用户名: 密码: 验证码:
基于联吡啶钌环糊精超分子化合物和主客体识别的电致化学发光和荧光生物传感技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
进入21世纪以来,人类对于生命组成物质的研究不断深入,针对核酸、蛋白质、腺苷等主要生命物质的检测对人类重大疾病诊断和预防具有重要意义。电致化学发光和荧光生物传感技术以选择性好、灵敏度高、分析速度快、操作简易和仪器价格低廉等特点,在生物分子检测方面具有广泛的应用,一直是人们的研究热点。其中,基于联吡啶钌作为标记物的电致化学发光生物传感和荧光生物传感技术在生物分子检测中有着极其重要的应用价值,而且已在临床医学检验中得到广泛应用。因此,寻找能在标记时更好地保持生物活性同时获得更灵敏响应信号的发光试剂就显得格外重要,目前有许多科研人员投入大量的科研力量研究基于新型联吡啶钌化合物标记的电致化学发光和荧光生物传感技术。
     金属环糊精超分子化合物将环糊精的超分子结构和活性金属中心结合到单个分子上,其中环糊精空腔能够包络常见的客体分子,对小分子具有高识别效率,同时金属中心又具有优越的的导电性和光学性质。这使得金属环糊精化合物在超分子体系以及分子传感中有越来越多的应用,因此吸引了越来越多的化学工作者的关注。
     本论文以我们课题组合成的一系列新型的(多)联吡啶钌环糊精和联吡啶钌(多)环糊精超分子化合物为基础,利用电致化学发光和荧光检测方法与主-客体识别技术联用,构建一系列生物传感平台,实现对DNA、蛋白质和生物分子的特异性识别与测定。利用主客体分子识别技术研究新型的电致化学发光和荧光生物传感技术,可望更大限度地提高电致化学发光和荧光生物传感技术的灵敏度,为生命物质探究和重大疾病早期诊断提供一些新的方法,这将具有非常深远的意义。
     第一章绪论
     在本章中,重点阐述了环糊精超分子化学中的金属环糊精的特性及应用。并详细研究了超分子主体化合物的主客体识别特性以及其在生物传感中的应用。介绍了电致化学发光原理、特点以及新型发光体的研究情况。重点阐述了电致化学发光生物传感器和荧光生物传感器的研究进展。最后对本论文的研究意义、主要研究内容以及论文的创新性作了概括。
     第二章多联毗啶钌环糊精超分子体系的电致化学发光特性研究
     金属环糊精超分子化合物尤其是具有多联吡啶钌金属中心的环糊精超分子化合物,由于具有多个发光基团中心,表现出高效的电致化学发光特性。因此我们研究了系列多联吡啶钌环糊精超分子化合物的电致化学发光性质,并重点考察了三联吡啶钌环糊精超分子化合物(tris(bpyRu)-β-CD)。tris(bpyRu)-β-CD不仅是一种高效的电致化学发光信号分子,其环糊精空腔能够结合客体分子形成主客体包络,因此我们详细研究了客体分子包括亚甲基蓝、对甲基红、熊去氧胆酸以及核酸对tris(bpyRu)-β-CD的电致化学发光行为的不同影响。
     第三章三联吡啶钌环糊精超分子化合物修饰膜的电致化学发光特性及其对DNA特异性识别的研究
     本章中,基于第二章研究的三联吡啶钌环糊精超分子化合物(tris(bpyRu)-β-CD)优越的电致化学发光(ECL)特性和超分子结构,我们将该化合物通过电化学聚合到电极表面,形成一个固相ECL修饰膜以获得稳定可观的ECL响应信号。同时由于该tris(bpyRu)-β-CD修饰膜特有的环糊精基团所具有主客体识别的特性,我们设计了一个高灵敏度,基于猝灭分子标记的发卡DNA为探针的电致化学发光生物传感器检测目标DNA,在与目标DNA杂交后,双链DNA上的猝灭剂被环糊精空腔给捕获,从而猝灭传感器的ECL响应信号。该新型电致化学发光DNA生物传感器在这个过程的检测值和目标DNA的浓度直接相关。我们构造的电致化学发光DNA生物传感器简单、高效且对目标DNA有很好的特异性识别。
     第四章基于三联吡啶钌环糊精超分子化合物主客体识别的腺苷电致化学发光核酸适配体传感技术研究
     本章基于三联吡啶钌环糊精超分子化合物(tris(bpyRu)-β-CD)出色的电致化学发光(ECL)特性和与核酸主客体识别的作用,成功构建了一个电致化学发光核酸适配体生物传感平台检测三磷酸腺苷(ATP)。该方法通过主客体识别技术而不需要额外标记实现ECL信号放大和对生物分子的检测。在此实验设计中,终端标记NH2的核酸适配体(aptamer)通过偶联反应固定在玻碳电极表面,在与tris(bpyRu)-β-CD主客体识别后,tris(bpyRu)-β-CD/aptamer/GCE电极产生了一个很强的ECL信号,这是由于tris(bpyRu)-β-CD的ECL特性所致。然而,当ATP存在的情况下,ATP与aptamer优先结合,抑制了环糊精和aptamer的主客体识别,所以只有少量的tris(bpyRu)-β-CD被捕获到电极表面,导致ECL强度明显下降。在最优实验条件下,ECL响应信号的降低值与ATP浓度的对数校正曲线线性关系良好,检测限可达1.0×10-11mol/L(S/N=3)。该生物传感平台将ECL技术和主客体识别结合展现了高灵敏度与良好的选择性,无需额外的信号标记步骤,这项工作在检测生物分子和临床诊断中会有更大的发展潜力。
     第五章基于多联吡啶钌环糊精超分子体系的主客体识别构建电致化学发光核酸适配体生物传感器实现蛋白质特异性检测
     本章中我们构建了一个无需直接标记的电致化学发光(ECL)核酸适配体生物传感器来检测目标蛋白(凝血酶以及溶菌酶),该传感器是基于多联吡啶钌环糊精超分子化合物和单链DNA (ss-DNA)的主客体识别作用。该核酸适配体传感器利用了多联吡啶钌环糊精超分子化合物的ECL特性以及它们与ss-DNA独特的主客体识别,这项技术不需要采用发光体直接标记放大ECL信号。比较了不同的多联吡啶钌环糊精超分子化合物的ECL特性后,我们发现三联吡啶钌环糊精超分子化合物(tris(bpyRu)-β-CD)是构建核酸适配体传感器最合适的主体物质。首先,由核酸适配体和与其互补配对的DNA杂交形成双链(ds-)DNA,通过偶联反应将其固定在玻碳电极表面,得到的ECL强度很低,这是因为ds-DNA和tris(bpyRu)-β-CD主客体识别能力低。在加入相应的结合蛋白之后,因为核酸适配体-蛋白特异性结合力强于DNA双链的结合力,由此电极表面剩下了ss-DNA,从而捕获到了足够的tris(bpyRu)-β-CD,因此检测到ECL的信号明显增强。上述核酸适配体传感器对凝血酶的检测范围为1.0×10-10_1.0×10-14mol/L,同时检测限可达1.0×10-14mol/L。溶菌酶的检测浓度范围从5.0×10-10到5.0×10-14mol/L,检测限达到5.0×10-14mol/L。同样我们还检测了人类实际血样中的蛋白浓度,检测结果进一步印证了这个传感器在实际样品中的检测能力。该检测器简便,灵敏度高,选择性良好,在蛋白检测和疾病诊断中将会有广泛的应用前景。
     第六章基于联吡啶钌多环糊精超分子体系和核酸适配体主客体识别的溶菌酶荧光传感体系的研究
     本章中,我们研究了一系列联吡啶钌多环糊精超分子化合物的荧光特性以及其与不同客体分子结合后对其荧光行为的影响。联吡啶钌多环糊精超分子化合物相比于联吡啶钌(Ru(bpy)32+)有着更高的荧光发射效率,这是因为环糊精基团对钌金属中心提供了保护作用,防止了体系外的物质对钌中心的荧光猝灭。在此基础上,我们研究了联吡啶钌多环糊精超分子化合物和DNA的主客体识别作用,由于DNA被捕获到环糊精空腔更进一步加强了对金属中心的保护作用,使得联吡啶钌多环糊精主体的荧光强度增高。基于此,我们设计了一个灵敏检测蛋白的荧光核酸适配体生物传感器。首先,联吡啶钌多环糊精超分子化合物结合了核酸适配体后,其荧光强度提高。然而,加入溶菌酶后会优先与核酸适配体结合,从而阻碍了核酸适配体与环糊精的主客体识别,最终导致荧光强度的降低。这个荧光信号的降低值可以用来检测溶菌酶的浓度,其检测限可以达到1×10-10m01/L。
Study on the molecular biology has long been the most valuable thing for people and has been growing faster than before since the turn of the century. The detection of biomolecules such as nucleic acid, proteins and ATP is of great importance for clinical detection and disease diagnosis. Electrochemiluminescence and fluorescence biosensing using Ru(bpy)32+as signal label are popular and powerful analytical techniques because of their high sensitivity, low background, simple instrumentation, and rapid sample analysis, which have been widely used in biomolecule detection. Herein, to improve the analytical sensitivity and extend its application, new luminophores with higher ECL efficiencies and techniques for the labeling of biomolecules while maintaining their specific biological activity are desired.
     Metallocyclodextrin, presenting excellent electronic and photoactive properties owing to its assured luminescent structure and molecular-recognition function of cyclodextrin cavity as the host model, is a highly useful signal supermolecule for the construction of supramolecular devices and biosensors, which has increasingly attracted the interest of researchers from many fields in recent years.
     Based on the host-guest recognition of the bipyridine-ruthenium cyclodextrins supramolecular compounds, several ECL and fluorescence biosensors have been developed for the detection of nucleic acid, proteins and ATP. By taking full advantages of the bipyridine-ruthenium cyclodextrins compounds, the proposed ECL and fluorescence biosensors not only exhibited excellent sensitivity but also performed high efficiency and simplicity without any other signal labeling or amplification procedures. Therefore, this approach offered great potentials for the ultrasensitive, simple and efficient detections of diverse target biomolecules.
     Chapter1:Introduction
     In chapter1, the excellent properties of supramolecular compounds especially for the metallocyclodextrins have been introduced generally. The host-guest recognition properties of the supramolecular compounds and their applications in biosensing have been studied systematically. We have illustrated the principle and characteristics of Electrochemiluminescence (ECL) and the development of new type luminophor. The current applications of biosensors based on ECL and fluorescence were highlighted. Finally, we summarized the significance, main content and the innovation of this thesis.
     Chapter2:The studies of the electrochemiluminescence properties of multi(bipyridine)ruthenium(Ⅱ)-β-cyclodextrin supramolecular compounds
     Metallocyclodextrins, multi(bipyridine)ruthenium(Ⅱ)-β-cyclodextrin supramolecular compounds (multi-Ru-(3-CD) in particular, have special luminescent properties due to their multiple photoactive units. Thus we studied the electrochemiluminescence (ECL) properties of multi-Ru-β-CD systematically. It is observed that tris(bipyridine)ruthenium(Ⅱ)-β-cyclodextrin compound [tris(bpyRu)-β-CD] could be applied in the construction of ECL sensors owing to its high photovoltaic efficiency stemming from multiple chromophores of a single molecule and unique host-guest recognition properties based on the supramolecular structure. And we studied the effects of several guests including methylene bule,4-dimethylaminoazobenzene-4'-carboxylicacid, ursodesoxycholic acid and nucleic acid on the ECL behavior of tris(bpyRu)-β-CD.
     Chapter3:The studies of the electrochemiluminescence properties of tris(bipyridine)ruthenium(Ⅱ)-β-cyclodextrin solid-state film based on host-guest recognition and application in DNA sensing
     In chapter3, the tris(bipyridine)ruthenium(Ⅱ)-β-cyclodextrin compound [tris(bpyRu)-P-CD] was electropolymerized on an electrode surface to fabricate a stable solid-state film for considerable improvement of luminescence. Exploiting the luminescent properties and supramolecular structure of the tris(bpyRu)-β-CD film, we developed a sensitive ECL sensor for DNA using a Dab-labeled hairpin DNA. After hybridization with target DNA, the Dab group of the double-stranded (ds)-DNA was captured by the cyclodextrin cavity of the host ECL film, quenching the ECL response of the sensor. This process was closely related to the concentration of target DNA. The proposed ECL-DNA sensor exhibited high sensitivity and selectivity, demonstrating its promising application in DNA sensing.
     Chapter4:Electrochemiluminescence aptasensor for adenosine triphosphate detection using host-guest recognition between tris(bipyridine)ruthenium(Ⅱ)-β-cyclodextrin and aptamer
     In this chapter, based on the host-guest recognition between tris(bipyridine)ruthenium(Ⅱ)-β-cyclodextrin compound [tris(bpyRu)-β-CD] and an ATP-binding aptamer which has been performed in Chapter2, a sensitive and label-free electrochemiluminescence (ECL) aptasensor for the detection of adenosine triphosphate (ATP) was successfully designed. In the protocol, the NH2-terminated aptamer was immobilized on a glassy carbon electrode (GCE) by a coupling interaction. After host-guest recognition with tris(bpyRu)-β-CD, the tris(bpyRu)-β-CD/aptamer/GCE produced a strong ECL signal as a result of the photoactive properties of tris(bpyRu)-β-CD. However, in the presence of ATP, the ATP/aptamer complex was formed preferentially, which restricted host-guest recognition, and therefore less tris(bpyRu)-β-CD was attached to the GCE surface, resulting in an obvious decrease in the ECL intensity. Under optimal determination conditions, an excellent logarithmic linear relationship between the ECL decrease and ATP concentration, with a detection limit of1.0×10-11mol/L at the S/N ratio of3. The proposed ECL-based ATP aptasensor exhibited high sensitivity and selectivity, without time-consuming signal-labeling procedures, and is considered to be a promising model for detection of aptamer-specific targets.
     Chapter5:Ultrasensitive and signal-on electrochemiluminescence detector of proteins using the multi(bipyridine)ruthenium(Ⅱ)-∞-cyclodextrin supramolecular compounds
     An ultrasensitive and signal-on electrochemiluminescence (ECL) aptasensor to detect target protein (thrombin or lysozyme) was developed using the host-guest recognition between multi(bipyridine)ruthenium(Ⅱ)-β-cyclodextrin supramolecular compounds (multi-Ru-P-CD) and single-stranded DNA (ss-DNA). The aptasensor uses both the photoactive properties of the multi-Ru-P-CD and their specific recognition with ss-DNA, which amplified the ECL signal without luminophore labeling. After investigating the ECL performance of different multi-Ru-β-CD, tris(bipyridine)ruthenium(Ⅱ)-β-cyclodextrin (tris(bpyRu)-β-CD) was selected as a suitable host to construct an aptasensor. First, double-stranded DNA (ds-DNA) formed by hybridization of the aptamer and its target DNA was attached to a glassy carbon electrode via coupling interaction, which showed low ECL intensity with2-(dibutylamino) ethanol (DBAE) as coreactant because of the weak recognition between ds-DNA and tris(bpyRu)-P-CD. Upon addition of the corresponding protein, the ECL intensity increased when target ss-DNA was released because of the higher stability of the aptamer-protein complex than the aptamer-DNA one. A linear relationship was observed in the range of1.0×10-10~1.0×10-14mol/L between ECL intensity and thrombin concentrations with a directly limited detection of1.0×10-14mol/L. Meanwhile, the measured concentration of lysozyme was from5.0×10-10to5.0×10-14mol/L and the directly measured detection limit was5.0×10-14mol/L. The investigations of proteins in human real serum samples were also performed to demonstrate the validity of detection in real clinical samples. The simplicity, high sensitivity and selectivity of this aptasensor show great promise for practical applications in protein monitoring and disease diagnosis.
     Chapter6:Sensitive fluorescence detection of lysozyme using (bipyridine)ruthenium(Ⅱ)-multi-β-cyclodextrin supramolecular compounds and aptamer
     Photophysical studies of a series of metallocyclodextrins named (bipyridine)ruthenium(Ⅱ)-multi-β-cyclodextrin supramolecular compounds (Ru-multi-P-CD), comprising a ruthenium core and multiple cyclodextrins indicated their higher emission efficiency than the parent compound tris(bipyridine)ruthenium(Ⅱ) thanks to shielding of the metal cores from fluorescence quenching. Host-guest recognition between the Ru-multi-β-CD and DNA aptamer further shielded against quenching. Based on this a sensitive fluorescence detector for protein was proposed. First, the fluorescence intensity of the Ru-multi-β-CD was enhanced upon binding aptamer. While, addition of lysozyme causes aptamer/lysozyme complexes to form, reducing aptamer binding to the cyclodextrin and leading to reduced fluorescence intensity. This reduction can be used to determine the lysozyme concentration with a low detection limit of1.0×10-10mol/L.
引文
[1]Szejtli, J. Chem. Rev.1998,98,1743-1754.
    [2]童林荟.环糊精化学-基础与应用[M].科学出版社,2001.
    [3]A. Villiers, Compt. Rend.1891,112,536-538.
    [4]F. Schardinger. Zentralbl. Bakteriol. Parasitenk. Abt.2.1911,29,188-197
    [5]K. Freudenberg, G. Blomquist, L. Ewald, K. Soff. Ber. Dtsch. Chem. Ges.1936,69,1258.
    [6]F. Cramer, F. M. Henglein. Chem. Ber.1957,90,2561-2571.
    [7]L. Szente, L. Szeman. Anal. Chem.2013,85,8024-8030.
    [8]K. Uekama, Yakugaku Zasshi. J. Pharm. Soc. of Jpn.1981,101,857.
    [9]D. Peri, C. M. Wyandt, R. W. Cleary, A. H. Hikal, A. B. Jones. Drug. Dev. Ind. Pharm.1994, 20,1401-1410.
    [10]P. Mura, A, Liguori, G. Bramanti, G. Bettinetti, E. Campisi, E. Faggi. J. Pharm. Biopharm. 1992,55,119-123.
    [11]J. Szejtli. Starch. Starke.1982,34,279-283.
    [12]淡家林.环状糊精及其在食品工业中的应用[J].食品与发酵工业,1984,1,43.
    [13]A. Konno, M. Misaki, J. Toda, T. Wada, K. Yasumatsu. Agric. Boil. Chem.1986,46,2203.
    [14]H. Suzuki, S. Watano, T. Sasazuka, T. Tsutsumi. U. S. Patent 5314877,1994-05-24.
    [15]J. Szejtli. Cyclodextrin Technology. Kluwer academic publisher:Dordrecht,1988.
    [16]J. W. Steed, J. L. Atwood, Supramolecular Chemistry.2nd edition, Whiley,2009.
    [17]R. Corradini, A. Dossena, G. Galaverna, R. Marchelli, A. Panagia, G. Sartor, J. Org. Chem., 1997,62,6283-6289.
    [18]J. M. Haider, Z. Pikramenou. Chem. Soc. Rev.2005,34,120-132.
    [19]V. Balzani, F. Scandola. Supramolecular Photochemistry. Ellis Horwood, Shichester.1991.
    [20]J. M. Haider, Z. Pikramenou, Eur. J. Inorg. Chem.2001,1,189-194.
    [21]Z. Pikramenou, J. A. Yu, R. B. Lessard, A. Ponce, P. A. Wong, D. G. Nocera, Coord. Chem. Rev.1994,132,181.
    [22]M. A. Mortellaro, D. G. N. Nocera, J. Am. Chem. Soc.1996,118,7414.
    [23]R. Deschenaux, M. M. Harding, T. Ruch, J. Chem. Soc, Perkin Trans.2,1993,1251.
    [24]R. Deschenaux, T. Ruch, P. F. Deschenaux, A. Juris, R. Ziessel, Helv. Chim. Acta,1995,78, 619-628.
    [25]R. Deschenaux, T. Ruch, P. F. Deschenaux, A. Juris and R. Ziessel. Helv. Chim. Acta.1995, 78,618-628.
    [26]A. Nakamura, T. Imai, S. Okutsu, A. Ueno and F. Toda, J. Electroanal. Chem.1997,438, 159.
    [27]S. Weidner, Z. Pikramenou, Chem. Commun.1998,1473.
    [28]J. M. Haider, M. Chavarot, S. Weidner, Ⅰ. Sadler, R. M. Williams, L. De Cola, Z. Pikramenou, Inorg. Chem.2001,40,3912-3921.
    [29]H. F. M. Nelissen, A. F. J. Schut, F. Venema, M. C. Feiters, R. J. M. Nolte, Chem. Commun. 2000,577-578.
    [30]H. F. M. Nelissen, M. Kercher, L. De Cola, M. C. Feiters, R. J. M. Nolte, Chem. Eur. J. 2002,8,5407-5414.
    [31]王秀华.新型联吡啶钌环糊精超分子化合物:合成、性质及其在电致化学发光DNA生物传感器中的应用研究(2011届华东师范大学博士学位论文)
    [32]E. T. Kool. Chem. Rev.,1997,97,1473-1487.
    [33]D. J. Cram. Angew. Chem. Int. Ed. Engl,1988,27,1009-1020.
    [34]刘育.尤长城.张衡益.超分子化学[M].天津:南开大学出版社,2001,597
    [35]C. J. Pedersen. Aldrichim. Acta.1971,4,1.
    [36]C. J. Pedersen. J. Org. Chem.1971,36,254-257.
    [37]C. J. Pedersen. J. Org. Chem.1971,36,1690-1693.
    [38]K. Iwamoto, S. Shinkai. J. Org. Chem.1992,57,7066-7073.
    [39]李洪坤.膜化学修饰电极的研制及其在分析化学和环境监测中的研究与应用[D].山东师范大学,2006.
    [40]K. Kim, N. Selvapalam, Y. H. Ko, K. M. Park, D. Kim, J. Kim. Chem. Soc. Rev.2007,36, 267-279.
    [41]J. Lagona, P. Mukhopadhyay, S. Chakrabarti, L. lsaacs. Angew. Chem. Int. Ed.2005,44, 4844-4870.
    [42]Y. J. Jeon, S. Y. Kim, Y. H. Ko, S. Sakamoto, K. Yamaguehi, K. Kim. Org. Biom. Chem. 2005,3,2122-2125
    [43]B. D. Wagner. In Cyclodextrin Photochemistry, Photophysics and Photo-biology, Douhal, A., Ed. Elsevier:Oxford,2006, Chapter 2,27-59.
    [44]A. Ueno, S. Minato, Ⅰ. Suzuki. Chem. Lett.1990,605-608.
    [45]T. Kinoshita, F. linuma, A. Tsuji. Biochem. Biophys. Res. Commun.1973,51,666-710.
    [46]T. Kinoshita, F. linuma, A. Tsuji. Chem. Pharm. Bull.1974,22,2413-2420.
    [47]C. Cucci, A. G. Mignani, C. Dall'Asta, R. Pela, A. Dossena. Sens. Actuators. B.2007,126, 467-472.
    [48]P. Cozzini, G. Ingletto, R. Singh, C. Dall'Asta. Int. J. Mol. Sci.2008,9,2474-2494.
    [49]Ⅰ. Hwang, K. Baek, M. Jung, Y. Kim, K. M. Park, D. W. Lee, N. Selvapalam, K. Kim, J. Am. Chem. Soc,2007,129,4170
    [50]M. del. Pozo, P. Hernandez, L. Hernandez, C. Quintana, J. Mater. Chem.,2011,21,13657.
    [51]L.Yang, Y.Xu, X.Wang, J. Zhu. R. Zhang, P. He, Y.Fang. Anal. Chim. Acta,2011,689, 39-46.
    [52]杨丽珠.基于直立碳纳米管阵列和主客体识别的生物传感器研究(2011届华东师范大学博士学位论文,第七章)
    [53]L. Yang, J. Zhu. Y. Xu, W. Yun, R. Zhang, P. He, Y. Fang. Electroanalysis,2011,23, 1007-1012.
    [54]X. Wang, H. Li, M. Wu, S. Ge, Y. Zhu. Q.Wang, P. He, Y. Fang. Chinese Journal of Analytical Chemistry.2013.41.1232-1237.
    [55]樊浩.DNA电化学生物传感器中的新方法学研究(2010届华东师范大学博士学位论文)
    [56]H. Fan, H. Li, Q. Wang, P. He, Y. Fang. Biosens. Bioelectron.2012,35,33-36.
    [57]IUPAC Compendium of Chemical Terminology,2nd ed. McNaught, A. D, Wilkinson, A., Eds.; Blackwell Science:Oxford, U.K.,1997.
    [58]Electrogenerated Chemiluminescence; Bard, A. J., Ed.; Dekker:New York,2004,68-70.
    [59]R. Wilson, C. Clavering, A. Hutchinson. Anal. Chem.2003,75,4244-4249.
    [60]D. M. Hercules, F. E. Lytle. J. Am. Chem. Soc.1966,88,4745-4746.
    [61]N. E. Tokel, A. J. Bard. J. Am. Chem. Soc.1972,94,2862-2863.
    [62]W. Miao. Chem. Rev.2008,108,2506-2553.
    [63]L. Hu and G. Xu. Chem. Soc. Rev.2010,39,3275-3304.
    [64]C. G. Zoski, In Handbook of Electrochemistry; Ed.; Elsevier:Amsterdam, The Netherlands, 2007,541.
    [65]A. J. Bard, J. D. Debad, J. K. Leland, G. B. Sigal, J. L. Wilbur, J. N. Wohlsatdter. In Encyclopedia of Analytical Chemistry:Applications, Theory and Instrumentation; R. A. Meyers, Ed.; Wiley:New York,2000,11,9842.
    [66]J. D. Debad, E. N. Glezer, J. K. Leland, G. B. Sigal, J. Wohlsadter. In Electrogenerated Chemiluminescence; A. J. Bard, Ed.; Dekker:New York,2004, Chapter 8,359.
    [67]X. Liu, L. Shi, W. Niu, H. Li, G. Xu, Angew. Chem.2007,119,425-428.
    [68]S. Sun, Y. Yang, F. Liu, Y. Pang, J. Fan, L. Sun, X. Peng. Anal. Chem.2009,81, 10227-10231.
    [69]H. Wei, E. Wang. Trac-Trends Anal. Chem.2008,27,447-459.
    [70]Z. Guo, S. Dong. Anal. Chem.2004,76,2683-2688.
    [71]L. Shi, X. Liu, H. Li, G. Xu. Anal. Chem.2006,78,7330-7334.
    [72]Z. Guo, Y. Shen, M. Wang, F. Zhao, S. Dong. Anal Chem.2004,76,184-191.
    [73]H. Wei, J. Yin, E. Wang. Anal Chem.2008,80,5635-5639.
    [74]Y. Tao, Z.Lin, X. Chen, X. Chen, X. Wang. Anal. Chim. Acta.2007,594,169-174.
    [75]G. M. Greenway, A. Greenwood, P. Watts, C. Wiles. Chem. Commun.2006,1,85-87.
    [76]H. Song, Z. Zhang, F. Wang. Electroanalysis.2006,18,1838-1841.
    [77]H. N. Choi, S. H. Cho, W. Y. Lee. Anal. Chem.2003,75,4250-4256.
    [78]L. Shi, X. Liu, H. Li, G. Xu. Anal. Chem.2006,78,7330-7334.
    [79]Z. Guo, Y. Shen, F. Zhao, M. Wang, S. Dong. Analyst.2004,129,657-663.
    [80]Y. Du, B. Qi, X. Yang, E. Wang. J. Phys. Chem. B.2006,110,21662-21666.
    [81]Z. Guo, Y. Shen, M. Wang, F. Zhao, S. Dong. Anal. Chem.2004,76,184-191.
    [82]L. Dennany, C. F. Hogan, T. E. Keyes, R. J. Forster. Anal. Chem.2006,78,1412-1417.
    [83]R. B. Lowry, C. E. Williams, J. Braven. Talanta.2004,63,961.
    [84]S. Stagni, A. Palazzi, S. Zacchini, B. Ballarin, C. Bruno, M. Marcaccio, F. Paolucci, M. Monari, M. Carano, A. J. Bard. Inorg. Chem.2006,45,695-709.
    [85]M. Li, J. Liu, C. Zhao, L. Sun. Organomet. Chem.2006,691,4189.
    [86]S. C. Brooks, D. J.Vinyard, M. M. Richter, Inorg. Chim. Acya 2006,359,4635.
    [87]D. N. Lee, H. J. Park, D. H. Kim, S. W. Lee, S. J. Park, B. H. Kim, W.-Y. Lee, Bull. Korean Chem. Soc.2002,23,13.
    [88]S. J. Park, D. H. Kim, D. H. Kim, H. J. Park, D. N. Lee, B. H. Kim, W.-Y. Lee, Anal. Sci. 2001,17, a93.
    [89]B. Kim, D. Lee, H. Park, J. Min, Y. Jun, S. Park, W. Lee, Talanta 2004,62,595.
    [90]F. Vogtle, M. Plevoets, M. Nieger, G. C. Azzellini, A. Credi, L. De Cola, V. De Marchis, M. Venturi, V. Balzani. J. Am. Chem. Soc.1999,121,6290-6298
    [91]A. Beyeler, P. Belser, L. De Cola. Chem. Eur. J.1997.24.2779-2781.
    [92]M. Zhou, J. Roovers, G. P. Robertson, C. P. Grover. Anal. Chem.2003,75,6708-6717.
    [93]Z. Dai, J. Zhang, J. Bao, X. Huang, X. Mo. J. Mater. Chem.2007,17,1087-1093.
    [94]G. Jie, P. Liu, S. Zhang. Chem. Commun.2010,46,1323-1325.
    [95]E. N. Harvery, J. Phys. Chem.1929,33,1456-1459.
    [96]K. E. Haapakka, J. J. Kankare, Anal. Chim. Acta 1982,138,253-262.
    [97]K. E. Haapakka, J. J. Kankare, Anal. Chim. Acta 1982,138,263-275.
    [98]G. P. Jirka, A. F. Martin, T. A. Nieman, Anal. Chim. Acta 1993,284,345-349.
    [99]J. E. Atwater, J. De Hart, R. R. Wheeler Jr, J. Biolum. Chemilum.1998,13,125-130.
    [100]R. Wilson, J. Kremeskotter, D. J. Schiffrin, J. S. Wilkinson. Biosens. Bioelectron.1996, 11,805-810.
    [101]M. Yang, C. Liu, K. Qian, P. He, Y. Fang, Analyst.2002,127,1267-1271.
    [102]A. Elangovan, T.-Y. Chen, C.-Y. Chen, T.-I. Ho, Chem. Commun.2003,2146.
    [103]A. Elangovan, S.-W. Yang, J.-H. Lin, K.-M. Kao, T.-Ⅰ. Ho, Org. Biomol. Chem.2004,2, 1597.
    [104]A. Elangovan, H.-H. Chiu, S.-W. Yang, T.-I. Ho, Org. Biomol.Chem.2004,2,3113.
    [105]Z. Ding, B. M. Quinn, S. K. Haram, L. E. Pell, B. A. Korgel, A.J. Bard, Science 2002,296, 1293.
    [106]N. Myung, Z. F. Ding, A.J. Bard, Nano Lett.2002,2,1315-1319.
    [107]Y. J. Bae, N. Myung. A.J.Bard. Nano Lett.2004,4,1153-1161.
    [108]L. Zhang, X. Zou, E. Ying, S. Dong. J.Phys.Chem.C.2008,112,4451-4454.
    [109]G. Zou, H. Ju. Anal.Chem.2004,76,6871-6876.
    [110]H. Jiang, H. Ju. Chem.Commun.2007,404-406.
    [111]X. Wang, Y. Zhou, J. Xu, H. Chen. Adv. Funct. Mater.2009,19,1444-1450.
    [112]Y. Shan, J. Xu, H. Chen. Chem.Commun.2009,905-907.
    [113]W. Miao, A. J. Bard. Anal. Chem.2004,76,5379-5386.
    [114]W. Miao, A. J. Bard. Anal. Chem.2003,75,5825-5834.
    [115]J. H. Kenten, R. Smith, BioVeris Corp. U.S.6890712B1,2005.
    [116]W.-Y. Lo, A. J. Baeumner,Anal. Chem.2007,79,1386-1392.
    [117]W.-Y. Lo, A. J. Baeumner, Anal. Chem.2007,79,1548-1554.
    [118]J. Zhang, H. Qi, Y. Li, J. Yang, Q. Gao, C. Zhang. Anal. Chem.2008,80,2888-2894.
    [119]X. Wang, W. Yun, P. Dong, J. Zhou, P. He and Y. Fang, Langmuir,2008,24,2200-2205.
    [120]M. A. Cooper. Nat. Rev. Drug Discov.2002,1,515-528.
    [121]S. H. Yeom, B. Kang, K. J. Kim, S. Kang. Front. Biosci.2011,16,997-1023.
    [122]A. D. Ellington, J. W. Szostak. Nature.1990,346,18-822.
    [123]C. Tuerk, L. Gold.Science.1990,249,505-510.
    [124]A. D. Keefe, S. Pai, A.Ellington. Nat. Rev. Drug Discov.2010,9,537-550.
    [125]J. G. Bruno, J. L. Kiel, Biosens. Bioelectron,1999,14,457-464.
    [126]J. G. Bruno, J. L. Kiel, BioTechniques,2002,32,178-183.
    [127]L. Fang, Z. Lv, H. Wei, E. Wang. Anal. Chim. Acta,2008,628,80-86.
    [128]M. M. Richter, F. R. F. Fan, F. Klavetter, A. J. Heeger, A. J. Bard. Chem. Phys. Lett.,1994, 226,115-120.
    [129]J. Bai, H. Wei, B. Li, L. Song, L. Fang, Z. Lv, W. Zhou, E. Wang. Chem.Asian J.,2008,3, 1935-1941.
    [130]X. Yin, Y. Xin, Y. Zhao. Anal. Chem.,2009,81,9299-9305.
    [131]N. Sardesai, S. Pan, J. Rusling. Chem. Commun,2009,4968-4970.
    [132]P. Huang, J. Liu. Anal. Chem.2010,82,4020-4026.
    [133]R. S. Swathi, K. L. Sebastian.J.Chem. Phys.2009,130,086101.
    [134]R. S. Swathi, K. L. Sebastian. J. Chem. Phys.2008,129,054703.
    [135]H. Chang, L. Tang, Y. Wang, J. Jiang, J. Li. Anal. Chem.2010,82,2341-2346
    [136]C. Wu, C. Wang, L. Yan, C. Yang. J. Biomed. Nanotechnol.2009,5,495-504.
    [137]S. S. Lehrer. Methods Enzymol.1997,278,286-295.
    [138]K. Yamana, Y. Ohtani, H. Nakano, Ⅰ. Saito. Med Chem. Lett.2003,13,3429-3431.
    [139]E. J. Merino, K. M. Weeks. J. Am. Chem. Soc.2005,127,12766-12767'.
    [140]S. E. Kim, K. Y. Ahn, J. S. Park, K. R. Kim, K. E. Lee, S. S. Han, J. Lee. Anal. Chem. 2011.83.5834-5843.
    [141]N. Li, C. Ho. J. Am. Chem. Soc.2008,130,2380-2381.
    [142]Y. Xiao, A. A. Lubin, B. R. Baker, K. W. Plaxco, A. J. Heeger. Proc. Natl.Acad. Sci. USA. 2006,103,16677-16680.
    [143]M. N. Stojanovic, P. De Prada, D. W. Landry. J. Am. Chem. Soc.2001,123,4928-^931.
    [144]C. Huang, S. Chiu, Y. Huang, H. Chang. Anal. Chem.2007,79,4798-4804.
    [145]S. Chen, C. Huang, H. Chang. Talanta.2010, 81,493-498.
    [146]C. Ma, W. Wang, Q. Yang, C. Shi, L. Cao. Biosens. Bioelectron.2011,26,3309-3312.
    [147]Y. Shi, W. Huang, H. Luo, N. Li. Chem. Commun.2011,47,4676-4678.
    [148]A. Rotaru, S. Dutta, E. Jentzsch, K. Gothelf, A. Mokhir. Angew. Chem. Int. Ed. Engl.2010, 49,5665-5667.
    [1]J. M. Haider, Z. Pikrarmenou, Chem. Soc. Rev.2005,34,120-132.
    [2]J. M. Haider, R. M. Williams, L. De Cola, Z. Pikramenou, Angew. Chem. Int. Ed 2003,42, 1830-1833.
    [3]Ⅰ. Hamachi, H. Takashima, Y. Z. Hu, S. Shinkai, S. Oishi, Chem. Commun.2000,1127-1128.
    [4]Y. L. Zhao, L. Hu, G. Gruner, J. F. Stoddart, J. Am. Chem. Soc.2008,130,16996-17003.
    [5]H. F. M. Nelissen, M. C. Feiters, R. J. M. Nolte, J. Org. Chem.2002,67,5901-5906.
    [6]J. M. Haider, M. Chavarot, S. Weidner, Ⅰ. Sadler, R. M. Williams, L. De Cola, Z. Pikramenou, Inorg. Chem.2001,40,3912-3921.
    [7]H. F. M. Nelissen, A. F. J. Schut, F. Venema, M. C. Feiters, R. J. M. Nolte, Chem. Commun. 2000,577-578.
    [8]X. Liu, L. Shi, W. Niu, H. Li, G. Xu, Angew. Chem.2007,119,425-428.
    [9]Angew. Chem. Int. Ed.2007,46,421-424; b) W. Miao, A. J. Bard, Anal.Chem.2004,76, 7109-7113.
    [10]X. Yin, B. Qi, X. Sun, X. Yang, E. Wang. Anal. Chem.2005,77,3525-3530.
    [11]X. Zhou, D. Xing, D. Zhu, L. Jia, Anal. Chem.2009,81,255-261.
    [12]M. Zhou, J. Roovers, G. P. Robertson, C. P. Grover, Anal. Chem.2003,75,6708-6717.
    [13]王秀华,新型联毗啶钌环糊精超分子化合物:合成、性质及其在电致化学发光DNA生物传感器中的应用研究(2011届华东师范大学博士学位论文,第五章)
    [14]B. Sullivan, D. Salmon, T. Meyer, Inorg. Chem.1978,17,3334-3341.
    [15]王秀华,新型联吡啶钌环糊精超分子化合物:合成、性质及其在电致化学发光DNA生物传感器中的应用研究(2011届华东师范大学博士学位论文,第三章)
    [16]X. Wang, H. Fan, F. Zhang, Y. Qi, W. Qiu, F. Yang, J. Tang, P. He, Tetrahedron 2010,66, 7815-7820.
    [17]G.Zhao,J. Zhu, H.Chen, Spectrochimica Acta Part A.1999,55,1109-1117.
    [18]G. Zhang, C. Dong, J. Pan, S. Shuang, Spectrochimica Acta Part A.2003,59,2935-2941.
    [19]Z. Yuan, M. Zhu, S. Han, Analytica Chimica Acta.1999,389,291-298.
    [20]T. Kuwabara, H. Nakajima, M. Nanasawa, A. Ueno, Anal. Chem.1999,71,2844-2849.
    [21]T. Ogoshi, A. Harada, Sensors 2008,8,4961-4982.
    [22]Nelissen, H. F. M.; Schut, A. F.J.; Venema, F.; Feiters, M. C.; Nolte, R. J. M. Chem. Commun.2000,577-578.
    [23]Spies, M. A.; Schowen, R. L. J. Am. Chem. Soc.2002,124,14049-14053.
    [24]Kandoth, N.; Choudhury, S. D.; Mohanty, J.; Bhasikuttan, A. C; Pal.H. J. Phys. Chem. B 2010,114,2617-2626.
    [1]A. W. Knight, G. M. Greenway. Analyst,1996,121, R101-R106.
    [2]K. A. Fahnrich, M. Pravda, G. G. Guilbault. Talanta,2001,54,531-559.
    [3]R. Pyati, M. M. Richter. Annu. Rep. Prog. Chem. Sect. C,2007,103,12-78.
    [4]W. Miao, J.-P. Choi, In Electrogenerated Chemiluminescence; A. J. Bard, Ed.; Marcel Dekker, Inc.:New York,2004, p 213.
    [5]T. M. Downey, T. A. Nieman. Anal. Chem.1992,64,261-268.
    [6]S. Zanarini, E. Rampazzo, D. Bich, R. Canteri, L. D. Ciana, M. Marcaccio, E. Marzocchi, C. Panciatichi, C. Pederzolli, F. Paolucci, L. Prodi, L. Vanzetti. J. Phys. Chem. C,2008,112,2949-2957.
    [7]X. Zhang, A. J. Bard.J. Phys. Chem.1988,92,5566-5569.
    [8]Ⅰ. Rubinstein, A. J. Bard, J. Am. Chem. Soc.1981,103,5007-5013.
    [9]A. N. Khramov, M. M. Collinson. Anal. Chem.2000,72,2943-2948.
    [10]L. Zhang, Z. Guo, Z. Xu, S. J. Dong. Electroanal. Chem.2006,592,63-67.
    [11]G. R. Morales, T. R. Silva, L. Galicia, J. Solid State Electrochem.2003,7, 355-360.
    [12]H. Wang, M. Imura, Y. Nemoto, L. Wang, H. Y. Jeong, T. Yokoshima, O. Terasaki, Y. Yamauchi, Chem. Eur. J.2012,18,13142-13148.
    [13]J. Zhao, H. Xue, L. Zhang, J. Yu, H. Hu, J. Nanopart. Res.2012,14,1-11.
    [14]X. Wang, W. Yun, P. Dong, J. Zhou, P. He, Y. Fang, Langmuir 2008,24, 2200-2205.
    [15]D. J. Piper, G. J. Barbante, N. Brack, P. J. Pigram, C. F. Hogan, Langmuir 2011, 27,474-480.
    [16]H. Wei, E. Wang, Trends Anal. Chem.2008,27,447-459.
    [17]T. Kuwabara, H. Nakajima, M. Nanasawa, A. Ueno, Anal. Chem.1999,71, 2844-2849.
    [18]T. Ogoshi, A. Harada, Sensors 2008,8,4961-4982.
    [19]J. A. Faiz, R. M. Williams, M. J. J. P. Silva, L. De Cola, Z. Pikramenou, J. Am. Chem. Soc.2006,128,4520-4521.
    [1]D. L. Robertson, G.F. Joyce. Nature1990,344,467-468.
    [2]O. C. Farokhzad, S. Jon, A. Khademhosseini, T.N.T. Tran, D.A. LaVan, R. Langer. Cancer Res.2004,64,7668-7672.
    [3]N. Hamaguchi, A. Ellington, M. Stanton. Anal. Biochem.2001,294,126-131.
    [4]D. E. Huizenga, J.W. Szostak. Biochemistry.1995,34,656-665.
    [5]S. D. Jayasena. Clin. Chem.1999,45,1628-1650.
    [6]T. Goda, Y. Miyahara. Biosens.Bioelectron.2013,45,89-94.
    [7]W. Thesana, T. Tuntulani, W. Ngeontae. Anal. Chim. Acta.2013,783,65-73.
    [8]C. Tian, J. Xu, H. Chen. Chem. Commun.2012,48,8234-8236.
    [9]L. Bai, Y. Chai, R. Yuan, Y. Yuan, S. Xie, L. Jiang. Biosens. Bioelectron.2013, 50,325-330.
    [10]L. Wu, X. Zhang, W. Liu, E. Xiong, J. Chen. Anal. Chem.2013,85,8397-8402.
    [11]J. Liu, X. Song, Y. Wang, A. Zheng, G. Chen, H. Yang. Anal. Chim. Acta.2012, 749,70-74.
    [12]S. Wu, N. Duan, X. Ma, Y. Xia, H. Wang, Z. Wang, Q. Zhang. Anal. Chem. 2012,84,6263-6270.
    [13]K. Zhang, K. Wang, M. Xie, L. Xu, X. Zhu, S. Pan, Q. Zhang, B. Huang. Biosens. Bioelectron.2013,49,226-230.
    [14]L. Fang, Z. Lv, H. Wei, E. Wang. Anal. Chim. Acta 2008,628,80-86.
    [15]L. Hu, Z. Bian, H. Li, S. Han, Y. Yuan, L. Gao, G. Xu. Anal. Chem.2009,81, 9807-9811.
    [16]L. Mao, R. Yuan, Y. Chai, Y. Zhuo, Y. Xiang. Biosens.Bioelectron.2011,26, 4204-4208.
    [17]J. W. Oh, Y.O. Lee, T.H. Kim, K.C. Ko, J.Y. Lee, H. Kim, J.S. Kim. Angew. Chem. Int. Ed.2009,48,2522-2524.
    [18]B. Sun, H. Qi, F. Ma, Q. Gao, C. Zhang, W. Miao. Anal. Chem.2010,82, 5046-5052.
    [19]Y. Chai, D. Tian, H. Cui. Anal. Chim. Acta.2012,715,86-92.
    [20]F. Ma, Y. Zhang, H. Qi, Q. Gao, C. Zhang, W. Miao. Biosens.Bioelectron.2012, 32,37-42.
    [21]F. Yu, G. Li, C. Mao. Electrochem.Commun.2011,13,1244-1247.
    [22]Y. Yu, Q. Cao, M. Zhou, H. Cui. Biosens.Bioelectron.2012,43,137-142.
    [23]J. Lu, M. Yan, L. Ge, S. Ge, S. Wang, J. Yan, J. Yu. Biosens.Bioelectron.2013, 47,271-277.
    [24]J. M. Haider, Z. Pikramenou. Chem. Soc. Rev.2005,34,120.
    [25]M. V. Rekharsky, Y. Inoue. Chem. Rev.1998,98,1875-1917.
    [26]A. Abbaspour, A.Noori.Analyst.2012,137,1860-1865.
    [27]M. Kondo, S. Nishikawa. J. Phys. Chem. B.2007,111,13451-13454.
    [28]M. A. Spies, R. L. Schowen. J. Am. Chem. Soc.2002,124,14049-14053.
    [29]B. Bean. Trends Pharmac. Sci.1992,13,87-90.
    [30]S. Zhang, Y. Yan, S. Bi. Anal. Chem.2009,81,8695-8701.
    [31]J. Huang, Z. Zhu, S. Bamrungsap, G. Zhu, M. You, X. He, K. Wang, W. Tan. Anal. Chem.2010,82,10158-10163.
    [32]Z. Zhou, Y. Du, S. Dong. Anal. Chem.2011,83,5122-5127.
    [33]N. Bu, A. Gao, X. He, X. Yin. Biosens.Bioelectron.2012,43,200-204.
    [34]Y. Du, B. Li, H. Wei, Y. Wang, E. Wang. Anal. Chem.2008,80,5110-5117.
    [35]D. Tang, J. Tang, Q. Li, B. Su, G. Chen. Anal. Chem.2011,83,7255-7259.
    [36]S. Chen, Y. Huang, C. Huang, K. Lee, Z. Lin, H. Chang. Biosens.Bioelectron.2008,23,1749-1753.
    [37]Q. Deng, Ⅰ. German, D. Buchanan, R. T. Kennedy. Anal. Chem.2001,73, 5415-5421.
    [38]L. Li, H. Cai, T.M.H. Lee, J. Barford, Ⅰ. Hsing. Electroanalysis.2004,16,81-87.
    [39]X. Liu, L. Shi, W. Niu, H. Li, G. Xu. Angew. Chem.2007,119,425-428.
    [40]S. Sun, Y. Yang, F. Liu, Y. Pang, J. Fan, L. Sun and X. Peng. Anal. Chem.2009, 81,10227-10231.
    [1]C. Liu, A. J. Bard. Nat. Mater.2008,7,505-509.
    [2]H. Qi, X. Qiu, D. Xie, C. Ling, Q. Gao, C. Zhang. Anal. Chem.2013,85, 3886-3894.
    [3]N. P. Sardesai, J. C. Barron, J. F. Rusling. Anal. Chem.2011,83,6698-6703.
    [4]J.Wang, Y.Shan, W.Zhao, J.Xu, H.Chen. Anal. Chem.2011,83,4004-4011.
    [5]L. Dennany, R.J. Forster, J.F. Rusling, J. Am. Chem. Soc.2003,125,5213-5218.
    [6]L. Hu, G. Xu, Chem. Soc. Rev.2010,39,3275-3304.
    [7]X. Tang, D. Zhao, J. He, F. Li, J. Peng, M. Zhang. Anal. Chem.2013,85, 1711-1718.
    [8]X. Chen, B. Su, X. Song, Q. Chen, X. Chen, X. Wang, TrAC, Trends Anal. Chem.2011,30,665-676.
    [9]B. V. Chikkaveeraiah, A. A. Bhirde, N. Y. Morgan, H. S. Eden, X. Chen. ACS nano 2012,6,6546-6561.
    [10]W. Miao, A.J. Bard. Anal. Chem.2004,76,7109-7113.
    [11]H. Wei, E. Wang. Luminescence.2011,26,77-85.
    [12]H. Qi, Y. Peng, Q. Gao, C. Zhang. Sensors2009,9,674-695.
    [13]S. Zanarini, E. Rampazzo, L.D. Ciana, M. Marcaccio, E. Marzocchi, M. Montalti, F. Paolucci, L. Prodi. J. Am. Chem. Soc.2009,131,2260-2267.
    [14]L. Zhang, S. Dong. Anal. Chem.2006,78,5119-5123.
    [15]X. Wang, W. Yun, P. Dong, J. Zhou, P. He, Y. Fang.Langmuir2008,24, 2200-2205.
    [16]A. Devadoss, C. Dickinson, T.E. Keyes, R.J. Forster. Anal. Chem.2011, 83, 2383-2387.
    [17]K. L. Metera, H. Sleiman. Macromolecules 2007,40,3733-3738.
    [18]Q.Wang,L.Yu.J. Am. Chem. Soc.2000,122,11806-11811.
    [19]W. Zhan, A.J. Bard. Anal. Chem.2007,79,459-463.
    [20]F. Liu, X. Yang, Y. Zhao, S. Sun. Anal. Methods.2013,5,660-665.
    [21]S. Sun, Y. Yang, F. Liu, Y. Pang, J. Fan, L. Sun, X. Peng. Anal. Chem.2009,81, 10227-10231.
    [22]M. Zhou, J. Roovers, G.P. Robertson, C.P. Grover. Anal. Chem.2003,75, 6708-6717.
    [23]J. M. Haider, Z. Pikramenou.Chem. Soc. Rev.2005,34,120-132.
    [24]T. Ogoshi, A. Harada. Sensors.2008,8,4961-4982.
    [25]A. Ueno, A. Ikeda, H. Ikeda, T. Ikeda, F. Toda. J. Org. Chem.1999,64,382-387.
    [26]A. Yamauchi, T. Hayashita, A. Kato, N. Teramae. Bull. Chem. Soc. Jpn.2002, 75,1527-1532.
    [27]C. M. Rudzinski, A. M. Young, D. G. Nocera. J. Am. Chem. Soc.2002,124, 1723-1727.
    [28]F. Barigelletti, L. Flamigni, Chem. Soc. Rev.2000,29,1-12.
    [29]J. M. Haider, M. Chavarot, S. Weidner, Ⅰ. Sadler, R.M. Williams, L. De Cola, Z. Pikramenou. Inorg. Chem.2001,40,3912-3921.
    [30]A. Abbaspour, A. Noori. Analyst2008,133,1664-1672.
    [31]A. Abbaspour, A. Noori. Analyst2012,137,1860-1865.
    [32]X. Hao, C. Liang, C. Jian-Bin.Analyst.2002,127,834-837.
    [33]M. Kondo, S. Nishikawa, J. Phys. Chem. B.2007,111,13451-13454.
    [34]M. A. Spies, R. L. Schowen. J. Am. Chem. Soc.2002,124,14049-14053.
    [35]D. Zhang, M. Lu, H. Wang. J. Am. Chem. Soc.2011,133,9188-9191.
    [36]S. Khezrian, A. Salimi, H. Teymourian, R. Hallaj. Biosens.Bioelectron.2013.43, 218-225.
    [37]J. Liu, Z. Cao, Y. Lu. Chem. Rev.2009,109,1948-1998.
    [38]W. Xu, Y. Lu. Anal. Chem.2009,82,574-578.
    [39]Y. Huang, B. Ge, D. Sen, H. Yu. J. Am. Chem. Soc.2008,130,8023-8029.
    [40]C. Tian, J. Xu, H. Chen. Chem. Commun.2012,48,8234-8236.
    [41]Y. Wang, D. Li, W. Ren, Z. Liu, S. Dong, E. Wang. Chem. Commun.2008, 2520-2522.
    [42]J. Bai, H. Wei, B. Li, L. Song, L. Fang, Z. Lv, W. Zhou, E. Wang. Chem. Asian. J.2008,3,1935-1941.
    [43]Y. Li, H. Qi, Y. Peng, J. Yang, C. Zhang. Electrochem.Commun.2001,9, 2571-2575.
    [44]X. Wang, J. Zhou, W. Yun, S. Xiao, Z. Chang, P. He, Y. Fang. Anal. Chim. Acta 2007,598,242-248.
    [45]王秀华,新型联吡啶钌环糊精超分子化合物:合成、性质及其在电致化学发光DNA生物传感器中的应用研究(2011届华东师范大学博士学位论文,第三章)
    [46]L. Li, H. Cai, T. M. H. Lee, J. Barford, I. Hsing. Electroanalysis 2004,16,81-87.
    [47]X. Liu, L. Shi, W. Niu, H. Li, G. Xu. Angew. Chem.2007,119,425-428.
    [48]X. Yin, Y. Xin, Y. Zhao. Anal. Chem.2009,81,9299-9305.
    [49]S. Bi, L. Li, S. Zhang, Anal. Chem.2010,82,9447-9454.
    [50]K. A. Near, M. J. Lefford, J. Clin. Microbiol.1992,30,1105-1110.
    [51]B. Porstmann, K. Jung, H. Schmechta, U. Evers, M. Pergande, T. Porstmann, H.-J. Kramm, H. Krause. Clin. Biochem.1989,22,349-355.
    [52]S. Lodhat, M. Mir. Tubercle1980,61,81-85.
    [53]T. Jing, H. Du, Q. Dai, H. Xia, J. Niu, Q. Hao, S. Mei, Y. Zhou. Biosens.Bioelectron.2010,26,301-306.
    [1]L. Szente, L. Szeman, Anal. Chem.2013,55,8024-8030.
    [2]M. R. Eftink, M. L. Andy, K. Bystrom, H. D. Perlmutter, D. S. Kristol. J.Am.Chem.Soc.1989,111,6765-6772.
    [3]P. Falvey, C.W. Lim, R. Darcy, T. Revermann, U. Karst, M. Giesbers, A. T. M.Marcelis, A. Lazar, A. W. Coleman, D. N. Reinhoudt. Chem. Eur. J.2005,11, 1171-1180.
    [4]M. V. Rekharsky, Y. Inoue. Chem. Rev.1998,98,1875-1917.
    [5]S. Li, W. C. Purdy. Chem. Rev.1992,92,1457-1470;
    [6]S. A. Nepogodiev, J. F. Stoddart. Chem. Rev.1998,98,1959-1976.
    [7]J. M. Haider, M. Chavarot, S. Weidner, Ⅰ. Sadler, R. M. Williams, L. D. Cola, Z. Pikramenou. Inorg. Chem.2001,40,3912-3921.
    [8]J. M. Lehn. Proc. Nat. Acad. Sci.2002,99,4763-4768.
    [9]T. Ogoshi, A. Harada. Sensors.2008,8,4961-4982.
    [10]S. Menuel, Y.Corvis, E.Rogalska, A.Marsura. New J. Chem.2009,33,554-560.
    [11]J. M. Haider, Z. Pikramenou. Chem. Soc. Rev.2005,34,120-132.
    [12]H. Takakusa, K.Kikuchi, Y.Urano, T.Higuchi, T.Nagano. Anal. Chem.2001,73, 939-942.
    [13]H. F. Nelissen, M. Kercher, L. D. Cola, M. C. Feiters, R. J. Nolte. Chem. Eur. J. 2002,5,5407-5414.
    [14]J. I. Cline Ⅲ, W. J. Dressick, J. N. Demas, B. A. DeGraff. J. Phys. Chem.1985, 89,94-97.
    [15]H. F. M. Nelissen, A. F. J. Schut, F. Venema, M. C. Feiters, R. J. M.Nolte. Chem. Commun.2000,577-578.
    [16]A. D. Ellington, J. W. Szostak. Nature.1990,346,818-822.
    [17]C. Tuerk, L. Gold. Science.1990,249,505-510.
    [18]N. K. Navani, Y. Li. Curr. Opin. Chem. Biol.2006,10,272-281.
    [19]C. K. O'Sullivan.Anal. Bioanal.Chem.2002,372,44-48.
    [20]E. N. Brody, L. Gold. Rev. Mol. Biotechnol 2000,74,5-13.
    [21]R. R. White, B. A. Sullenger, C. P. Rusconi. J. clin. Invest.2000,106,929-934.
    [22]Y. Song, C. Xu, W. Wei, J. Ren, X. Qu. Chem. Commun.2011,47,9083-9085.
    [23]S. D. Mendonsa, M. T. Bowser. J. Am. Chem. Soc.2004,126,20-21.
    [24]Y. Qi, B. Li. Chem. Eur. J.2011,17,1642-1648.
    [25]D. Tang, D. Liao, Q. Zhu, F. Wang, H. Jiao, Y. Zhang, C. Yu.Chem. Commun. 2011,47,5485-5487.
    [26]B.Wang, C.Yu, Angew. Chem. Int. Ed.2010,49,1485-1488.
    [27]A. Abbaspour, A. Noori. Analyst.2008,133,1664-1672.
    [28]A. Abbaspour, A. Noori. Analyst.2012,137,1860-1865.
    [29]X. Hao, C. Liang, C. Jian-Bin. Analyst.2002,127,834-837;
    [30]M. Kondo, S. Nishikawa. J. Phys. Chem. B.2007,111,13451-13454.
    [31]M. A. Spies, R. L. Schowen.J. Am. Chem. Soc.2002,124,14049-14053.
    [32]Y. Chen, C. Yu, T. Cheng, W. Tseng, Langmuir.2008,24,3654-3660.
    [33]X. Han, G. Huang, B. Zhao, Y. Ozaki. Anal. Chem.2009,81,3329-3333.
    [34]J. Issberner, F. Vogtle, L. D. Cola, V. Balzani. Chem. Eur. J.1997,3,706-712.
    [35]F. Vogtle, M. Plevoets, M. Nieger, G. C. Azzellini, A. Credi, L. D. Cola, V. De. Marchis, M. Venturi, V. Balzani. J. Am. Chem. Soc.1999,121,6290-6298.
    [36]J. R. Lakowicz. Principles of fluorescence spectroscopy.3rd. ed. Springer. New York.2006, pp,54-55.
    [37]M. Holzinger, L. Bouffier, R. Villalonga, S. Cosnier. Biosens. Bioelectron.2009, 24,1128-1134.
    [38]S. S. Levinson, R. J. Elin, L. Yam. Clin. Chem.2002,48,1131-1132.
    [39]J. F. Harrison, G. S. Lunt, P. Scott, J. D. Blainey. Lancet.1968,1,371-375.
    [40]M. Klockars, S. Reitamo, T. Weber, Y. Kerttula. Acta. Med. Scand.1978,203, 71-74.
    [41]C. Deng, J. Chen, L. Nie, Z. Nie, S. Yao. Anal. Chem.2009,81,9972-9978.
    [42]X. X. Han, G. G. Huang, B. Zhao, Y. Ozaki. Anal. Chem.2009,81,3329-3333.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700