用户名: 密码: 验证码:
导电聚合物纳米复合材料及稀土配位高分子的构筑与性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:The Study on the Fabrication and Properties of Conducting Polymer Nanocomposites and Rare Earth-polymer Materials
  • 作者:叶孙洁
  • 论文级别:博士
  • 学科专业名称:高分子化学与物理
  • 学位年度:2011
  • 导师:陆云
  • 学科代码:070305
  • 学位授予单位:南京大学
  • 论文提交日期:2011-04-16
摘要
导电聚合物纳米复合材料是一类新型功能复合材料,它结合了导电聚合物的光、电、磁功能和纳米材料的表面效应、尺寸效应、量子效应,并可能由于协同作用、互补作用而体现出未知的新性质,所以,一经在材料科学领域崭露头角,就引起了科研工作者的广泛关注,并得到了日趋深入的研究,目前已经成为材料科学中一个重要的前沿研究领域。随着科技的发展,此类复合体系必将在高密度信息存储材料、传感技术、非线性光学材料、分子电器件、电磁屏蔽、雷达吸收、激光放大材料等方面展现良好的应用前景。
     导电聚合物纳米复合材料的光电性质(电荷转移、电致变色、电致发光等)的研究是实现材料器件化的基础与前提,因而倍受关注。研究此类材料的光学性质可以有效帮助我们更好地了解它们的基本性质并且挖掘其新的功能与应用。
     在这样的研究背景下,我们面临如下的挑战:1)如何通过理论与实验方法探究导电聚合物纳米复合材料的特殊光学性质。2)如何从导电聚合物纳米复合体系的光谱中获得界面相互作用及聚合物分子的取向信息。3)如何实现导电聚合物纳米复合体系在光电器件、生物检测等领域中的应用。这些研究与探索对于进一步认识导电聚合物纳米复合体系和丰富该体系的科学内涵具有非常重要的意义,也是其功能化、实用化的必经之路。
     另一方面,稀土离子具有丰富的发射光谱,作为一种有效的发光中心在无机和有机发光材料中已有广泛应用。然而稀土无机材料存在难加工成型、价格高等问题;稀土有机小分子配合物则显示稳定性差等不足,这些因素限制了稀土发光材料广泛的应用。由于高分子材料本身具有原料丰富、合成方便、成型加工容易、抗冲击能力强、重量轻和成本低等特点,如果将稀土元素引入到高分子基质中,巧妙地将两者的特性结合起来,可以获得性能优异的光、电、磁多功能材料,其应用前景将十分广阔。
     本论文在导电聚合物纳米复合材料的设计、构筑及其特殊光谱现象、新颖光电性质的研究以及稀土配位高分子材料的制备与多功能化等方面进行了探索,得到了如下创新性结果:
     (1)导电聚合物纳米复合材料的特殊光学性质。
     SERS与SEIRA是表征聚合物掺杂、脱掺杂态及两种状态转变过程中的电子转移的有力工具。核壳复合纳米颗粒,特别是金属/导电聚合物体系的SERS与SEIRA现象少有报道。我们研究了Ag@PPy核壳纳米复合微粒体系的SERS与SEIRA现象,考察了微粒中银核与聚吡咯壳界面处的相互作用,对Ag@PP核壳纳米复合微粒的SERS与SEIRA现象的起因进行了详细讨论。
     实验结果表明,红外谱图与拉曼谱图中的-C-H伸振动峰被加强。我们认为,在Ag@PPy核壳纳米复合微粒中,具有b2对称性的-C-H面内振动的增强是由Herzberg-Teller耦合引起的电子转移的结果。不同激发波长下(488nim和1064nim)的拉曼光谱说明,Ag@PPy核壳纳米复合微粒的SERS是EM和CT两种机制共同作用的结果。随着PPy聚合过程中氧化剂FeCl3用量的增强,电子转移对光谱增强(增强红外和增强拉曼)的贡献增大,说明掺杂氯离子改变了银的费米能级和聚吡咯的分子能级,从而导致了更好的能级匹配。这些结果揭示了Ag@PPy核壳纳米复合微粒作为光电器件的潜在应用价值和增强振动光谱在金属/导电聚合物复合体系中的适用性。
     在此基础上,我们进一步探索了Ag@PPy核壳纳米复合微粒的具有pH值响应的发光特性,从产生机理及潜在应用两个方面探究Ag@PPy核壳纳米复合微粒的发光性质。通过比较具有不同银核与PPy壳体积比的Ag@PPy核壳纳米复合微粒的激发、发射光谱及量子效率,我们发现460nim发光峰来源于PPy的S1→So跃迁,而520nim是Ag的等离子发光以及Ag与PPy之间电荷转移共同作用的结果。这两个峰随着PPy外壳掺杂度的提高发生蓝移。并且,我们记录了不同pH值水溶液中以及逐渐碱化与逆向酸化过程中的Ag@PPy核壳纳米复合微粒的发光光谱。发光峰位置的变化表现出Ag@PPy核壳纳米复合微粒对介质pH值变化的可逆、快速响应,显示了Ag@PPy核壳纳米复合微粒作为可逆pH传感器的潜在应用价值。此项工作不仅提供了通过掺杂效应调节金属-导电聚合物的发光性质的方法,而且为金属-导电聚合物应用于pH传感器领域开辟了道路。
     (2)导电聚合物/半导体纳米复合材料的设计、构筑及应用
     我们通过原位种子聚合构筑了碲化镉/聚(3,4-乙撑二氧噻吩)-聚苯乙烯磺酸(PEDOT-PSS)复合纳米微球。CdTe/EDOT-PSS复合纳米微球的UV-vis吸收光谱与发射光谱均表明两个单独组分CdTe与PEDOT-PSS之间存在电荷转移现象,并且可以提供多种色彩的pH感应功能,显示了其作为传感器及光电器件中pH响应材料的潜在应用价值。
     另一方面,我们利用金属表面活性剂EPE-Fe,通过微乳液聚合一步法制备得PPy/PB核壳纳米颗粒,由此获得的规则纳米结构使PB纳米壳及PPy/PB核壳纳米颗粒的发光性质可以得到深入研究。空心结构赋予了PB纳米壳结构612nm的发光带。将PPy复合至PB壳层内之后,由于从PPy核至PB壳的电荷转移,荧光峰蓝移并增强。电荷转移的发生可以通过IR,UV及Raman一系列光谱实验证实。共聚焦扫描显微镜测试结果表明PPy/PB核壳纳米颗粒可以进入Bel-7402细胞,展示了其在生物医学方面的潜在应用。
     (3)稀土配位高分子材料的制备与多功能化
     我们通过一种新颖的方法将Pr3+离子引入至聚碳酸酯(PC)薄膜体系,形成了不含低分子量有机配体的镧系配位复合物,融合了PC的机械性能、介电特性与镧系离子的光学性质。有关Pr3+离子浓度对于PC-Pr薄膜性质的影响的研究可以帮助我们优化设计符合商业或特定领域实际应用的功能性薄膜。将PC-Pr扩展为其它镧系离子/聚合物体系有望结合组分的多种特性,从而获得适合不同需求的材料。
Conducting polymers (CPs) have been studied extensively due to their intriguing electronic and redox properties and numerous potential applications in many fields since their discovery in1970s. To improve and extend their functions, the fabrication of multi-functionalized CP nanocomposites has attracted a great deal of attention because of the emergence of nanotechnology. Combined with the intrinsic properties and synergistic or complementary effect of each component, CP nanocomposites will play an important role in a variety of areas such as chemistry, materials, information and so on.
     The study of optical properties of CP nanocomposites is important to gain a better understanding of their fundamental properties as well as exploit their potential new capability and function for application, thus attracting increasing attention.
     In such a background, we are facing the following challenges:1) How to investigate the unique optical properties of CP nanocomposites in both theoretical and experimental aspects?2) How to obtain the information on the interfacial effect and the orientation of the polymer molecule from the spectra of the CP nanocomposites?3) How to exploit the potential applications of the CP nanocomposites in the fields such as optoelectronic devices and biosensors and so on?
     These studies will help us to further understand CP nanocomposites and enrich the scientific meaning of the materials, and have been proven to be an indispensable step in the development and application of CP nanocomposites.
     On the other hand, over the past decade, there has been a growing interest in the rare earth complexes of organic ligands due to their excellent luminescence characteristics. Because of the electronic transitions between the4f energy levels, such complexes show high luminous intensity, long luminous lifetime and extremely sharp emission bands. However, the rare earth complexes with low molecular weight have serious limitations in practical applications because of their poor mechanical properties and lower physicochemical stability. Similarly the inorganic rare earth complexes suffer from brittleness, poor crack resistance and harsh processability. Incorporation of the rare earth irons into various polymer matrixes combines the luminescence characteristics of lanthanide ions with the light weight, good processability and highimpact resistance of polymers, excellent optical, electrical and lasing properties of the obtained lanthanide complexes make them promising candidates for potential applications in nonlinear optics, organic electroluminescent devices, functional membranes and luminescent materials.
     In this paper, we try to fully and systematically investigate the unique optical properties of the CP nanocompostites, and develop new approaches to achieve rational design as well as controlled construction of CP nanocompostites.Moreover, we have made great efforts to study fabrication and functionalization of the rare earth/polymer materials. Some novel results have been obtained in this thesis:
     (1) Unique optical properties of the CP nanocompostites
     Surface-enhanced Raman scattering (SERS) and surface-enhanced infrared absorption (SEIRA) are powerful probes for characterization of the electronic processes that occur in the polymer in the undoped or doped states, as well as during doping. However, to our best knowledge, little work has concerned the SERS and SEIRA for the system regarding to the metal/CP nanoparticles. In this work, we study SERS and SEIRA spectra of Ag@PPy nanoparticles. The interactions at Ag core-PPy shell interface of the nanoparticle are investigated. Furthermore, the cause of SERS and SEIRA phenomenon and the relationship of interfacial effect and charge transfer for the Ag@PPy nanoparticles were discussed in detail.
     In our experiment, the enhancement of peak corresponding to C-H bending vibration with b2mode in IR and Raman spectra of Ag@PPy nanoparticles was observed, which could be ascribed to the charge transfer as a result of the Herzberg-Teller coupling. Surface enhanced Raman scattering (SERS) spectra of Ag@PPy nanoparticles with both488nm and1064nm excitation were investigated. Experimental results as well as theoretical analysis demonstrated that electromagnetic enhancement (EM) and charge transfer (CT) both redounded to the SERS effect of Ag@PPy nanoparticles. The increased doping level of PPy, leading to optimal energy matching between the Fermi levels of the Ag nanoparticles and the energy levels in PPy molecules, amplifying the contribution from the charge transfer, could enhance the SERS and SEIRA signal.
     These results demonstrated that Ag@PPy nanoparticles were promising to be used as photonics and electronics devices by adjusting the interfacial interaction of core/shell structure and the doping level of CPs. Furthermore, the application of SERS and SEIRA could be extended to investigate the charge transfer process in metal/CP composite nanoparticles.
     On basis of the obtained results, we further investigate the pH-responsive luminescent properties of Ag@PPy nanoparticles from the aspects of both fundamental mechanism and potential application. By comparison of the emission, excitation spectra and quantum yields for Ag@PPy nanoparticles with different volume ratios of Ag core to PPy shell, we find that the460nm peak originates from the S1→S0transition of the PPy, and the520nm peak results from both Ag plasmon emission and charge transfer between Ag and PPy. The two peaks blue-shift with the increasing doping level of the PPy shell, in accordance with what we evaluated from the energy diagram of Ag and PPy. In addition, we record the emission spectra of Ag@PPy nanoparticles in aqueous solutions with different pH values, as well as during the gradual alkalization and reverse acidification of the aqueous solutions. The peak position shows a reversible and fast response to the changed pH value of the medium, suggesting the potential applications of Ag@PPy nanoparticles as a reversible pH-sensor. The significance of our work is not only in providing a route to adjust the emission properties of metal-conducing nanocomposites by the doping effects, but also in paving the path for the metal/conducing nanocomposites to be exploited as pH-sensors.
     (2) Design, construction and applications of the CP/semiconductor particles.
     CdTe/PEDOT-PSS hybrid microspheres have been attained via the direct polymerization of EDOT-PSS on mercapopropionic acid capped CdTe quantum dot aggregates. The obtained hybrid microspheres provide multiple-color absorption and emission properties as a function of the pH value of the medium, which indicate the presence of both physical and electronic contact between the PEDOT and CdTe. The pH-dependent absorption and emission properties of the CdTe/PEDOT-PSS hybrid microspheres were relative to the doping-dedoping behavior of conducting PEDOT-PSS and insensitive to the morphology or distribution of the hybrid microspheres. This study gives a route for facile fabrication of semiconductor nanoparticle/conducting polymer microspheres applicable in optoelectronic and photovoltaic devices.
     On the other hand, we synthesized PPy/PB core/shell nanoparticles via one-step miniemulsion (periphery) polymerization (periphery) polymerization using a metallosurfactant of EPE-Fe (EPE-Fe:poly(ethylene glycol)-b-poly(propylene glycol)-b-poly(ethylene glycol) terminated with pentacyano (4-(dimethylamino)pyridine)ferrate). The defined nanostructures allow the photoluminescent properties of PB nanoshells and PPy/PB core/shell nanoparticles to be investigated. The hollow structure endows the PB nanoshells with a fluorescent emission band at612nm. On incorporating PPy inside PB shells, a blue shift and an enhancement in the fluorescent intensity were observed as a result of charge transfer from PPy cores to PB shells. The occurrence of the charge transfer was confirmed by IR, UV and Raman spectra. The PPy/PB core/shell nanoparticles can penetrate into Bel-7402cells as evidenced by confocal laser scanning microscopy, indicating potential biomedical applications of the particles.
     (3) Fabrication and functionalization of the rare earth-polymer materials.
     We have introduced the Pr3+ions to the polycarbonate (PC) films in a novel route which allows the formation of low-molecular weight organic ligand free rare earth coordination complex, integrating the mechanical and dielectric characteristics of PC, with the optical functions of rare earth ions. The study for the effect of Pr3+ion content on the properties of PC-Prs could help us to design the optimally functional films to match the practical applications in common or specialized fields. It is expected that the extension of PC-Pr to other rare earth ions and polymer systems should permit us to combine multiple characteristics of the compositions to achieve materials desired for diverse and wide applications.
引文
1. R. C. Greene, G B. Street, L. J. Suter, Phys. Rev. Lett.,1975,34,577.
    2. P. J. Nigrey, A. G. MacDiarmid, A. J. Heeger, Chem.Commun.,1979,594.
    3. J. M. Pochan, D. F. Pochan, M. Rommelmann, M. W. Gibson, Macromolecules,1981,14, 110.
    4. A. G. MacDiarmid, Y. W. Park, A. J. Heeger, M. A. Dury, J. Chem. Phys.,1980,73,946.
    5. J. M. Pochan, M. W. Gibson, F. C. Bailey, J. Polym. Sci. Polym. Lett. Ed.,1980,18,447.
    6. A. F. Diaz, K. Kanazawa, G. P. Gardini,Chem. Commun.,1979,635.
    7. R. R. Chance, D. S. Boundreaux, J. Bredas, R. Silbey, Handbook of Conducting Polymers, Vol. Ⅱ, P.825, edited by Skotheim, Terje A. New York,1986.
    8. B. D. Malhotra, N. Kumara, S. Chandra, Prog. Polym. Sci.,1986,12,179.
    9. M. V. Deshpande, D. P. Amalnerkar, Prog. Polym.Sci.,1993,18,623.
    10. N. Basescu, Z. X. Liu, A. J. Heeger, H. Naarmann, N. Theophilou, Nature,1987,327,403.
    11. G. Q. Shi, S. Jin, G Xue, C. Li, Science,1995,267,994.
    12. L. Groenendaal, F. Jonas, Dieter Freitag, H. Pielartzik, J. R. Reynolds, Adv. Mater.,2000,12, 481.
    13. P. M. Beaujuge, J. R. Reynolds, Chem. Rev.,2010,110,268.
    14. J. Isaksson, P. Kjall, D. Nilsson, N. D. Robinson, M. Berggren, A. R. Dahlfors, Nat. Mater., 2007,6,673.
    15. H. S. Peng, X. M. Sun, F. J. Cai, X. Chen, Y. Zhu, G. P. Liao, D. Y. Chen, Q. W. Li, Y. F. Lu, Y. T. Zhu, Q. X. Jia, Nat. Nanotech.,2009,4,738.
    16.雀部博之(日).导电聚合物材料.科学出版社,1989,25.
    17. M.G Kanatzidis, C&EN,1990,36
    18.孙鑫.高聚物中的孤子和极化子,四川教育出版社,1987,第一章.
    19. W. P. Su, J. R. Schrieffer, A. J. Heeger. Phys. Rev. Lett.,1979,42,1698.
    20. W. P. Su, J. R. Schrieffer, A. J. Heeger. Phys. Rev. Lett.,1980,22,2209.
    21. B. R. Weinberger, J. Kaufer, A. J. Heeger, A. Pron, A.G MacDiarmid. Phys. Rev. B.,1979, 20,223.
    22. A. J. Epstein, H. Rommelmann, M. A. Druy, A. J. Heeger, A. G. MacDiarmid. Solid State Commun.,1981,38,683.
    23. C. Fincher, C. E. Chen, A. J. Heeger, A. G MacDiarmid, J. B. Hasting. Rhys. Rev. Lett.,1982, 48,100.
    24. T. Akaishi, K. Miyasaka, K. Ishikawa, H. Shirakawa, S. Ikeda. J. Polym. Sci. B:Polym. Phys. Ed.,1980,18,745.
    25. S. Ikehata, J. Kaufer, T. Woerner, A. Pron, M. A. Druy, A. Sivak, A. J. Heeger, A. G. MacDiarmid. Phys. Rev. Lett.,1980,45,1123.
    26. M. G. Hill, J. F. Penneau, B. Zinger, et al. Chem. Mater.,1992,4:110.
    27. P. B'uerle, U. Segelbacher, A. Maier, et al. JAm.Chem.Soc.,1993,15:10217.
    28. Y. Furukawa, J. Phys. Chem.,1996,100:15644-15653.
    29. Casado. J, V. Hernandez, S. Hotta, Adv. Mater.,1998,10(17),1458.
    30 S. Hotta, K.Waragai, J. Phys. Chem.,1993,97(29):7427.
    31 P.A. Lane,X. Wei, Z. V.Vardeny, Phys. Rev. Lett.,1996,77(8):1544.
    32. N. Toshima, K. Kanada, A. Koshirai, H. Hirai, Bull. Chem. Soc. Jpn.,1988,61,2551.
    33. N.Toshima, J.Tayanagi, Chem.Lett.,1990,1369.
    34. N.Toshima, S.Hara, Prog. Polym. Sci.,1995,20,155.
    35. M. Thiyagarajan, L. A. Samuelson, J. Kumar, A. L. Cholli, J. Am. Chem. Soc.,2003,125, 11502.
    36. E. Genies, G. Bidan, A. F. Diaz, J. Electroanal. Chem.,1983,149,113.
    37. G Touillon, F. Gamier, J. Electroanal. Chem.,1982,135,173.
    38. A. F. Diaz, J. Crowley, J. Bargon, G. P. Gardini, B. J. Torrance, J. Electroanal. Chem., 1981,121,355.
    39. E. M. Genies, G. Bidan, A. F. Diaz, J. Electroanal. Chem.,1983,149,101.
    40. M. Satoh, K. Imanishi, K. Yoshino, J. Electroanal. Chem.,1991,317,139.
    41. J. C. Dubois, O. Sagnes, F. Henry, Synth. Met.,1989,28,871.
    42. S. Jin, M. Ji, C. Zhang, G. Xue, J. Mater. Sci. Lett.,1996,15,1305.
    43. L. Zhou, Y. Li, G Xue, J. Polym. Sci. Polym. Phys.,1998,36,2905.
    44. S. Jin, M. Ji, G Xue, Appl. Phys. A,1996,63,397.
    45. N. Oyama, T. Tastuma, T. Sotomura, Nature,1995,373,598.
    46. S. Ye, D. Belanger, J. Electrochem. Soc.,1994,141, L49.
    47. L. C. Gustafsson, O. Ⅰ. A. M. Andersson, Synth. Met.,1994,62,17.
    48. K. Kaneto, M. Kaneko, Y. Min, Synth. Met.,1995,71,2211.
    49. R. H. Raughman, Macromol. Symp.,1991,51,193.
    50. M. Okano, A. Fujishima, K. Honda, J. Electroanal. Chem.,1985,185,393.
    51. J. Roncali, R. Garreau, A. Yassar, P. Marque, F. Gamier, M. Lemaire, J.Phys. Chem.,1987, 91,6706.
    52. F. Gamier, G. Tourillon, M. Gazard, J. C. Dubois, J. Electrochem. Soc.,1983,148,299..
    53. S. H. Hosseini, A. Pairovi. Iran. Polym. J.,2005,14,934.
    54. H. T. Chiu, J. H. Wang. J. Appl. Polym. Sci.,1998,68,1387.
    55. C. F. Xiao, X. M. Tao, S. M. Y. Leung, K. W. Y Kwok. Polym. Int.,2006,55,101.
    56. B. Kim, V. Koncar, E. Devauxa, C. Dufour, P. Viallier. Synthetic Met.,2004,146,167.
    57. H. G. Xue, Z. Q. Shen. Talanta,2002,57,289.
    58. J. W. Lee, F. Serna, J. Nickels, C. E. Schmidt. Biomacromolecules,2006,7,1692.
    59. H. X. Wang, J. Ding, B. Lee, X. G. Wang, T. Lin, J. Membrane Sci.,2007,303,119.
    60. X. Y. Zhang, J. S. Lee, G. S. Lee, D. K. Cha, M. J. Kim, D. J. Yang, S. K. Manohar, Macromolecules,2006,39,470.
    61. B. Oguz, M. Ozge, O. Yarkin. Eur. J. Pharm. Biopharm.,2005,60,373.
    62. G. A. Ozin, Adv. Mater,1992,4,612.
    63. E. P. Giannelis, Adv. Mater.,1996,8,29.
    64. L. Wang, L. X. Feng, J. Appl. Polym. Sci.,1999,71,2087.
    65. X. Wang, D.Chen, J.Appl. Polym. Sci.,1999,71,665.
    66. Y. Wang, N.Herron, Science,1996,273,632.
    67. Y. Mizutani, S. Nago, J. Appl. Polym. Sci,1999,72,1489.
    68. F. Suzuki, K. Onozato, J. Appl. Polym. Sci.,1990,39,371.
    69. H. Xie, Y. Ma, J. Appl. Polym. Sci.,2000,76,845.
    70. Y. Gao, N. R. Choudhury, N. Dutta, J. Matisons, M. Reading, L. Delmotte, Chem. Mater., 2001,13,3644.
    71. H. Sertchook, D.Avnir, Chem.Mater.,2003,15,1690.
    72. J. Kim, S. S. Kim, K. H. Kim, Y. H. Jin, S. M. Hong, S. S. Hwang, D. Y. Shin, S.S. Im,2004, Polymer,45,3527.
    73. V. V. Ginzburg, C. Singh, C. Balazs, Macromolecules,2000,33,1089.
    74. X. Fu, S. Qutubuddin, Polymer,2001,42,807.
    75. A. Usuki, M. Kawasumi, Y. Kojima, A. Okada, T. Kurauchi, O. Kamigaito, J. Mater. Res., 1993,8,1174.
    76. A. Usuki,Y. Kojima, M. Kawasumi, A. Okada, Y. Fukushima, T. Kurauchi, O. Kamigaito, J. Mater. Res.,1993,8,1180.
    77. Y. Kojima, A. Usuki, M. Kawasumi, A. Okada, Y. Fukushima, T. Kurauchi, O. Kamigaito, J. Mater. Res.,1993,8,1185.
    78. T. Lan,T. J. Pinnavaia, Chem. Mater.,1994,6,2216.
    79. H. Shi, T. Lan, T. J. Pinnavaia,Chem. Mater.,1996,8,1584.
    80. Z. Wang, T. J. Pinnavaia, Chem. Mater.,1998,10,1820.
    81. A. Okada, A. Usuki, Mater. Sci. Eng.,1995,13,109.
    82. P. Messersmith, E. P. Giannelis, Chem. Mater.,1994,6,1719.
    83. J. W. Gilman, Appl. Clay. Sci.,1999,15,31.
    84. F. Dietsche, R. Mulhaupt, Polym. Bull.,1999,43,395.
    85. D. Porter, E. Metcalfe, M. J. K. Thomas, Fire Mater.,2000,24,45.
    86. J. W. Gilman, C. L. Jackson, A. B. Morgan, R. Harris, E. Manias, E. P. Giannelis, M.Wuthenow, Chem. Mater.,2000,12,1866.
    87. C. Zeng, L. L. James, Macromolecules,2001,34,4098.
    88. S.Tasaka, H. E. Katz, R. S. Hutton, J. Orenstein, G. H. Frederickson, T. T. Wang, Synth. Met., 1986,16,17.
    89. J. H. Yang, W. S. Yang, X. D. Chai, Y. M. Chen, L. S. Li, Y. A.Cao,Y. B. Bai, D. J. Wang, T. J. Li, Synthetic Metal,1997,86,2127.
    90. Z. Wang, S. Liub, Z. Duc, Z. Huc, H. Zhanga, Materials Science and Engineering,2004,24, 459.
    91. F. Tiarks, K. Landfester, M. Antonietti, Langmuir,2001,17,5775.
    92. B. Erdem, E. D. Sudol, V. L.Dimonie, M. El-Aasser, J. Polym. Sci. A:Polym. Chem.,2000, 38,4419
    93. E. Duguet, M. Abboud, F. Morvan, P. Maheu, M. Fontanille, Macromol.Symp.,2000,151, 365.
    94. J. Stejskal, P. Kratochvil, S. P. Armes, S. F. Lascelles, A. Riede, M. Helmstedt, J.Prokes, Ⅰ. Krivka, Macromolecules,1996,29,6814.
    95. E. Bourgeat-Lami, J. Lang, J.Colloid Interface Sci.,1998,197,293.
    96. F. Corcos, E.Bourgeat-Lami, C. Novat, J. Colloid Polym.Sci.,1999,277,1142.
    97. I. Sondi, T. H. Fedynyshyn, R. Sinta, E.Matijevic, Langmuir,2000,16,9031.
    98. W. D. Hergeth, U. J. Steinau, H. J. Bittrich, G. Simon, K. Schmutzler, Polymer,1989,30,254.
    99. M. J. Percy, C. Barthet, J. C. Lobb, M. A. Khan, S. F. Lascelles, M. Vamvakaki, S. P. Armes, Langmuir,2000,16,6913.
    100. S. Reculusa, C. Poncet-LegrandS. Ravaine, C. Mingotaud, E. Duguet, E. Bourgeat-Lami, Chem. Mater.,2002,14,2354.
    101. S. Maeda, S. P. Armes, J. Colloid Interface Sci.,1993,159,257.
    102. S. Maeda, S. PArmes, Synth. Met.1995,69,499.
    103. Z. F. Li, M.Swihart, E.Ruckenstein, Langmuir,2004,20,1963.
    104. L. Zhang, M. Wan, J. Phys. Chem. B,2003,107,6748.
    105. M. M. Olliveira, E. G Castro, C. D. Canestraro, D. Z.anchet, D. Ugarte, L. S. Roman, A. zarbin, J. Phys. Chem. B,2006,110,17063.
    106. A. Mullane, S. Dale, J. Macpherson, P. Unwin, Chem.Commun.,2004,1606.
    107. S. Marinakos, D. Shultz, D. Feldheim, Adv. Mater.,1999,11,34.
    108. S. Pillalamarri, F. Blum, A. Tokuhiro, M. Bertino, Chem. Mater.,2005,17,5941.
    109. T. Sarma, D.Chowdhury, A. Paul, A. Chattopadhyay, Chem. Commun.,2002,1048.
    110. G Majumdar, M. goswami, T. Sarma, A. A. Paul, Chattopadhyay, Langmuir,2005,21,1663.
    111. T. Sarma, A. Chattopadhyay, Langmuir,2004,20,4733.
    112. B. Z.Tang, Y. H. Geng, J. W. Y. Lam, B. S. Li, Chem. Mater.,1999,11,1581.
    113. J. Liu, M. X. Wan, J. Polym. Sci. Part A:Polym. Chem.,2000,38,2734.
    114. M. X. Wan, J. C. Li, J. Polym. Sci. Part A:Polym. Chem.,1998,36,2799.
    115. J. Deng, X. Ding, Y. Peng, W. Zhang, J. Wang, X. Long, P. Li, A. Chan, Polymer,2002,8, 2179.
    116. Z. Wei, M. Wan, T. Lin, L. Dai, Adv. Mater.,2003,15,136.
    117. J. Deng, X. Ding, W. Zhang, Y. Peng, J. Wang, X Long, P. Li, A. S. C. Chan, Eur. Polym. J., 2002,38,2497.
    118. W. Feng, X. D. Bai, Y. Q. Lian, J. Liang, X. G. Wang, K.Yoshino,Carbon,2003,41,1551.
    119. J. H. Chen, Z. P. Huang, D. Z. Wang, S. X. Yang, J.GWen, Z.F.Ren, Appl. Phys. A,2001,73, 129.
    120.X.Yan,Z.Han,Y.Yang,B.Tay, J. Phys. Chem. C.,2007,111,4125.
    121. R.i Gangopadhyay, D. Amitabha, Chem. Mater.2000,12,608.
    122.易宪武.无机化学丛书第七卷 钪、稀土元素.北京:科学出版社.1998
    123.苏锵,稀土元素北京:清华大学出版社社2000
    124.宋玉林,董贞俭.稀有金属化学.沈阳辽宁大学出版社1991
    125.稀土材料与应用技术。刘光华,北京:化学工业出版社2005
    126.稀土发光材料。张希艳,北京,国防工出版社2005
    127.李文连.稀土有机配合物发光研究的新进展,化学通报,1991,(8):1.
    128.黄春辉,黄玲.稀土配合物的光致发光和电致发光研究,化学学报,2000,58(12),1493.
    129.马建方,倪嘉缵.稀土羧酸配合物的结构,化学进展,1996,19(4),259.
    130.杨燕生,安保礼,龚孟源,稀土有机螯合物研究进展.中国稀土学报,2001,19(4),290.
    131.李红玉,于贵,刘云圻,窄谱带稀土配合物发光材料及电致发光器件.稀土,2000,21(4),63.
    132. N. E. Wolff, R. J. Pressley, Appl. Phys. Lettt.1963,2(8),152.
    133. Y. E. Uebaranks, Y. J. Okamoto, J. Appl. Polym. Sci.,1980,25(9),2007.
    134. Y. Okamoto, Y. Ueba, N. F. Dzhanibekov, Macromol,1981,14(1),17.
    135. E. Banks, Y. Okamoto, Y. Ueba, J. Appl. Polym. Sci,1980,25(2),359.
    136. Y. P. Wang, Z. Q. Lei, H. Y. Feng, J. Appl. Polym. Sci,1992,45(9),1541.
    137. H. Y. Feng, S. H. Jian, Y. P. Wang, J. Appl. Polym. Sci,,1998,68(9),1605.
    138. Y. Ueba, K. J. Zhu, E. Banks, J. Polym:Sci Polym Chem Ed,1982,20(5),1271.
    139.汪联辉,凌启淡,章文贡等.甲基丙烯酸甲酯与稀土配合物单体的共聚合研究 高分子学报,2000(1),19.
    140.张洪杰.发光学报,稀土,高分子杂化发光材料的研究2002,23(3),22.
    1. T. Ahmadi, Z, S. Wang, Science,1996,272,1924.
    2. Y. Kim, R. C. Johnson, Nano. Lett,2001,1,165.
    3. M. Fleischraann, P. J. Hendra, Phys. Rew. Lett 1974,26,16.
    4. Z. Q. Tian, B. Ren, J. Phys. Chem B,1997,101,1338.
    5. A. Hartstein, J. R. Kirtly, Phys. Rew. Let,1980,45,201.
    6. S. Nie, S. R. Emory, Science 1997,275,1102.
    7. Gangopadhyay, R.; De, A. Chem. Mater.2000,12,608.
    8. A. O. Patil, A. J. Heeger, and F. Wudl Chem. Rev.,1988,88,183
    9. A. Otto in R.K. Chang, T.E. Furtak (eds.), Topics in Applied Physics:Light Scattering in Solids Ⅳ, Springer:Berlin,1984.
    10. Y.C. Liu, C. C. Wang, J. Phys. Chem. B 2005,109,5779.
    11.T.F. Otero, H. Grande, J. Rodriguez,J. Electroanal. Chem.1995,394,211.
    12. J.H. Kaufinan, N. Colaneri, Phys. Rev. Lett.1984,53,1005.
    13. X. Lin, J. Li, E. Smela, S. Yip, Int. J. Quantum Chem.2005,102,980.
    14. S. J. Ye, Y. Lu, J. Phys. Chem. C,2008,112,8767
    15. J. L.Bredas, and J. C. Scott, Phys. Review B,.1984,30,1023
    16. W. X. Zhang and S. H,Yang, Langmuir,2003,19,4420.
    17. Y. Lu, G. Shi, and C. Li and Y. Liang, J. Appl. Polym. Sci.,1998,70,2169.
    18. a. Y. C. Liu,S.J.Yang and C. Thomas J. Electroanalytical. Chem.2004,570,1 b. J. W. Liu, J.X. Qiu and Y. Q. Miao, J Mater Sci,2008,43,6285
    19. X. M. Yang, Y. Lu, Materials Letters,2005,59,2484.
    20. S. Badilescu,; P.V. Ashrit, and I. Ⅰ.Badilescu, Applied spectroscopy,1989,43,549.
    21. B.Tian, G. Zerbi, J. Chem. Phys.1990,92,3886.
    22. M. Osawa, J. phys. Chem,1991,95,9914.
    23. R. Kostic, D.Rakovic'and I. E. Davidova, Phys. Rev. B,1992,45,728.
    24. J. R. Lombardi and L. Ronald, J. Phys. Chem. C,2008,112,5605.
    25. M. Osawa, N. Matsuda, K.Yoshii, Ⅰ. Uchida, J. Phys. Chem.,1994,98,12702.
    26. Q. Zhou, X. Li, Q. Fan, X. Zhang, J. Zheng, Angew. Chem.2006,118,4074.
    27. H. Y. Yang, W. Jiang, Y. Lu Mater. Lett.2007,61,2789.
    28. J. R. Lombardi, R. L, Birke and T. Lu, J. Chem. Phys.,1986,84,4174.
    29. X. Crispin, V. Geskin and J. L. BrOdas, J. Am. Chem. Soc.,2002,124,8131.
    30. C. K. Chiang, C. R. Fincher and Y. W. Park, Phys.Rev. Lett.,.1977,39,1098.
    31. T. J. Skotheim, Ed. Handbook of Conducting Polymer, Marcel Dekker:New York,1986.
    32. S. Chakrabarti, B. Das, P. Banerji, D. Banerjee, R. Bhattacharya, Phys. Rev. B 1999,60,691.
    33. K. Kanemoto, J. Yamauchi, Phys. Rev. B.2000,61,1075.
    34. A. G. Larsen, A. Holm, M. Roberson and K. Daasbjerg, J. Am. Chem. Soc,2001,123,1723.
    35. X. J. Wu and Q. J. Li,.J. Chem. Phys.,2005,123,184712.
    1. G. Sonmez, Chem. Commun.2005,5251.
    2. G G. Wallace, G. M. Spinks, L. A. P. Kane-Maquire, P. R. Teasdale, Conductive Electroactive Polymers:Intelligent Materials Systems,2nded., CRC Press, Boca Raton, Florida, USA,2003.
    3. D. McQuade and A. De Chem. Rev.2000,100,2537.
    4. A. J. Heeger, Angew. Chem. Int. Ed.2001,40,2591.
    5. Y. Sun, Y. Xia, Science 2002,298,2176.
    6. Rupali Gangopadhyay and Amitabha De, Chem. Mater.2000,12,608
    7. C. R. Martin, Chem. Mater.1996,8,1739.
    8. J. Z. Zhang, Optical Properties and Spectroscopy of Nanomaterials, World Scientific Publishing Co. Pte. Ltd,2009
    9. E. Holder, N. Tessler and A.L. Rogach, J. Mater. Chem.2008,18,1064.
    10. C. S. Bryan and M. O. Wolf, Chem. Commun.,2005,3375.
    11. S. J. Ye, L. Fang, Y. Lu, Phys. Chem. Chem. Phys.2009,11,2480.
    12. S. J. Ye, L. Fang, Y. Lu, J. Raman Spectrosc.2010,41,1119.
    13. S. J. Ye, Y. Lu, J. Phys. Chem. C,2008,112,8767.
    14. J. R. Lakowicz, Principles of Fluorescence Spectroscopy,2nd ed., Kluwer Academic/Plenum, New York,1999.
    15. B. Liu and G C. Bazan, J. Am. Chem. Soc.,2006,128,1188.
    16. C. M. Che, C. W. Wan, Chem. Commun.,2001,721.
    17. M. Jinish Antony and M. Jayakannan J. Phys. Chem. B 2007,111, 12772.
    18. X. J. Wu and Q. J. Li, J. Chem. Phys.,2005,123,184712.
    19. A. G. Larsen, A. Holm, M. Roberson and K. Daasbjerg, J. Am. Chem. Soc.,2001,123,1723
    20. A.J. Heeger, Rev. Mod. Phys.2001,73,681.
    21. C. A. Cutler, M. Bouguettaya, T. S. Kang J. R. Reynolds, Macromolecules,2005,38,3068.
    22. T. A. Skotheim, John. R. Reynolds, Handbook of Conduction Polymers 3rd edition, CRC Press, 2007
    1. B. Z. Tang, Y. H. Geng, J. W. Y.Lam, B. S. Li, X. B. Jing, X. H.W, X. X. Zhang, Chem. Mater. 1999,11(6),1581.
    2. A. Sellingger, P. M. Weiss, A.Nguyen, Y. F. Lu, R.A.Assink, W. L. Gong, C. J. Brinker. Nature,1998,394(6690),256.
    3. X. W. Li, W. Chen, C. Q.Bian, J. B. He, N.Xu, G. Xue, Appl. Surf. Sci,2003,217,16.
    4. Y.J. He, Powder Technol,2004,147(1),59.
    5. A. P. Alivisatos, Science.,1996,271:933.
    6. G. Schmidt Chem Rev.,1992,92:1709.
    7. L. N. Lewis, Chem Rev.,1993,93:2693.
    8. Eisler. H. J, Sundar V C, Bawendi M G,, Appl. Phys. Lett.,2002,80:4614.
    9. S,Chaudhary, M. Ozkan, W. C. W. Chan, Appl. Phys. Lett.,2004,84:2925.
    10. L.Bakueva, S. Musikhin, M. A. Hines, Appl. Phys. Lett.,2003,82:2895.
    11. J. Liu, T. Tanaka, K. Sivula, Chem. Soc.,2004,126:6550.
    12. D.Wang, A Rogach, F.Caruso, Nano Lett 2002,2,857.
    13.X. Wu, H. Liu, M. Bruchez, Nat Biotechnol 2002,21,41.
    14. Y. Li, E. Liu,, P. O'Brien,J. Mater Chem 2005,15,1238.
    15. X.Yang, Y. Zhang, Langmuir 2004,20,6071
    16. S. Shao, B. W. Jiang, Journal of Polymer Science:Part A:Polymer Chemistry,2010,48,751
    17. R. V. Beek, A. Cornelis, V. Walree, Chem. Eur. J.2006,12,8075
    18. W. U. Huynh, J. J. Dittmer, A. P. Alivisatos, Science.,2002,295:2425.
    19. V. L. Colvin, M. C. Schlamp, Alivisatos A. P., Nature,1994,370:354.
    20. S. Coe, W. K. Woo, M. Bawendi, V. Bulovic, Nature,2002,420:800.
    21. L. B. Groenedaal, F. D. Jonas, Adv. Mater.,2000,12,481.
    22. X. Liu, H. Jiang, J. P. Lei, and H. X. Ju Anal. Chem.2007,79,8055
    23. N. Gaponik, A. L. Rogach J. Phys. Chem. B,2002,106,7177
    24. C. B. Murray, D. J Norris, M. G. Bawendi, J. Am. Chem. Soc.1993,115:8706-15.
    25. J. Jang, and H. Yoon, Adv. Mater.2005,17,1616.
    26. J. L. Koenig, Spectroscopy of Polymer, American Chemical Society. Washington D.C,1992.
    27. J. G. Liu, J. G. Liang, H. Y. Han, Z. H. Sheng Materials Letters,2009,63 2224
    28. J. I. Goldstein, D. E. Newbury, P. C. Echlin, C. E. Lyman, Scanning Electron Microscopy and X-ray Microanalysis.3rd ed, New York:Plenum Press.2003.
    29. (a) L. S. Zhong, J. S. Hu, H. P. Liang, A. M. Cao, W. G. Song, L. J. Wan, Adv. Mater.,2006, 18,2426. (b) Z. Zhang, X. Shao, H. Yu, Y. Wang, M. Han, Chem. Mater.,2005,17,332.
    30. D. Gross, A. S. Susha, T. A. Klar, E. D. Como, A. L. Rogach, J. Feldmann, Nano Lett.2008, 8,1482.
    31. Y. Y. Han, Y. Lu, Composites Science and Technology 2009,69,1231
    32. H. Kawaguchi, Prog. Polym. Sci.2000,25 1171.
    33. R. D, McCullough. Adv. Mater.1998; 10:No.2
    34. J. Z. Zhang, Optical Properties and Spectroscopy of Nanomaterials, World Scientific Publishing Co. Pte. Ltd,2009.
    35. (a) Yamada M, Hino Y. Chem Comm,2009,7203. (b) Cutler CA, Bouguettaya Mohamed, Kang T, Reynold JR. Macromolecules 2005,38: 3068.
    36. A. O Patil, A. J. Heeger, F.Wudl, Chem. Rev 1988; 88,183.
    37. M. Wu, Prasun M. Daniel N. Lamont, and D H. Waldeck J. Phys. Chem. C 2010,114,5751
    38. Y. F. Li and Y. Zhou SPIE Newsroom 2010.117/2.1200609.0380
    39. E. Kucur, J. Friegler, G. A. Urban, T. Nann, J. Chem. Phys.2003,119,2333
    40. J. W. Thackeray, M. J. Natan, P. Ng, M. S. Wrighton, J. Am. Chem. Soc.1986,108,3570.
    41. (a) C. Burda, X. B Chen, R.Narayanan, M. A.E1-Sayed, Chem. Rev.2005,105,1025-1102. (b) M. P. Pileni, J. Phys. Chem. C 2007, 111,9019-9038. (c) Y. Xia, Y.J.Xiong, B.Lim, S. E.Skrabalak, Angew, Chem., Int. Ed.2009,48,60-103. (d) J. Y. Fan, P. K. Chu, Small,2010,6,2080-2098. (e) X. L. Hu, G S. Li,; J. C. Yu, Langmuir,2010,26,3031-3039.
    42. (a) A. M. Spokoyny, D. Kim, A. Sumrein, C. A.Mirkin, Chem. Soc. Rev.2009,38,1218-1227. (b) W. B. Lin, W.J.Rieter, K. M. L.Taylor, Angew. Chem. Int. Ed.2009,48,650-658. (c) X. S. Wang, R. McHale, Macromol. Rapid Commun.2010,31,331-350.
    43. (a) S.Vaucher, M. Li, S.Mann, Angew. Chem. Int. Ed 2000,39,1793-1796. (b) S.Vaucher, J.Fielden, M. Li, E.Dujardin, S.Mann, Nano Lett.2002,2,225-229.
    44. J. T.Culp, J. H.Park, D.Stratakis, M. W.Meisel, D. R.Talham, J. Am. Chem. Soc.2002,124, 10083.
    45. G. Fornasieri, A. Bleuzen, Angew. Chem., Int. Ed.2008,47,7750.
    46. Y. Y. Song, K. Zhang, X. H. Xia,Appl. Phys. Lett.2006,88,053112.
    47. (a) A. Johansson, E. Widenkvist, J. Lu, M. Boman, U. Jansson, Nano Lett,.2005,5,1603. (b) P. H. Zhou, D. S. Xue, H. Q. Luo, X. G. Chen, Nano Lett.2002,2,845.
    48. (a) O. Sato, Y. Einaga, T. Iyoda, A. Fujishima, K. Hashimoto, Inorg. Chem.1999,38,4405. (b) M. Ohba, H. Okawa, Coord. Chem. Rev.2000,198,313. (c) A. Bleuzen, C. Lomenech, V. Escax, F. Villain, F. Varret, C. Cartier ditMoulin, M. Verdaguer, J. Am. Chem. Soc.2000,122,6648. (d) G. Zhao, J. J. Feng, Q. L. Zhang, S. P. Li, H. Y.Chen, Chem. Mater.2005,17,3154-. (e) J. Larionova, Y. Guari, C. Sangregorio, C. Guerin, New J. Chem.2009,33,1177.
    49. S. K.Wu, X. P. Shen,; Z. Xu, J. L.Wu, C. L. Gao, Appl. Sur. Sci.2009,255,9182.
    50. G. D.Liang, J. T.Xu, X. S. Wang, J. Am. Chem. Soc.2009,13,5378.
    51. R. McHale, N. Ghasdian, Y. Liu, M. B.Ward, N. S. Hondow, H. Wang, Y. Miao, R Brydsonb, X. S. Wang, Chem. Commun,2010,46,4574.
    52. R McHale, N. Ghasdian, Y. Liu, H. Wang, Y. Miao, X. S. Wang, Macromol. Rapid Comm. 2010,31,856.
    53. R. Koncki, O.S. Wolfbeis, Anal. Chem.70,1998,2544.
    54. W. Lu, G. G. Wallace, A. A. Karayakin, Electroanalysis 1998,10,472.
    55. P. Somani, S. Radhakrishnan, Materials Chemistry and Physics 2002,76,15.
    56. J. R.Lakowicz, Principles of Fluorescence Spectroscopy,2nd ed.; Kluwer Academic /Plenum, New York,1999.
    57. (a) M. B. Robin, Inorg. Chem.1962,1,337. (b) Y. Einaga, O.Sato, T. Iyoda, A.Fujishima, K.Hashimoto,J. Am. Chem. Soc.1999,121, 3745.
    58. M. Yamada, N.Ohnishi, M.Watanabe, Y. Hino, Chem. Commun.2009,4,7203.
    59. Y. J. Zhang, Y. Wen, Y. Lu, D.Li, J. H. Li, Electrochem. Commun.2004,6,1180.
    60. J. Zhao, Y. Zhang, C. Shi, H. Chen, L. Tong, T. Zhu, Z. Liu, Thin Solid Films 2006,515, 1847.
    1 S. Petoud, M Cohen, K. N Raymond, J Am Chem Soc,2003,125,13324,
    2 M. Seitz, E. G Moore, K. N Raymond, J AmChem Soc,2007,129,15468.
    3 H. Tsukube, S. Shinoda, Chem. Rev.2002,102,2389.
    4 Z. Z. Yan, Y. Tang, W. S. Liu, M. Y. Tan. J Lumin,2008 128,1394.
    5 H. R. Li, J. Lin, H. J. Zhang, S. B.Wang, Chem Mater,2002,14,3651.
    6 A. L. Penard, T. Gacoin, J. P. Boilot, Acc Chem Res,2007,40,895.
    7 R. D. B. Ambili, S. Biju, Inorg Chem,2008,47,8091.
    8 X.F. Wen, M. Y. Li, L. M. Fu, R. Hao, Langmuir,2008,24,6932.
    9 W. Li, J. Lee J Phys Chem C,2008,112,11679.
    10 L. H. Wang, W. Wang, W. Huang, Chem. Mater.,2000,12,2212.
    11 P. Huhtinen, M. Kivela, O. Kuronen, Anal Chem,2005,77,2643.
    12 D Liu, Z, G, Wang, European Polymer Journal,2009,45 2260.
    13 D. Wang, J. h. Zhang,Quan Lin, B. Yang, J. Mater. Chem.2003,13,2279.
    14 J. Kido, Y. Okamoto, Chem. Rev.,2002,102,2357.
    15 A.F. Orchard, Magnetochemistry, Oxford University Press,2003
    16 K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, Wiley-VCH,1997.
    17 J. L. Koenig, Spectroscopy of Polymer, American Chemical Society. Washington D.C,1992.
    18 R. Kellner, H. M. Widmer, Analytical Chemistry. Wiley-VCH,1988.
    19 D. H. Williams, I. Fleming, Spectroscopic Methods in Organic Chemistry. Mc Graw-Hill Book Company.1995.
    20 A. R. Blythe, Electrical Properties of Polymers, Cambridge University Press, London 1979
    21 P. Hedvig, Dielectric Spectroscopy of Polymers, Budapest 1977
    22 R. M. Silverstein, G. C. Bassler, Spectrometric idetification of Organic Compounds,5th Ed, John Wiley&Son, Inc.,1991
    23 H. Xin, Y. Ebina, T.Sasaki, J Phys Chem B,2006,110,9863.
    24 A. I. Voloshin, N. M. Shavaleev and V. P. Kazakov, J. Lumin.,2001,93,199.
    25 I. Hemmil, V. Laitala, Progress in lanthanides as luminescent probes. J Fluoresc 2005,15,529.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700