用户名: 密码: 验证码:
粉末冶金发泡铝的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
泡沫金属是近几年发展起来的一种集结构—性能一体化的新型功能材料。早在20世纪50年代就开始研制,初期由于发泡工艺与泡孔大小不易控制,限制了其发展,近20多年来取得了长足进展。
     本论文阐述了一种新的泡沫铝制备方法——粉体发泡法。其工艺原理为:把少量的发泡剂(TiH_2粉末)和AlSi6合金粉末均匀混合,然后通过冷压、烧结、热压三个步骤得到相对密度达95%以上的压坯。在一定温度下加热压坯使发泡剂分解产生气体而得到泡沫铝。制备的泡沫铝密度为0.5~0.8g/cm~3,平均孔径为2~5mm,孔隙率为50%~85%。分析讨论了试验工艺条件及工艺参数如混料条件、铝坯压缩条件和发泡时的发泡温度、保温时间和发泡剂的类型对泡沫铝孔结构的影响。研究了制备的泡沫铝在单向压缩下表现出的力学性能。同时建立了泡沫铝孔单元结构模型,得到了在简单模型下泡沫材料的孔隙率和线弹性变形时的应变与孔结构的关系。
     研究结果表明,对于实验采用的AlSi6合金粉末来说,加热发泡制备出孔隙结构均匀,孔隙率可控的泡沫铝的最优条件是:采用质量百分含量为1%的—200目经预处理的TiH_2,发泡温度为680℃,保温时间为10min。
     泡沫铝在压缩时表现出明显的变形三阶段,显示了其优越的吸能特性。
Metallic foam is a new kind of functional material with excellent properties and complex geometry. The idea of producing metallic foam was first investigated over fifty years ago, but its development was restricting for it's hard to control the cellular structure and the pore size. Only in the past twenty years a number of processes have been proven successful.
    In this paper, a new method-powder foaming method-was bringing forward. Its technical principles is achieving the compressor which relative density can be over 95% by mixing a little blowing agents with AlSi6 powder uniformly, then through compressing, sintering , hot pressing and heating up the compressor to a extend temperature so that the blowing agents decompose H2. Aluminum foams with pore size ranging from 2~5mm, relative density ranging from 0.5~0.8g/cm3 and porosity ranging from 50%~85% have been fabricated successfully by this method. The processing parameters, the effect of the mixing, the pressing parameter, and the foaming temperature, the style of the blowing agents and heat preservation time on the pore constructor were analyzed. The mechanical capability in unilateralism compress of aluminum foams was studied. A cellular module was also established and the relationship of the porosity and the strain of linear-elastic deformation with the pore constructor were achieved.
    The results show that the optimal processing of aluminum foams which have uniform structure and controlled porosity is that the blowing agents are -200 mu and which mass percentage is 1%, the foaming temperature is 680 C and heat preservation time is 10min.
    Aluminum foams put up three phases and good energy absorption property when it was unilaterally compressed.
引文
[1] 吴铿.泡沫冶金熔体的基础理论.北京:冶金工业出版社,2000
    [2] Sonik. A Process for Making Foamlike Mass of Metal. US Patent 2434775,1948
    [3] Elliot J. C. US Patent 2751259,1956
    [4] L. J. Gibson. Mechanical Behavior of Metallic Foams. Annu. Rev. Mater. Sci. 2000; 30:191~227
    [5] H. B. Smith, A. F. Bastawros, D. R. Mumm, D. J. Sypeck. Compressive Deformation and Yielding Mechanisms in Cellular AI Alloys Determined Using X-Ray Tomography and Surface Strain Mapping. Acta Mater. 1998; 46:3583~3592
    [6] O. B. Olurin, N. A. Fleck. M. F. Ashby. Deformation and Fracture of Aluminum Foams. Materials Science and Engineering. 2000; A291:136~146
    [7] A. E. Simone, L. J. Gibson. Efficient Structural Components Using Porous Metals. Material Science and Engineering. 1997; A229:55~62
    [8] J. Banhart, W. Brinkrs. Fatigue Behavior of Aluminum Foams. Journal of Materials Science Letters. 1999; 18:617~619
    [9] J. Banhart, J. Baumeister. Deformation Characteristic of Metal Foams. Journal of Materials Science. 1998; 33:1434~1440
    [10] Y. Yamada, C. Wen, K. Shimojima, M. Mabuchi. Effects of Cell Geometry on the Compressive Properties of Nickel Foams. Materials Transaction. 2000; 41:1136~1138
    [11] H. Kanahashi, T. Mukai, Y. Yamada, K. Shimojima. Dynamic Compression of an Ultra-Low Density Aluminum Foam. Materials Science and Engineering. 2000; A280:349~353
    [12] D. A. Crowson. Materials Issues in Impact Engineering. 3rd International Symposium on Impact Engineering. Singapore, 1998, 15~25
    [13] 王祝堂.泡沫铝材:生产工艺、组织性能及应用市场(1).轻合金加工技术.1999(10):5~8
    [14] 石井 荣一.发泡制造方法吸音特性.R&D.神户制钢技报.1991(2):59
    
    
    [15] 杨守春.孔向一致的莲藕型通多孔质金属.现代材料动态.2000(10):5
    [16] J. Banhart, M. F. Ashby, N. A. Fleck, Metal Foams and Porous Metal Structure.(Verlag MIT Publishing, Bremen,Germany, 1999):5
    [17] 张勇等.充满生机的新型功能材料—泡沫铝.山东工程学院学报.1994(3):1~6
    [18] 宋振伦,何德坪.铝熔体泡沫形成过程中粘度对孔结构的影响.材料研究学报.1997(11):275~279
    [19] 谢梁德.熔融法泡沫铝制备工艺的初步研究:[硕士学位论文].北京:北京科技大学,1995
    [20] 吴照金,何德坪.熔体Al孔结构的影响因素.材料研究学报.2000(6)
    [21] 何德坪,余兴泉.孔结构对通孔泡沫钼非线形阻尼性能的影响.材料研究学报.1997:11:101~103
    [22] 刘培生,吕明,李铁潘等.发泡镍电阻率的孔率计算法.材料科学与工艺.1999;7(3):77~79
    [23] 左孝青,杨晓源,李成华.多孔泡沫金属研究进展.昆明理工大学报.1997(2):90~93
    [24] 刘荣佩,吴新光,田鹏.直接冷压法制备多孔电极板材料研究.昆明理工大学学报.2002,27(6)
    [25] 王录才,陈新等.熔模铸造法通孔泡沫铝制备工艺研究.铸造.1999(1):8~10
    [26] 王芳,王录才.泡沫金属的研究与进展.铸造设备研究.2000(1):48~51.
    [27] 王斌,何德坪.泡沫Al合金的压缩性能极其能量吸收.金属学报.2000(36):10~15
    [28] 何德坪,马立群等.新型通孔泡沫铝的传热特性.材料研究学报.1997(8):431~434.
    [29] 宋振纶,马立群等.铝熔体泡沫化过程中孔结构的控制.铸造.1997(4):9~11
    [30] 王斌,何德坪等.铝合金泡沫化过程中影响成核的两个工艺因素对孔结构的影响.铸造.1998(4):8~11
    [31] 黎青,陈玲燕,沈军等.多孔材料的应用与发展.材料导报.1995;(6):10~13
    [32] 何德坪,陈锋等.发展中的新型多孔泡沫金属.材料导报.1993:(4):11~15
    [33] 刘中华等.泡沫金属的制备与应用.昆明理工大学学报.1999(3)
    [34] 吴炳尧,杨思一,苏华钦.泡状铝合金渗流铸造工艺参数的试验分析.铸造.1991(2):12~17
    [35] 王祝堂.泡沫铝材:生产工艺、组织性能及应用市场(2).1999(27):1~6
    
    
    [36] S. K. Maiti, L. J. Gibson, M. F. Ashby. Deformation and energy absorption diagrams for cellular solids. Acta Mater, 1984(32):1963~1975
    [37] T. J. LU, C. CHEN. Thermal Transport and Retardance Properties of Cellular Aluminum Alloys. Acta Mater, 1989(47):1469~1485
    [38] Y. Sugimura, J. Meyer, M. Y. HE. On the Mechanical Performance of Closed-cell Al Alloy Foams. Acta mater, 1997(45):5245~5259
    [39] T. Mukai, H. Kanahashi, Miyoshi. Experimental Study of Energy Absorption in a Closed-cell Aluminum Foam under Dynamic Loading. Scripta Materialia, 1999(40):921~927
    [40] E. W. Andrews, J. S. HUANG, L. J. Gibson. Creep Behavior of a Closed-cell Aluminum Foam. Acta Mater, 1999(47):2853~2863
    [41] K. Y. G. McCullough, N. A. Fleck, M. F. Ashby. Uniaxial Stress Behavior of Aluminum Alloy Foams. Acta mater, 1999(47):2323~2330
    [42] 舒震.铸造金属泡沫材料.机械工程材料.1984(5):11~13
    [43] 张勇等.用低压渗流法制备泡沫铝合金.材料科学进展,1993,7(6):473~477
    [44] 许庆彦,陈玉勇等.多孔泡沫金属的研究现状.铸造设备研究,1997(1):21
    [45] Ashwin Hattiangadi, Amit Bandyopadhyay. Modeling of Multiple Pore Ceramic Materials fabricated Via Fused Deposition Process. Scripta Materialia, 2000(42):581~588
    [46] 李保山.发泡金属的电沉积法制备、性质及其应用研究:[博士学位论文].沈阳:东北大学,1998
    [47] 张流强,常富化.低密度金属泡沫镍的研制.功能材料.1996;35:509~512
    [48] 中南矿冶学院.粉末冶金材料.北京:冶金工业出版社.1982
    [49] 沃丁柱,李顺林,王兴业等.复合材料大全.北京:化学工业出版社,2000
    [50] C. Park, S. R. Nut. Effects of Process on Steel Foam Synthesis. Material Science and Engineering. 2001 ;A297:62~68
    [51] O. Andersen, U. Wang, L. Schneider. Novel Metallic Hollow Sphere Structures. Advanced Engineering Materials. 2000;2:192~195
    [52] 李保山,等.发泡金属的开发、性质及用途.材料工程.1998;8:39~42
    [53] J. Banhart. Manufacture, Characterization and Application of Cellular Metals and Metal Foams. Progress in Materials Science. 2001;46:559~632
    [54] 赵增典,张勇,李杰.泡沫金属的研究及其应用进展.轻合金技术.1998(26):4
    
    
    [55] T. J. Lu, A. Hess, M. F. Ashby. Sound Absorption in Metallic Foams. Journal of Applied Physics. 1999;85:7528~7534
    [56] 王月.压缩率和密度对泡沫铝吸声性能的影响.机械工程材料.2002,Vol26(3):29~31
    [57] K. Y. G. McCullough, N. A. Fleck, M. F. Ashby. Unialxial Stress Behavior of Aluminum Alloy Foam. Acta Mater. 1997(47): 2853~2863
    [58] D. W. Hutmacher. Scaffolds in Tissue Engineering Bone and Cartilage Biomaterials. 2000;21 : 2529~2534
    [59] 黄培云.粉末冶金原理.北京:冶金工业出版社,1997
    [60] 松山芳治,三谷裕康,铃木寿.粉末冶金学.周安生等.北京:科学出版社,1978
    [61] 邹志强,曲选辉,黄伯云.国外粉末冶金的最新进展.粉末冶金技术,1977,15(1):66~70
    [62] F.V.Lenel.粉末冶金原理和应用.殷声,赖和恬.北京:冶金工业出版社,1989
    [63] 屈树岭,白淑珍,余明.高比重合金粉坯挤压工艺的研究.粉末冶金技术.1990,8(4):85~88
    [64] 吴诗椁.挤压理论.北京:国防工业出版社,1994
    [65] 任学平,康永林.粉末塑性加工原理及其应用.北京:冶金工业出版社,1998
    [66] Kuhn H. A., Ferguson B .L. Metal Powder Report. 40(1985):2, 93
    [67] Tewari H.N.,Sharan R.铁粉预制坯锻造的研究.1986年国际粉末冶金会议论文选.北京粉末冶金研究所.1987:117
    [68] Kuhn H.A.,Downey C.L.,粉末冶金新工艺新技术及其分析.赖和恬.北京:冶金工业出版社,1982
    [69] T. B. Sercombe, G. B. Schaffer. The Effect of Elements on the Sintering of Al-Cu Alloy. Acta Mater. 1999; 47:689~697
    [70] 曾德麟.粉末冶金材料.北京:冶金工业出版社.1999
    [71] O. P. Bishop, G. J. Kipouros, W. F. Calery. Diffusion-Based Mieroalloying via Reaction Sintering. Journal of Materials Science. 1997;32:2353~2358
    [72] B. Y. Li, L. J. Rong, Y. Y. Li. Anisotropy of Dimensional Change and Its Corresponding Improvement by Addition of TiH_2 During Elemental Powder Sintering of Porous NiTi Alloy. Material Science and Engineering. 1998;A255:70~74
    [73] O. P. Bishop, J. R. Cahoon, M. C. Chaturvedi. Diffusion-Based Microalloying of
    
    Aluminum Alloys by Powder Metallurgy and Reaction Sintering. Journal of Materials Science. 1998; 33: 3927~3934.
    [74] 果世驹.粉末烧结理论.北京:冶金工业出版社.1998
    [75] 宝鸡有色金属研究所.粉末冶金多孔材料(上、下).北京:冶金工业出版社.1978
    [76] 左孝青,王茗,顾昆等.泡沫铝发泡过程动力学.昆明理工大学学报.2003,28(3)
    [77] 印红羽毛,张华诚.粉末冶金模具设计手册(第二版).北京:机械工业出版社.2002
    [78] 徐进,姜先畲等.模具钢.北京:冶金工业出版社.1998
    [79] 模具实用技术丛书编委会.冲模设计应用实例.北京:机械工业出版社.2000
    [80] 蔡美良,丁惠麟等.新编工模具钢金相热处理.北京:机械工业出版社.199
    [81] 刘菊芬,刘荣佩等.新型泡沫铝制备工艺研究.材料导报.2002;16(8):65~67.
    [82] 费多尔钦科等.粉末冶金原理.北京钢铁学院粉末冶金教研室.北京:冶金工业出版社.1974
    [83] R. E. Whittaker. The Mechanical Behavior of Microporous Polyurethane Foams. Journal of Applied Polymer Science. 1971; 15:1205~1218
    [84] A. N. Gent, A. G. Thomas. The Deformation of Foamed Elastic Materials. Journal of Applied Polymer Science. 1959; 1:107~113
    [85] T. Suminokure, T. Sasaki, N. Aoki. Effect of the Cell Membrance on Mechanical Properties of Flexible Polyurethane. Japanese Journal of Applied Physics. 1968;7(4): 330~334
    [86] 卢子兴,王仁等.泡沫材料力学性能研究综述.力学进展.1996;26:306~323
    [87] V. A. Matonis. Elastic Behavior of Low Density Rigid Foams in Structural Applications. SPE Journal. 1964; 20:1024~1030
    [88] G. Menges, F. Knipschild. Estimation of Mechanical Properties for Rigid Polyurethane Foams. Polymer Engineering and Science. 1975; 15:623~627
    [89] M. F. Ashby, R. F. M. Medalist. The Mechanical Properties of Cellular Solids. Metallurgical Transactions, 1983; 14A: 1755~1769
    [90] M. F. Ashby, A. G. Evans, N. A. Fleck, L. J. Gibson. Metal Foams: A Design Guide. Butterworth-Heinemann, 2000
    [91] A. E. Markaki, T. W. Clyne. The Effect of Cell Wall Microstructure on the Deformation and Fracture of Aluminum-Based Foams. Acte Mater.
    
    2001 ;49;1677~1686
    [92] N. Chan, K. E. Evans. Microscopic Examination of the Microstructure and Deformation of Conventional and Auxetic Foams. Journal of Materials Science. 1997;32:5725~5736
    [93] 程和法,黄笑梅,许玲等.开孔泡沫铝的压缩与吸能性的研究.矿冶工程.2003,(32)1
    [94] M. R. Horne. Elastic-plastic failure loads of plane frames. Porc. Roy. Soc. Lond. 1963; A274~343
    [95] Lorna J. Gibson, Michael F. Ashby. Cellular Solids: Structure and Properties. Cambridge University Press, 1997
    [96] Euler. Thoughts on the elements of bodies. Memoirs of the Prussian Academy of Science. Berlin.
    [97] 徐祖耀.金属学原理.上海:上海科技出版社.1964
    [98] 单辉祖.材料力学(Ⅰ).北京:高等教育出版社.1999

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700