用户名: 密码: 验证码:
氮掺杂p型ZnO薄膜制备及相关问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氧化锌(ZnO)是一种直接宽带隙半导体材料,其室温下带隙宽度为3.37eV,且激子束缚能高达60meV,在室温甚至更高温度下都可获得高效的紫外激子发光。自从1997年ZnO薄膜在室温光泵紫外受激发射被香港和日本的科学家首次实现以来,ZnO材料研究迅速成为国际光电子领域前沿课题中的研究热点。然而,在ZnO的器件化道路上,仍然面临许多需要解决的困难。我们针对以下几方面的问题开展研究:(1)异质结构是光电器件不可缺少的组成部分。高平整度的ZnO外延薄膜是实
     现界面陡峭异质结构的前提。但由于低温掺杂的限制,低温生长的平整度
     难以达到量子阱等异质结构的要求,非常有必要进行低温高质量的ZnO薄
     膜的生长的探索。(2)可重复、高质量、低电阻的p型ZnO薄膜是实现光电子器件应用的必要前
     提。但是到目前为止,虽然有不少关于p型ZnO的报道,但p型ZnO薄
     膜的低迁移率和低空穴浓度一直是阻碍ZnO在光电子学领域继续发展的主
     要瓶颈,需要尝试新的掺杂方式提高p型ZnO的电学性质。
     本论文针对以上问题进行研究,取得的主要结果如下:(1)利用P-MBE设备,通过改变Zn/O比例,控制Zn源流量,改变生长模式,
     控制生长速度,在低温下实现高质量外延薄膜的生长,得到原子级平整的
     ZnO薄膜。(2)利用P-MBE设备,通过射频等离子体源激活NO气体使其成为活化的掺杂
     N源和生长O源,获得了N掺杂的p型ZnO薄膜。通过在生长过程中间歇性补氧,获得了较为稳定的p型电导。(3)通过等离子体溅射出B原子实现B-N共掺,提高N受主在ZnO中的掺入量,提高了N掺杂p型ZnO的重复率。Hall测试结果显示空穴载流子浓度达到8.6×1018cm-3,霍尔迁移率为2.13cm2/Vs。在长达两年的放置期间一直表现稳定的p型电导。
Zinc oxide (ZnO) is a direct wide band gap semiconductor material. The bandgapof3.37eV and the exciton binding energy as high as60meV at room temperature (RT)assure the efficient UV exciton emition at room temperature or even highertemperature. Since the light pumped lasing of ZnO was realized for the first time in1997by the scientists from Japan and Hong Kong at room temperature, the ZnOmaterials become the frontier topics fast in the field of international optoelectronicsresearch. However, In order to realize the devices of ZnO, there are still someproblems need to be resolved, The problems as follows were researched in thisdissertation:
     (1) Heterostructure is an integral part of the photoelectric device. The premise torealize the steep heterostructure of interface is obtained the smooth surfaceepitaxial ZnO thin film. But the limitation of doping at low temperature, thesmoothness of the ZnO thin films growth at low temperature is difficult to meetthe requirements of quantum-well heterostructure.
     (2) The necessary premise to realize the optoelectronic devices is obtained arepeatable, high quality and low resistivity p-type ZnO thin film, but so far,many researchers reported the p-type ZnO, but the low mobility and lowconcentration of holes of p-type ZnO thin film have been hampering thecontinue development for ZnO in the field of optoelectronics.
     In order to solve above problems of ZnO, in this paper, we obtained main conclusionsas follows:
     (1) We used P-MBE equipment, by changing the Zinc/O ratio, controlled Zincsource flow, controlled the growth speed, the growth mode was changed, we obtained high quality epitaxial thin films at low growth temperature, ZnO thinfilms have the atomic smooth surface.
     (2) NO gas (99.999%) was used as oxygen source and nitrogen source, which wasactivated by rf plasma, N doped p-type ZnO thin films were obtained. And thestability of p-type conductivity was improved through intermittent oxygensupplement in the growth process.
     (3) Boron was introduced into the chamber by plasma bombarding the boron nitridedischarge tube, B-N codoped ZnO was obtained. The N acceptors concentrationwas increased, and N doped p-type ZnO repetition rate was improved. Halleffect test shows that the holes concentration reaches8.6×1018cm-3, Hallmobility is2.13cm2/Vs, and it displays a stable p-type conductivity during thetwo years preservation period.
引文
[1] Bagnall D M, Chen Y F, Zhu Z, et al. Optically pumped lasing of ZnO at roomtemperature [J]. Appl Phys Lett,1997,70(17):2230-2232.
    [2] Tang Z K, Wong G K L, Yu P, et al. Room-temperature ultraviolet laser emissionfrom self-assembled ZnO microcrystallite thin films [J]. Appl Phys Lett,1998,72(25):3270-3273.
    [3] Look D C. Recent advances in ZnO materials and devices [J]. Materials Scienceand Engineering B,2001,80(1-3):383-387.
    [4] Look D C, Claflin B. p-type doping and devices based on ZnO [J]. Phys Stat sol(b),2004,241(3):624-630.
    [5] Yu P, Tang Z K, Wong G K L, et al. Ultraviolet spontaneous and stimulatedemission from ZnO microcrystallite thin films at room temperature [J]. Solid StateCommun,1997,103(8):459-463.
    [6] Guo X L, Choi J H, Tabata H, et al. Fabrication and Optoelectronic Properties of aTransparent ZnO Homostructural Light-Emitting Diode [J]. Jpn J Appl Phys,2001,40(3A): L177-L180.
    [7] Report, The3rd international workshop on ZnO and related materials, October5-8,2004, Sendai, Japan.
    [8] Jiao S J, Zhang Z Z, Lu Y M, et al. ZnO p-n junction light-emitting diodesfabricated on sapphire substrates [J]. Appl Phys Lett,2006,88(3):031911.
    [9] Ryu Y R, Lubguban J A, Lee T S, et al. Excitonic ultraviolet lasing in ZnO-basedlight emitting devices [J] Appl Phys Lett,2007,90(13):131115.
    [10] Almamun Ashrafi A B M, Ueta A, Avramescu A, et al. Growth and characterizati-on of hypothetical zinc-blende ZnO films on GaAs(001) substrates with ZnS bufferlayers [J]. Appl Phys Lett,2000,76(5):550-552.
    [11] zgür ü, Alivov Ya I, Liu C, et al. A comprehensive review of ZnO materials anddevices [J], J Appl Phys,2005,98(4):041301.
    [12] Karzel H, Potzel W, Kofferlein M, et al. Lattice dynamics and hyperfineinteractions in ZnO and ZnSe at high external pressures [J]. Phys Rev B,1996,53(17):11425-11438.
    [13] Segawa Y, Ohtomo A, Kawasaki M, et al. Growth of ZnO Thin Film by LaserMBE: Lasing of Exciton at Room Temperature [J]. Phys Stat Sol (b),1997,202(2):669-672.
    [14] Meyer B K, Alves H, Hofmann D M, et al. Bound exciton and donor–acceptorpair recombinations in ZnO [J]. Phys Stat Sol (b),2004,241(2):231-260.
    [15] Kramer J. Blue-green luminescence in ZnO: Excitation by20-eV kinetic energygas-phase positive ions [J]. J Appl Phys,1976,47(4):1719-1720.
    [16] Vanheusden K, Seager C H, Warren W L, et al. Correlation between photolumin-escence and oxygen vacancies in ZnO phosphors [J]. Appl Phys Lett,1996,68(3):403-405.
    [17] Vanheusden K, Warren W L, Seager C H, et al. Mechanisms behind green photoluminescence in ZnO phosphor powders[J]. J Appl Phys,1996,79(10):7983-7990.
    [18] Cao H, Zhao Y G, Ong H C, et al. Ultraviolet lasing in resonators formed byscattering in semiconductor polycrystalline films [J]. Appl Phys Lett,1998,73(25):3656-3658.
    [19] Cao H, Ling Y, Xu J Y, et al. Photon Statistics of Random Lasers with ResonantFeedback [J]. Phys Rev Lett,2001,86(20):4524-4527.
    [20] Cao H, Zhao Y G. Random Laser Action in Semiconductor Power [J]. Phys RevLett,1999,82(11):2278-2281.
    [21] Oka K, Shibata H, Kashiwaya S. Crystal Growth of ZnO [J]. J Cryst Growth,2002,237-239(I):509-513.
    [22] Ohshima E, Ogino H, Niikura I, et al. Growth of the2-in-size bulk ZnO singlecrystals by the hydrothermal method [J]. J Cryst Growth,2004,260(1-2):166-170.
    [23] Reynolds D C, Litton C W, Look D C, et al. High-quality, melt-grown ZnOsingle crystals [J]. J Appl Phys,2004,95(9):4802-4805.
    [24] Pfisterer D, Hofmann D M, Sann J, et al. Intrinsic and extrinsic point-defects invapor transport grown ZnO bulk crystals [J]. Physica B,2006,376-377(1):767-770.
    [25]王新强,杜国同,姜秀英,等. ZnO薄膜的研究进展[J],半导体光电,2000,21(4):233-237.
    [26] S Schwegmann, A P Seitsonen, H Dietrich, et al. The adsorption of atomicnitrogen on Ru(0001):geometry and energetics[J]. Chem Phys Lett,1997,264(6):680-686.
    [27] Chen Y F, Agnall D M, Koh H J, et al. Plasma assisted molecular beam epitaxyof ZnO on c-plane sapphire: Growth and characterization[J]. J Appl Phys,1998,84(7):3912-3918.
    [28] Muth J F, Kolbas R M, Sharma AK, et al. Excitonic structure and absorptioncoefficient measurements of ZnO single crystal epitaxial films deposited by pulsedlaser deposition [J]. J Appl Phys,1999,85(11):7884-7887.
    [29] Atsushi Tsukazaki, Akira Ohtomo, Takeyoshi Onuma et al, Repeated temperaturemodulation epitaxy for p-type doping and light-emitting diode based on ZnO [J].Nature Materials,2005,4(1):42–46.
    [30] Chen Y F, Bagnall D M, Koh H J, et al. Two-dimensional growth of ZnO onsapphire(0001) with buffer layers[J]. J Cryst Growth,2000,214-215:87-91.
    [31] Chen Y F, Koh H J, Hong S K, et al. Layer-by-layer growth of ZnO epilayer onAl2O3(0001) by using a MgO buffer layer[J]. Appl Phys Lett,2000,76(5):559-561.
    [32] Kohan F, Ceder G, Van de Walle C G, et al. First-principles study of native pointdefects in ZnO [J]. Phys Rev B,2000,61(22):15019-15022.
    [33] Zhang S B, Wei S H, Zunger A, Intrinsic n-type versus p-type doping asymmetryand the defect physics of ZnO [J]. Phys Rev B,2001,63(7):075205.
    [34] Kohan A F, Leder G, Morgan D, et al. First-principles study of native pointdefects in ZnO [J]. Phys Rev B,2000,61(22):15019-15027.
    [35] Xiong G, Wilkinson J, Mischuck B, et al. Control of p-and n-type conductivity insputter deposition of undoped ZnO[J]. Appl Phys Lett,2002,80(7):1195-1197.
    [36] Butkhuzi T V, Bureyev A V, Georgobiani A N, et al. Optical and electricalproperties of radical beam gettering epitaxy grown n-and p-type ZnO single crystals[J]. J Crystal Growth,1992,117(1-4):366-369.
    [37] Zeng Y J, Ye Z Z, Xu W Z, et al. p-type behavior in nominally undoped ZnO thinfilms by oxygen plasma growth [J]. Appl Phys Lett,2006,88(26):262103.
    [38] Choopun S, Vispute R D, Look D C, et al. Oxygen pressure-tuned epitaxy andoptoelectronic properties of laser-deposited ZnO films on sapphire [J]. Appl Phys Lett,1999,75(25):3947-3949.
    [39] Sekiguchi T, Haga K, Inaba K. ZnO films grown under the oxygen-rich condition[J]. J Cryst Growth,2000,214-215:68-71.
    [40] Kobayashi A, Sankey O F, Dow J D, Deep energy levels of defects in thewurtzite semiconductors AIN, CdS, CdSe, ZnS, and ZnO [J]. Phys Rev B,1983,28(2):946-956.
    [41] Park C H, Zhang S B, Wei S H. Origin of p-type doping difficulty in ZnO:Theimpurity perspective [J]. Phys Rev B,2002,66(7):073202.
    [42] Look D C, Reynolds D C, Litton C W, et al. Characterization of homoepitaxialp-type ZnO grown by molecular beam epitaxy [J]. Appl Phys Lett.2002,81(10):1830-1832.
    [43] Lu J G, Zhang Y Z, Ye Z Z, et al. Control of p-and n-type conductivities inLi-doped ZnO thin films [J]. Appl Phys Lett,2006,89(11):112113.
    [44] Lin S S, Lu J G, Ye Z Z, et al. p-type behavior in Na-doped ZnO films and ZnOhomojunction light-emitting diodes [J]. Solid State Commun.2008,148(1-2):25-28.
    [45] Lin S S, Ye Z Z, Lu J G, et al. Na doping concentration tuned conductivity ofZnO films via pulsed laser deposition and electroluminescence from ZnOhomojunction on silicon substrate[J]. J Phys D Appl Phys,2008,41(15):155114.
    [46] Wu J, Yang Y T. Deposition of K-doped p type ZnO thin films on (0001)Al2O3substrates [J]. Mater Lett,2008,62(12-13):1899-1901.
    [47] Fons P, Yamada A, Iwata K, et al. An EXAFS and XANES study of MBE grownCu-doped ZnO [J]. Nucl Instrum Methods Phys Res Sect B,2003,199:190-194.
    [48] Xu J, Zhang Z Y, Zhang Y, et al. Effect of Ag Doping on Optical and ElectricalProperties of ZnO Thin Films [J]. Chin Phys Lett,2005,22(8):2031-2034.
    [49] Kanai Y. Admittance Spectroscopy of Cu-Doped ZnO Crystals [J]. Jpn J ApplPhys,1991,30(4):703-707.
    [50] Yan Y, Al-Jassim M M, and Wei S H. Doping of ZnO by group-IB elements [J].Appl Phys Lett,2006,89(18):181912.
    [51] Look D C, Reynolds D C, Litton C W, et al. Characterization of homoepitaxialp-type ZnO grown by molecular beam epitaxy [J]. Appl Phys Lett,2002,81(10):1830-1832.
    [52] Sato Y, Sato S. Preparation and some properties of nitrogen-mixed ZnO thinfilms [J]. Thin Solid Films,1996,282(1-2):445-448.
    [53] Iwata K, Fons P, Yamada A, et al. Nitrogen-induced defects in ZnO:N grown onsapphire substrate by gas source MBE [J]. J Cryst Growth,2000,209(2-3):526-531.
    [54] Lee E C, Kim Y S, Jin Y G, et al. Compensation mechanism for N acceptors inZnO [J]. Phys Rev B,2001,64(8):085120.
    [55] Lin C C, Chen S Y, Cheng S Y, et al. Grown on Si3N4/Si by radio-frequencymagnetron sputtering [J]. Appl Phys Lett,2004,84(24):5040-5042.
    [56] Matsushita K, Koiwai Y, Kikuchi Y, et al. Growth of p-type zinc oxide films bychemical vapor deposition [J]. Jpn J Appl Phys,1997,36(11A): L1453-L1455.
    [57] Ji Z G, Yang C X, Liu K, et al. Fabrication and characterization of p-type ZnOfilms by pyrolysis of zinc-acetate-ammonia solution [J]. J Cryst Growth,2003,253(1-4):239-242.
    [58] Kim K K, Kim H S, Hwang D K, et al. Realization of p-type ZnO thin films viaphosphorus doping and thermal activation of the dopant [J]. Appl Phys Lett,2003,83(1):63-65.
    [59] Guo X L, Tabata H, Kawai T.Pulsed laser reactive deposition of p-type ZnO filmenhanced by an electron cyclotron resonance source [J]. J Cryst Growth,2001,223(1-2):135-139.
    [60] Li X, Yan Y, Gessert T A, et al. Chemical vapor deposition-formed p-type ZnOthin films [J]. J Vac Sci Technol,2003,21(4):1342-1346.
    [61] Jiao S J, Lu Y M, et al. p-type ZnO Thin Films Prepared by Plasma-assistedMolecular Beam Epitaxy [J]. Chin J Lumin,2004,25(4):460-462.
    [62] Xu W Z, Ye Z Z, Zhou T, et al. Low-pressure MOCVD growth of p-type ZnOthin films by using NO as the dopant source [J]. J Cryst Growth,2004,265(1-2):133-136.
    [63] Yan Y, Zhang S B. Control of Doping by Impurity Chemical Potentials:Predictions for p-Type ZnO [J]. Phys Rev Lett,2001,86(25):5723-5726.
    [64] Hwang D K, Bang K H, Jeong M C, et al. Effects of RF power variation onproperties of ZnO thin films and electrical properties of p–n homojunction [J]. J CrystGrowth,2003,254(3-4):449-455.
    [65] Ryu Y R, Zhu S, Look D C, et al. Synthesis of p-type ZnO films [J]. J CrystGrowth,2000,216(1-4):330-334.
    [66] Ryu Y R, Lee T S, White H W, et al. Properties of arsenic-doped p-type ZnOgrown by hybrid beam deposition [J]. Appl Phys Lett,2003,83(1):87-89.
    [67] Prze dziecka E, Kamińska E, Pasternak I, et al. Photoluminescence study ofp-type ZnO:Sb prepared by thermal oxidation of the Zn-Sb starting material [J]. PhysRev B,2007,76(19):193303.
    [68] Zhao J Z, Liang H W, Sun J C, et al. Electroluminescence from n-ZnO/p-ZnO:Sb homojunction light emitting diode on sapphire substrate with metal–organicprecursors doped p-type ZnO layer grown by MOCVD technology [J]. J Phys D ApplPhys,2008,41(19):195110.
    [69] Xiu F X, Yang Z, Mandalapu L J, et al. High-mobility Sb-doped p-type ZnO bymolecular-beam epitaxy [J]. Appl Phys Lett,2005,87(15):152101.
    [70] Limpijumnong S, Zhang S B, Wei S H, et al. Doping by Large-Size-MismatchedImpurities: The Microscopic Origin of Arsenic-or Antimony-Doped p-Type ZincOxide [J]. Phys Rev Lett,2004,92(15):155504.
    [71] Sun J C, Zhao J Z, Liang H W, et al. Excitonic ultraviolet lasing in ZnO-basedlight emitting devices [J]. Appl Phys Lett,2007,90(13):131115.
    [72] Li B S, Liu Y C, Zhang Z Z, et al. Optical properties and electricalcharacterization of p-type ZnO thin films prepared by thermally oxiding Zn3N2thinfilms [J]. J Mater Res,2003,18(1):8-13.
    [73] Ryu H D, Hyun B K, Jeong M C, et al. Effects of RF power variation onproperties of ZnO thin films and electrical properties of p–n homojunction [J]. J CrystGrowth,2003,254(3-4):449-455.
    [74] Yamamoto T, Yoshida H K, Solution Using a Codoping Method to Unipolarityfor the Fabrication of p-Type ZnO [J]. Jpn J Appl Phys,1999,38(2B): L166-L169.
    [75] Joseph M, Tabata H, and Kawa T. p-type electrical conduction in ZnO thin filmsby Ga and N codoping [J]. Jpn J Appl Phys,1999,38(11A): L1205-L1207.
    [76] Joseph M, Tabata H, Saeki H, et al. Fabrication of the low-resistive p-type ZnOby codoping method [J]. Physca B,2001,302-303:140-148.
    [77] Singh A V, Mehra R M, Wakahara A, et al. p-type conduction in codoped ZnOthin films [J]. J Appl Phys,2003,93(1):396-399.
    [78] Fei Z G, Ye Z Z, Zhu L P, et al, Electrical and optical properties of Al–Nco-doped p-type zinc oxide films [J]. J Cryst Growth,2004,268(1-2):163-168.
    [79] Lu J G, Ye Z Z, Zhuge F, et al. p-type conduction in N-Al co-doped ZnO thinfilms [J]. Appl Phys Lett,2004,85(15):3134-3135.
    [80] Bian J M, Li, X M, Gao X D, et al. Deposition and electrical properties of N-Incodoped p-type ZnO films by ultrasonic spray pyrolysis [J]. Appl Phys Lett,2004,84(4):541-543.
    [81] Sui Y R, Yao B, Wu T, et al. Fabrication and properties of B–N codoped p-typeZnO thin films [J]. J Phys D Appl Phys,2009,42(6):065101.
    [82] Krtschil A, Dadgar A, Oleynik N, et al. Local p-type conductivity in zinc oxidedual-doped with nitrogen and Arsenic[J]. Appl Phys Lett,2005,87:262105-262107.
    [83] Vlasenflin T H, Tanaka M. p-type conduction in ZnO dual-acceptor-doped withnitrogen and phosphorus [J]. Solid State Commun,2007,142(5):292-294.
    [84] Lu J G, Zhang Y Z, Ye Z Z, et al. Low-resistivity, stable p-type ZnO thin filmsrealized using a Li–N dual-acceptor doping method [J]. Appl Phys Lett,2006,88(22):222114.
    [85] Zhang Y Z, Lu J G, Ye Z Z, et al. Effects of growth temperature on Li-Ndual-doped p-type ZnO thin films prepared by pulsed laser deposition [J]. Appl SurfSci,2008,254(7):1993-1996.
    [86] Wang X H, Yao B, Wei Z P, et al. Acceptor formation mechanismsdetermination from electrical and optical properties of p-type ZnO doped with lithiumand nitrogen[J]. J Phys D Appl Phys,2006,39(21):4568-4571.
    [87] Wang X H, Yao B, Zhang Z Z, et al. The mechanism of formation and propertiesof Li-doped p-type ZnO grown by a two-step heat treatment [J]. Semicond SciTechnol,2006,21(4):494-497.
    [88] Aoki T, Hatanaka Y, Look D C. ZnO diode fabricated by excimer-laser doping [J].Appl Phys Lett,2000,76(22):3257-3258.
    [89] Tsukazaki A, Ohtomo A, Kawasaki M, et al. Repeated temperature modulationepitaxy for p-type doping and light-emitting diode based on ZnO [J]. Nature Materials2005,4(1):42-46.
    [90] Tsukazaki A, Kubota M, Kawasiki M, et al. Blue Light-Emitting Diode Based onZnO [J]. Jpn J App Phys,2005,44(20-23): L643-L645.
    [91] Wei Z P, Lu Y M, Shen D Z, et al. Room temperature p-n ZnO blue-violetlight-emitting diodes[J]. Appl Phys Lett,2007,90(4):042113.
    [92] Du G T, Liu W F, Bian J M, et al. Room temperature defect relatedelectroluminescence from ZnO homojunctions grown by ultrasonic spray pyrolysis [J].Appl Phys Lett,2006,89(5):052113.
    [93] Liu W, Gu S L, Ye J D, et al. Blue-yellow ZnO homostructural light-emittingdiode realized by metalorganic chemical vapor deposition technique [J]. Appl PhysLett,2006,88(9):092101.
    [94] Xu W Z, Ye Z Z, Zeng Y J, et al. ZnO light-emitting diode grown byplasma-assisted metal organic chemical vapor deposition[J]. Appl Phys Lett,2006,88(17):173506.
    [95] Ryu Y, Lee T S, Lubguban J A, et al. Next generation of oxide photonic devices:ZnO-based ultraviolet light emitting diodes [J]. Appl Phys Lett,2006,88(24):241108.
    [96] Chu S, Lim J H, Mandalapu L J, et al. Sb-doped p-ZnO/Ga-doped n-ZnOhomojunction ultraviolet light emitting diodes [J]. Appl Phys Lett,2008,92(15):152103.
    [97] Nakahara K, Akasaka S, Kawasaki M, et al. Nitrogen doped MgxZn1-xO/ZnOsingle heterostructure ultraviolet lightemitting diodes on ZnO substrates [J]. ApplPhys Lett,2010,97(1):013501.
    [98] Kato H, Yamamuro T, Ogawa A, et al. Impact of Mixture Gas Plasma of N2andO2as the N Source on ZnO-Based Ultraviolet Light-Emitting Diodes Fabricated byMolecular Beam Epitaxy [J]. Appl Phys Express,2011,4(9):091105.
    [99] Ryu Y R, J. Lubguban A., Lee. T. S, et al.Excitonic ultraviolet lasing inZnO-based light emitting devices [J]. Appl Phys Lett,2007,90(13):131115.
    [100] Chu S, Olmedo M, Yang Z, et al. Electrically pumped ultraviolet ZnO diodelasers on Si [J]. Appl Phys Lett,2008,93(18):181106.
    [101] Chu S, Wang G P, Liu J L, et al. Electrically pumped waveguide lasing fromZnO nanowires [J]. Nature Nanotechnology,2011,6(8):506-510.
    [102]杨树人,王宗昌,王兢.半导体材料[M].第二版.北京:科学出版社,2004.181-184.
    [103]周子新.分子束外延及其应用[J].半导体光电,1981(01).44-48.
    [104]分子束外延设备研制组.分子束外延设备[J].仪器仪表学报,1981,2(04):96-98.
    [105]王富耻.材料现代分析测试方法[M].北京:北京理工大学出版社,2006.23-36.
    [106]李树堂.晶体X射线衍射学基础[M].北京:冶金工业出版社,1990.60-75.
    [107]许振嘉.半导体的检测与分析[M].第二版,北京:科学出版社,2007.28-78.
    [108]孙以材.半导体测试技术[M].北京:冶金工业出版社,1984.353-399.
    [109]马金鑫,朱国凯.扫描电子显微镜入门[M],北京:科学出版社,1985.49-63.
    [110]沈学础.半导体光学性质[M],北京:科学出版社,307-315.
    [111] Look D C. Recent advances in ZnO materials and devices [J]. Mater Sci Eng B,2001,80(1-3):383-387.
    [112] Osinsky A, Dong J W, Chernyak L, et al. MgZnO/AlGaN heterostructurelight-emitting diodes [J]. Appl Phys Lett,2004,85(19):4272-4274.
    [113] Pauporte T, Lincot D, Pelle F, et al. Toward laser emission of epitaxial nanorodarrays of ZnO grown by electrodeposition [J]. Appl Phys Lett,2006,89(23):233112.
    [114] Triboulet R, Perriere J. Epitaxial growth of ZnO films [J]. Prog Cryst GrowthMater,2003,47(2-3):65-138.
    [115] Tamura K, Ohtomo A, Saikusa K, et al. Epitaxial growth of ZnO films onlattice-matched ScAlMgO4(0001) substrates[J]. J Cryst Growth,2000,214-215:59-62.
    [116] Kawasaki M. A key for realizing p-type ZnO [C]//Pacific Rim Conference onLasers and Electro-Optics, Tokyo: IEEE,2005:464-465.
    [117]郑伟涛.薄膜材料与薄膜技术[M].北京:化学工业出版社,2004.142-66.
    [118]田民波.薄膜技术与薄膜材料[M].北京:清华大学出版社,2006.189-192.
    [119] Chen Y F, Bagnall D M, Ko H J, et al. Plasma assisted molecular beam epitaxyof ZnO on c-plane sapphire: Growth and characterization [J]. J Appl Phys,1998,84(7):3912-3918.
    [120] Fons P, Iwata K, Yamada A K, et al. Uniaxial locked epitaxy of ZnO on the aface of sapphire [J]. Appl Phys Lett,2000,77(12):1801-1803.
    [121] Fons P, Iwata K, Niki S, et al. Uniaxial locked growth of high-quality epitaxialZnO films on (1120)α-Al2O3[J]. J Cryst Growth,2000,209(2-3):532-536.
    [122] Kato H, Sano M, Miyamoto K, et al. MBE growth of Zn-polar ZnO onMOCVD-ZnO templates [J]. Phys Stat Sol B,2004,241(12):2825-2829.
    [123] Sawai Y, Hazu K, Chichibu S F. Surface stoichiometry and activity control foratomically smooth low dislocation density ZnO and pseudomorphic MgZnO epitaxyon a Zn-polar ZnO substrate by the helicon-wave-excited-plasma sputtering epitaxymethod [J]. J Appl Phys,2010,108(6):063541.
    [124] Setiawan A, Ko H J, Hong S K, et al. Study on MgO buffer in ZnO layersgrown by plasma-assisted molecular beam epitaxy on Al2O3(0001)[J]. Thin SolidFilms,2003,445(2):213-218.
    [125] Park J S, Hong S K, Im I H, et al. Growth of high-quality ZnO films on Al2O3(0001) by plasma-assisted molecular beam epitaxy [J]. J Cryst Growth,2009,311(7):2163-2166.
    [126] Fons P, Iwata K, Niki S, et al. Growth of high-quality epitaxial ZnO films onα-Al2O3[J]. J Cryst Growth,1999,201/202:627-632.
    [127] Iwata K, Fons P, Niki S, et al. Improvement of Electrical Properties in ZnOThin Films Grown by Radical Source(RS)-MBE [J]. Phys Stat Sol A,2000,180(1):287-292.
    [128] Chen Y, Ko H, Hong S, et al. Morphology evolution of ZnO (0001) surfaceduring plasma-assisted molecular-beam epitaxy [J]. Appl Phys Lett,2002,80(8):1358-1360.
    [129] Kato H, Sano M, Yao T, et al. Effect of O/Zn Flux Ratio on Crystalline Qualityof ZnO Films Grown by Plasma-Assisted Molecular Beam Epitaxy [J]. Jpn J ApplPhys,2003,42(4B):2241-2244.
    [130] Eaglesham D J, Cerullo M. Dislocation-free Stranski-Krastanow growth of Geon Si (100)[J]. Phy Rev Lett,1990,64(16):1943-1946.
    [131] Baxter J B, Aydil E S. Epitaxial growth of ZnO nanowires on a-and c-planesapphire [J]. J Cryst Growth,2005,274(3-4):407-411.
    [132] Reynolds D C, Look D C, Jogai B, et al. Neutral-donor-bound-excitoncomplexes in ZnO crystals [J]. Phys Rev B,1998,57(19):12151-12155.
    [133] Lavrov E V, Herklotz F, Weber J. Identification of Hydrogen Molecules in ZnO[J]. Phys Rev Lett,2009,102(18):185502-1-3.
    [134] Van de Walle C G. Hydrogen as a Cause of Doping in Zinc Oxide [J]. Phys RevLett,2000,85(5):1012-1015.
    [135]Janotti A, Van de Walle C G. Hydrogenmulticentre bonds[J]. Nature Mater,2007,6(1):44-47.
    [136] Meyer B K, Alves H, Hofmann D M, et al. Bound exciton and donor–acceptorpair recombinations in ZnO[J]. Phys Status Solidi B,2004,241(2):231-260.
    [137] Schildknecht A, Sauer R, Thonke K. Donor-related defect states in ZnOsubstrate material[J]. Physica B,2003,340-342:205-209.
    [138] Van der Walle C G. Hydrogen as a Cause of Doping in Zinc Oxide [J]. Phys RevLett,2000,85(5):1012-1015.
    [139] Cox S F G, Davis E A, Cottrell S P, et al. Experimental Confirmation of thePredicted Shallow Donor Hydrogen State in Zinc Oxide [J]. Phys Rev Lett2001,86(12):2601-2604.
    [140] Hofmann D M, Hofstaetter A, Leiter F, et al. Hydrogen: A Relevant ShallowDonor in Zinc Oxide [J]. Phys Rev Lett,2002,88(4):045504.
    [141] Janotti A, Van der Walle C G.. Hydrogen multicentre bonds [J]. Nat Mater,2007,6(1):44-47.
    [142] Liu L, Xu J L, Shen D Z, et al. p-Type Conductivity in N-Doped ZnO: TheRole of the NZn-VOComplex [J]. Phys Rev Lett,2012,108(21):215501.
    [143] Barnes T M, Olsonand K, Wolden C A. On the formation and stability of p-typeconductivity in nitrogen-doped zinc oxide [J]. Appl Phys Lett,2005,86(11):112112.
    [144] Zeng H B, Duan G T, Li Y, et al. Blue Luminescence of ZnO NanoparticlesBased on Non-Equilibrium Processes: Defect Origins and Emission Controls [J]. AdvFunct Mater,2010,20(4):561-572.
    [145] Samanta P K, Mishra S. Wet chemical growth and optical property of ZnOnanodiscs [J]. Optik,2013,124(17):2871-2873.
    [146] Bera A, Ghosh T, Basak D. Enhanced Photoluminescence and Photoconductiv-ity of ZnO Nanowires with Sputtered Zn [J]. ACS Appl Mater Inter,2010,2(10):2898-2903.
    [147] Schirra M, Schneider R, Reiser A, et al. Stacking fault related3.31-eVluminescence at130-meV acceptors in zinc oxide [J]. Phys Rev B,2008,77(12):125215.
    [148] Mandalapu L J, Xiu F X, Yang Z, et al. Ultraviolet photoconductive detectorsbased on Ga-doped ZnO films grown by molecular-beam epitaxy [J]. Solid StateElectronics,2007,51(7):1014-1017.
    [149] Look D C, Reynolds D C, Litton C W, et al. Characterization of homoepitaxialp-type ZnO grown by molecular beam epitaxy [J]. Appl Phys Lett,2002,81(10):1830-1832.
    [150] Look D C, Claflin B. P-type doping and devices based on ZnO [J]. Phys StatSol B,2004,241(3):624-630.
    [151] Przezdziecka E, Kaminska E, Korona K P, et al. Photoluminescence study andstructural characterization of p-type ZnO doped by N and/or As acceptors [J].Semicond Sci Technol,2007,22(2):10-14.
    [152] Liu L, Xu J L, Wang D D, et al. p-Type Conductivity in N-Doped ZnO: TheRole of the NZn-VOComplex [J]. Phys Rev Lett,2012,108(21):215501-1-3.
    [153] Reynolds J G, Reynolds C L, Mohanta A, et al. Shallow acceptor complexes inp-type ZnO [J]. Appl Phys Lett,2013,102(15):152114-1-3.
    [154] Deng B, Sun H Q, Guo Z Y, et al. Theoretical analysis on the improvement ofp-type ZnO by B-N codoping[J]. Acta Phys Sin,2010,59(2):1212-1218.
    [155] Yamamoto T. Codoping Method for Solutions of Doping Problems inWide-Band-Gap Semiconductor s[J]. Phys Stat Sol (a),2002,193(3):423–433.
    [156] Wang L G, Zunger A. Cluster-Doping Approach for Wide-Gap Semiconductors:The Case of p-Type ZnO [J]. Phys Rev Lett,2003,90(25):256401.
    [157] Chigo Anota E, Salazar Villanueva M, Hernandez Cocoletzi H. Electronicproperties of group III-Anitride sheets by molecular simulation [J]. Phys Sta Sol C,2010,7(7-8):2252-2254.
    [158] Lu J G, Ye Z Z, Zhuge F, et al. p-type conduction in N-Al co-doped ZnO thinfilms[J]. Appl Phys Lett,2004,85(15):3134-3135.
    [159] Ahn K S, Yan Y, Shet S, et al. Enhanced photoelectrochemical responses of ZnOfilms through Ga and N codoping [J]. Appl Phys Lett,2007,91(23):231909.
    [160] Paluselli D, Marsen B, Miller E L, et al. Nitrogen Doping of ReactivelySputtered Tungsten Oxide Films [J]. Electrochem Solid State Lett,2005,8(11):G301-G303.
    [161] Perkins C L, Lee S H, Li X, et al. Identification of nitrogen chemical states inN-doped ZnO via x-ray photoelectron spectroscopy[J]. J Appl Phys,2005,97(3):034907.
    [162] Zong F J, Ma H L, Xue C S, et al. Synthesis and thermal stability of Zn3N2powder [J]. Solid State Communications,2004,132(8):521–525.
    [163] Lin B X, Fu Z X, Jia Y B, et al. Green luminescent center in undoped zinc oxidefilms deposited on silicon substrates [J]. Appl Phys Lett,2001,79(7):943-945.
    [164] Jeong S H, Kim B S, Lee B T. Photoluminescence dependence of ZnO filmsgrown on Si(100) by radio-frequency magnetron sputtering on the growthambient[J]. Appl Phys Lett,2003,82(16):2625-2627.
    [165] Gao J Y, R Qin, G F Luo, et al. First-principles study of the formationmechanisms of nitrogen molecule in annealed ZnO [J]. Phys Lett A,2010,374(34):3546-3550.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700