas in north China; meanwhile it is one of severely afflicted areas by forest fires. Ta He Forestry Bureau located in the center of the Great Xing'an Mountain region, it is one of the key forest productions base in northeast China. Fire prevention job is the key work of the Forestry Bureau. So it becomes the most important problems in analyzing and making strategies.
     As a result of complex reasons major regional difference, the occurrence of forest fires had close coordination with climate, vegetation, topography and human activity. In this article, we used ArcMap software and statistic methods, we gathered forest fires occurrence data from 1974 to 2004 and temperature, relative humidity, rainfall, wind speed data in Ta He forestry bureau from 1972 to 2009. We also analyzed timely and spatial rules during the 31 years, researched average temperature, and average relative humidity, average rainfall, wind speed factors and forest fires occurrence data, searched for their possible relationships and proved their obvious linear relationships.
     The specific results showed that from 1972 to 2009, the annual average temperature in Ta He Forestry Bureau increased fast, the last five-year average temperature had raised 0.64℃than the first five-year. This number had approached the world average level number (0.74℃) by IPCC 4th report in Februray,2007. The number in each fire seasons and non-fire seasons over the years had also risen.
     From 1972 to 2009, the annual rainfall in Ta He showed increasing trend. Although the number in last five-year had added 1.26mm than the first five-year, contrast with several former five-year period, this number decreased obviously. That means the climate from 2005 to 2009 would be drier because of less rainfall and higher temperature. Except in the summer non-fire season, the number in other fire seasons and non-fire seasons over the years had also raised.
     During 1972 and 2009, the annual average wind speed showed decreasing trend. The number from 2005 to 2009 had minus 0.55m/s than the time from 1972 to 1976. The number in each fire seasons and non-fire seasons over the years had also decreased, but it did not means that forest fires danger had decreased. There were still some extrame years such as 1987 and 1995.
     In the period between 1972 and 2009, the annual average relative humidity in Ta He showed decreaing trend obviously. The relative humidity number in periods from 1972 to 1979, 1983 to 1987 and 2003 to 2006 decreaed most. From 2005 to 2009, the average relative humidity was 63.48%, which was the least five-year period from 1972 to 2009. The number in each fire season and non-fire season over the years and fuel moisture had also decreased obviously. The forest fires prevention situation were still severe.
     There were 298 forest fires total in Ta He Forestry Bureau from 1974 to 2004. The average number is 9.6 per year. Along with time the number of forest fires show increasing trend and the fire season was about four to five years. The whole areas of forest fires burned were 1.63×106 hectares,5.27×104 hectares per year and 177.71 hectares per year per time. During the 31 years the forest fires occurrence and burned area increased obviously, especially in 1990s, there were more forest fires and burned areas. From 1970s to earlier stage of 1990s, the burned areas declined, but from 1990s till now it increased again. The result was might be fires caused by more thunders.
     The results of forest fires can be divided into thunder fires, human fires and unknown reason fires. The thunder fires consisted half of the total forest fires, human fires consisted 37.18% and unknown fires 11.74%. Thunder fires were the main reasons of more forest fires and large burned areas.
     From the seasonal distribution of forest fires, they occurred from February to November and mainly from April to August. In May and July, the fires burned areas were the most with forest severely damaged. In the spatial distribution, Ta Lin forestry station had the most forest fires with the number of 85 times, and Yan Jiang forestry station in opposite with the number of 15. Ta Lin forestry station and Pan Zhong forestry station had the largest burned areas from, major forest fires and extrame forest fires.
     The Julian date method can be usually used to measure forest fires in one year. In Ta He forestry bureau, the Julian date of forest fires mainly concentrated from April 12th to June 30th and August 28th to October 20th. The Julian date of the first fire delayed a little and Julian date of the last fire delayed obviously in each fire seasons and non-fire seasons over the years. The forest fires prevention situation had been more and more severe. The Julian date of the first major fire and human fire delayed a little and Julian date of the last major fire and human fire delayed obviously in each fire seasons and non-fire seasons over the years. The probability of major forest fires occurrence in autumn became more and more. The Julian date of the lightening fire moved up a little and Julian date of the last lightening fire delayed obviously in each fire seasons and non-fire seasons over the years. The probability of lightening fires occurrence in autumn became more and more.
     Temperature, relative humidity, rainfall and wind speed are the most important four factors in forest fires researches. Based on the data of forest fires and burned areas and climate in Ta He forestry bureau from 1974 to 2004, there were remarkable linear relationships between forest fires occurrence, burned area and temperature, relative humidity, rainfall and wind speed. Among all the statistic data, the temperature indices had marked relationships with the fire occurrence in each May. The relative humidity indices had marked relationships with the fire occurrence from each April to August, and had marked relationships with fire burned area in each April, May, June and August. The rainfall indices had marked relationships with fire occurrence and burned area in each June. The wind speed indices had marked relationships with fire occurrence in each April.
     In a word, under the global warming background, the climate in Ta He Forestry Bureau generally evolved to the direction which was beneficial to forest fires. There would be more and more fire weathers which were favorable to forest fires occurrence and fire spread. The fire seasons of major fires, lightening fires and human fires would be more and more than before. Due to the direction of fire weather, the forest fires weather danger rating and forest fires prevention situation would be more and more severe.
引文
[1]Barid I A, Calting Ive. Wildland Fire[J]. International Journal of Wildland Fire.1994,4 (2):107~121.
    [2]赵宪文.森林火灾遥感监测评价——理论及技术应用[M].北京:中国林业出版社,1995:121.
    [3]Kandya A K, Kimothi M M. Application of GIS in identification of fire prone areas— feasibility study in parts of Junagarh[J]. Indian For,1998,124 (7):531~535.
    [4]关百钧,魏宝麟.世界林业发展概论[M].北京:中国林业出版社,1992:25-29.
    [5]舒立福,田晓瑞.国外森林防火工作现状及展望[J].世界林业研究,1997,10(2):28-36.
    [6]阎厚.森林火险等级预报系统的开发[J].林业资源管理,2001,11(3):69-73.
    [7]张景忠.森林火灾经济损失分类初探[J].森林防火,2000,11(2):27-28.
    [8]舒立福,田晓瑞.近10年来世界森林火灾状况[J].世界林业研究,1998,11(6):31-36.
    [9]舒立福,田晓瑞,马林涛.林火生态的研究与应用[J].林业科学研究,1999,12(4):422-427.
    [10]舒立福,田晓瑞,寇晓军.林火研究综述(Ⅰ)——研究热点与进展.世界林业研究.2003,16(3):37-40.
    [11]田晓瑞,舒立福.林火与可持续发展[J].世界林业研究,2003,16(2):38-41.
    [12]Kirsten T, Sergey V. The role of fire disturbance for global vegetation dynamics coupling fire into a Dynamic Global Vegetation Model[J]. Global Ecology& Biogeography,2001,10 (2):661-677.
    [13]关百钧,魏宝麟.世界林业发展概论[M].北京:中国林业出版社,1992:64-67.
    [14]叶兵.国内外森林防火技术及其发展趋势[D].北京:中国林业科学研究院,2000:36.
    [15]董智勇.世界林业发展道路[M].北京:中国林业出版社,1992:55-57.
    [16]徐化成.中国大兴安岭森林[M].北京:科学出版社,1998:41-43.
    [17]郑焕能.生物防火[M].哈尔滨:东北林业大学出版社,1999:12-19.
    [18]田晓瑞,王明玉,舒立福.全球变化背景下的我国林火发生趋势及预防对策.林火研究.2003,3:32-34.
    [19]王栋等.中国森林火险调查与区划[M].北京:中国林业出版社,2000:22-24.
    [20]王正非.三指标林火预报法[M].北京:中国科学技术出版社,1988:24-25.
    [21]姚树人,文定元.森林消防管理学[M].北京:中国林业出版社,2002:12-15.
    [22]张恩恕,胡传弟,孙瑞玉.大兴安岭森林火险潜力等级系统[J].科学通报,1996, 41(]3):1232-1236.
    [23]郑焕能,森林防火[M].哈尔滨:东北林业大学出版社,1994:93.
    [24]LY\T1679—2006.中华人民共和国林业行业标准[S].北京:林业出版社,1992:2-4.
    [25]郑焕能,居恩德.林火管理[M].哈尔滨:东北林业大学出版社,1988:15-18.
    [26]王正非.加拿大森林火险系统概述[M].北京:林业出版社,1990:27-30.
    [27]田晓瑞,舒立福,王明玉,焦明.利用Keetch—Byram干旱指数预测森林火险.火灾科学.2003,12(3):151-155.
    [28]寇文正主编.林火信息管理系统[M].北京:中国林业出版社,1992.
    [29]舒立福,张小罗,戴兴安,田晓瑞,寇晓军.林火研究综述(Ⅱ)——林火预测预报[J].世界林业研究.2003,16(4):34-37.
    [30]赵凤君,舒立福,田晓瑞,王明玉.森林火险中长期预测预报研究进展[J].世界林业研究.2007,20(2):55-59.
    [31]徐爱俊,李清泉,方陆明,吴达胜.基于GIS的森林火灾预报预测模型的研究与探讨.浙江林学院学报.2003,20(3):285-288.
    [32]Pook E W, A M Gill. Variation of live and dead fine fuel moister in Pinus radiata plantations of the Australian capital territory. International Journal of Wildland Fire, 1993,3 (3):155~168.
    [33]Cruz M.G, Alexander M.E, Wakimoto R.H. Assessing Canopy Fuel Stratum Characteristics in Crown Fire Prone Fuel Types of Western North America [J]. International Journal of Wildland Fire.2003,12 (1):39~50.
    [34]Cruz G.A, Wakimoto M.E, Ronald H. Development and Testing of Models for Predicting Crown Fire Rate of Spread in Conifer Forest stands[J]. Canadian Journal of Forest Research,2005,35 (7):1626~1639.
    [35]David R.W, Gregory S.B. A qualitative comparison of spread models in cooperating wind and slope effects. Forest Science.1997,43 (2):170~180.
    [36]Hu Lin, Feng Zhongke, Nie Yuzao. Forest Fire Prediction Research Based on VLBP Neural Network Scientia Silvae Sinicae.2006,42 (1):155~158.
    [37]杨景标,马晓茜,林莉.基于热传导理论的林火蔓延模型.火灾科学.2002,11(1):35-43.
    [38]Zhu Min, Feng Zhongke, Hu Lin. Improvement of Forest Surface Fire Spread Models. Journal of Beijing Forestry University.2005,27 (supp.2):138~141.
    [39]曲智林,胡海清.基于气象因子的森林火灾面积预测模型.应用生态学报.2007,18(12):2705-2709.
    [40]吴清松,童盛,周建军.树冠火蔓延模型和数值分析[J].火灾科学,1996,5(2):29-34.
    [41]周建军,童盛,刘幸东.树冠火蔓延的一维简化模型及其应用[J].中国科学技术大学学报.1996,26(增刊):218-222.
    [42]王明玉,李涛,任云卯等.森林火行为与特殊火行为研究进展.世界林业研究.2009,22(2):45-49.
    [43]缪柏其,韦剑,宋卫国等.林火数据的Logistic和零膨胀Poisson (ZIP)回归模型.火灾科学.2008,17(3):143-149.
    [44]王惠,周汝良,庄艳娇等.林火蔓延模型研究及应用开发.济南大学学报(自然科学版).2008,22(3):295-300.
    [45]傅泽强,陈动,王玉斌.内蒙古大兴安岭春季特大森林火灾发生的气候条件分析.东北林业大学学报.1997,25(6):16-19.
    [46]徐海龙,曲智林.过火面积与气象要素相关性分析.东北林业大学学报.2009,37(5):28-29.
    [47]舒立福,王明玉,赵凤君,李红,田晓瑞.几种卫星系统监测林火技术的比较与应用.世界林业研究.2005,18(6):49-53.
    [48]李红,舒立福,田晓瑞,王明玉.林火研究综述(Ⅳ)——GIS在林火管理中应用现状及发展趋势.世界林业研究.2004,17(1):20-24.
    [49]金森.遥感估测森林可燃物载量的研究进展.林业科学.2006,42(12):63-66.
    [50]文定元,舒立福.林火理论.哈尔滨,东北林业大学出版社.1999:21-27.
    [51]舒立福,田晓瑞,向安民.3S技术在林火管理中的.应用.火灾科学.1999,8(1):12-18.
    [52]Kasischke E S, French N H F, Harrell P A et al. Monitoring of wildfires in boreal forests using AVHRR NDVI composite image data. Remote Sensing of Environment.1993,45:61-71.
    [53]邢玮,葛之葳,李俊清.大兴安岭北部林区林火干扰强度对兴安落叶松群落影响研究.科学技术与工程.2006,6(14):2042-2045.
    [54]李红,舒立福,田晓瑞,王明玉.林火研究综述(Ⅳ)——GIS在林火管理中应用现状及发展趋势.世界林业研究.2004,17(1):20-24.
    [55]朱煌武,朱霁平,谢庆胜等.基于地理信息系统的森林火灾救辅助决策系统的研究[J].自然灾害学报.1999,8(1):60-70.
    [56]Perry G.L, Sparrow A.D, Owens I.F. A GIS-supported Model for the Simulation of the Spatial Structure of Wildland Fire, Cass Basin, New Zealand [J]. Journal of Applied Ecology.1999,36 (4):502~518.
    [57]李勇,冯仲科,王维等.基于遥感图像的林火蔓延模型的研建.北京林业大学学报.2007,29(增卷2):93-97.
    [58]胡海清,魏云敏.利用TM遥感影像和林分因子估测森林可燃物载量.东北林业大学学报.2007,35(6):18-20.
    [59]朱启疆,高锋,张振威.GIS支持下森林火场蔓延的空间模拟.环境遥感.]995, 10(2):81-88.
    [60]王海晖,景文峰,王清安等.森林地表火蔓延的计算机模拟.中国科学技术大学学报.1994,24(3):305-310.
    [61]王海晖,朱霁平,王清安等.林火行为预测预报专家系统.自然灾害学报.1994,3(4):103-109.
    [62]袁宏永,范维澄.面向目标的森林地表火蔓延估计模型与方法.自然科学进展—国家重点实验室通讯.1996,6(3):361-365.
    [63]National Wildfire Coordinating Group. Glossary of Wildland Fire Terminology, First Edition. November,1996:45.
    [64]Stocks B J et al. The Canadian forest fire danger rating system:an overview.1989, 65:450~457.
    [65]C E Van Wagner. Development and Structure of the Canadian Forest Fire Weather Index System. Canadian Forestry Service.1987.
    [66]Caren C Dymond et al. Using Satellite Fire Detection to Calibrate Components of the Fire Weather Index System in Malaysia and Indonesia. Environmental Management.2005, 35 (4):426~440.
    [67]田晓瑞,Douglas J Mcrae,张有慧.森林火险等级预报系统评述.世界林业研究.2006,19(4):39-46.
    [68]Hawkes B et al. A wildfire threat rating system. Fire Manage Notes,1999,59 (2): 25~30.
    [69]孙玉成,马洪伟,王秀国,金森.加拿大火险天气指标(FWI)计算的初始化方法和解释.森林防火.2003,4:22-24.
    [70]罗光玉.加拿大林火行为预报系统进展.森林防火.1994,1:44-46.
    [71]Burgan R E et al. Fuel models and fire potential from satellite and surface observations. International Journal of Wildland Fire,1998,8(3):159~170.
    [72]Noble I R. McArthur's fire-danger meters expressed as equations. Aust J Ecol,1980, 5:201~203.
    [73]田晓瑞,舒立福,王明玉.1991-2000年中国森林火灾直接碳释放量估算.火灾科学.2003,12(1):6-10.
    [74]田晓瑞,舒立福,王明玉,赵凤君.林火与气候变化研究进展.世界林业研究.2006,19(5):38-42.
    [75]王明玉,舒立福,田晓瑞,史军.林火在空间上的波动性及其对全球变化的响应(I).火灾科学.2003,12(3):165-170.
    [76]王明玉,舒立福,田晓瑞,史军.林火在空间上的波动性及其对全球变化的响应(II).火灾科学.2003,12(3):171-176.
    [77]A. L. Westerling, H. G. Hidalgo, D. R. Cayan, et al. Warming and Earlier Spring Increase Western U.S. Forest Wildlife Activity. Science,2006,313 (5789): 940~943.
    [78]C. Carcaillet, Y. Bergeron, P. J. H. Richard, et al. Change of Fire Frequency in the Eastern Canadian Boreal Forest during the Holocene:Does Vegetation Composition or Climate Trigger the Fire Regime? Journal of Ecology,2001,89 (6):930~946.
    [79]C. Carcaillet and P. J. H. Richard. Holocene Changes in Seasonal Precipitation Highlighted by Fire Incidence in Eastern Canada. Climate Dynamics,2000,6 (7):549~559.
    [80]J. Pinol, J. Terradas and F. Lloret. Climate Warming, Wildfire Hazard, and Wildfire occurrence in Coastal Eastern Spain. Climatic Change,1998,38 (3):345~357.
    [81]J. G. Pausas. Changes in Fire and Climate in the Eastern Iberian peninsula (Mediterranean Basin). Climatic Change,2004,63:337~350.
    [82]Y. Begeron and S. Archambault. Decreasing Frequency of Forest Fires in the Southern Boreal Zone of Quebec and Its Relation to Global Warmming Since the End of the " Little Ice Age" Holocene,1993,3:255~259.
    [83]E. A. Johnson and C. R. S. Larsen. Climatically Induced Change in Fire Frequency in the Southern Canadian Rockies. Ecology.1991,72 (1):194~201.
    [84]Donald M et al. Climatic change, Wildfire, and Conservation. Conservation biology,2004,18 (4):890~902.
    [85]Florent M et al. Simulating climate change impacts on fire frequency and vegetation dynamics in a Mediterranean-type ecosystem. Global Change Biology.2002,8: 423~437.
    [86]J. Roads, F. Fujioka, S. Chen, R. Burgan. Seasonal fire danger forecasts for the USA. International Journal of wildland Fire,2005,14:1~18.
    [87]D. Mollicone, H. D. Eva, F. Achard. Ecology:human role in Russian wildfires. Nature,2006,440:436-437.
    [88]Furyaev V et al. Wildfire-Related Changes of Forest Structure and Functions in Siberia.第三次世界林火大会论文选编,2005.
    [89]赵凤君,舒立福,田晓瑞,王明玉.气候变化与林火研究综述.林火研究.2005,4:19-21.
    [90]Flannigan M.D, Stocks B.J, and Wotton B.M. Climate Change and Forest Fire. Sci Total Environment.2000,262 (3):221~229.
    [91]Flannigan M.D, Amiro B.D, Logan K.A et al. Forest Fires and Climate Change in 21st Century. Mitigation and Adaptation Strategies for Global Change.2006,11 (4): 847-859.
    [92]Flannigan M.D, Logan K.A, Amiro B.D. Future Area Burned in Canada. Climatic Change.2005,72 (1-2):1~10.
    [93]Bergeron Y, Flannigan M.D. Predicting the Effects of Climate Change on Fire Frequency in the Southeastern Canadian Boreal Forest. Water, Air,& Soil Pollution.1995,82 (2):437~444.
    [94]Flannigan M.D. et al. Future fire in Canada's boreal forest:Paleoecology results and general circulation model-regional climate model simulations. Can. J. For. Res.2001, 31:854~864.
    [95]Amber J.S et al. Climate-Induced Boreal Forest Change:Predictions versus Current Observation. Global and Planetary Change.2007,56:274~296.
    [96]Aulair et al. Forest wildfires as a recent source of CO2 at northern latitudes. Can. J. For. Res.1993,23:1528-1536.
    [97]Dixon R K. and Krankina O N. Forest fires in Russia:carbon dioxide emissions to the atmosphere. Can. J. fore. Res.1993,23:700~705.
    [98]Cofer W.R, Winstead E.L. Crown Fire Emissions of CO2, CO, H2, CH4, and TNMHC from a Dense Jack Pine Boreal Forest Fire[J]. Geophysical Research Letters.1998,25 (21):3919~3922.
    [99]Amiro B.D, Todd J.B, Wotton B.M. Direct Carbon Emissions from Canadian Forest Fires.1959—1999 [J]. Canada Journal of Forest Research.2001,31:512~525.
    [100]殷丽,田晓瑞,康磊等.林火碳排放研究进展.世界林业研究.2009,22(3):46-51.
    [101]田晓瑞,舒立福,王明玉.1991-2000年中国森林火灾直接释放碳量估算[J].火灾科学,2003(12):6-10.
    [102]胡海清,孙龙,国庆喜等.大兴安岭1980-1999年乔木燃烧释放碳量的研究.林业科学.2007,43(11):82-88.
    [103]胡海清,孙龙.1980-1999年大兴安岭灌木、草本和地被物林火碳释放估算.应用生态学报.2007,18(12):2647-2653.
    [104]邸雪颖,王宏良,姚树人,王福生.大兴安岭森林地表可燃物生物量与林分因子关系的研究.森林防火.1994,41(2):16-18.
    [105]胡海清.大兴安岭主要森林可燃物理化性质测定与分析.森林防火.1995,44(1):27-31.
    [106]刘菲,胡海清.森林可燃物理化性质与燃烧性的研究综述.森林防火.2005,84(1):28-30.
    [107]胡海清.利用林分特征因子预测森林地被可燃物载量的研究.林业科学.2005,41(5):96-100.
    [108]于成龙,胡海清,魏荣华.大兴安岭塔河林业局林火动态气象条件分析.东北林业大学学报.2007,35(8):23-27.
    [109]傅泽强,陈动,王玉彬.大兴安岭森林火灾与气象条件的相互关系.东北林业大 学学报.2001,29(1):12-15.
    [110]罗菊春.大兴安岭森林火灾对森林生态系统的影响.北京林业大学学报.2002,24(5、6):101-107.
    [111]王绪高,李秀珍,贺红士,冷文芳,问青春.大兴安岭北坡落叶松林火后植被演替过程研究.生态学杂志.2004,23(5):35-41.
    [112]张艳平,胡海清.大兴安岭气候变化及其对林火发生的影响.东北林业大学学报.2008,36(7):29-32.
    [113]赵凤君,舒立福,田晓瑞,王明玉.气候变暖背景下内蒙古大兴安岭林区森林可燃物干燥状况的变化.生态学报.2009,29(4):1914-1920.
    [114]赵凤君,舒立福,邸雪颖,田晓瑞,王明玉.气候变暖背景下内蒙古大兴安岭林区森林火灾发生日期的变化.林业科学.2009,45(6):166-172.
    [115]郭福涛,胡海清,张金辉.塔河地区林火时空分布格局与影响因素.自然灾害学报.2009,18(1):204-208.
    [116]郑焕能.中国东北林火.东北林业大学出版社.2000:87.
    [117]宋志杰.林火原理和林火预报.北京:气象出版社,1991.
    [118]Hatcher D.A. Simple Formulate for Julian Day Numbers and Calendar Dates. Royal Astronomical Society.1984,25 (1):53~55.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700